
7.2 Volumes

A right cylinder (not necessarily circular) is a 3-dimensional solid
made by starting with a 2-dimensional shape (like a half-circle, a
circle, a rectangle, or whatever), filling it in, and then translating it
straight up for a height h.

For a solid that isn’t a cylinder we first “cut” into pieces and approximate each
piece by a cylinder. We estimate the volume of by adding the volumes of the cylin-
ders. We arrive at the exact volume of S through a limiting process in which the num-
ber of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The
cross-sectional area will vary as increases from to .

We consider a partition of the interval into subintervals with partition
points . We divide S into n “slabs” of width by using
the planes , , . . . to slice the solid. (Think of slicing a loaf of bread.) If we choose
sample points in , we can approximate the th slab (the part of that lies
between the planes and ) by a cylinder with base area and “height” .
(See Figure 3.)
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The volume of such a shape is the area A of the base times the
height h:

V = Ah.

For the circular cylinder, the base has area A = ⇡r

2, so V = ⇡r

2

h.
The rectangular cylinder has base of area A = lw, so V = lwh.

Non-cylindrical solids

Just like we approximated 2-dimensional areas as a bunch of
rectangles:

365

7.1 AREAS BETWEEN CURVES
In Chapter 5 we defined and calculated areas of regions that lie under the graphs of 
functions. Here we use integrals to find areas of regions that lie between the graphs of
two functions.

Consider the region that lies between two curves and and be-
tween the vertical lines and , where and are continuous functions and

for all in . (See Figure 1.)
Just as we did for areas under curves in Section 5.1, we divide S into n strips of

equal width and then we approximate the ith strip by a rectangle with base and
height . (See Figure 2. If we like, we could take all of the sample points
to be right endpoints, in which case .) The Riemann sum

is therefore an approximation to what we intuitively think of as the area of S.
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APPLICATIONS OF INTEGRATION
In this chapter we explore some of the applications of the definite integral by using it to compute areas
between curves, volumes of solids, lengths of curves, the work done by a varying force, the center of
gravity of a plate, and the force on a dam. The common theme in most of these applications is the 
following general method, which is similar to the one we used to find areas under curves: We break up
a quantity into a large number of small parts. We next approximate each small part by a quantity of
the form and thus approximate by a Riemann sum. Then we take the limit and express 
as an integral. Finally we evaluate the integral by using the Evaluation Theorem, or Simpson’s Rule, or
technology.

In the final section we look at what is perhaps the most important of all the applications of integra-
tion: differential equations. When a scientist uses calculus, more often than not it is to solve a differen-
tial equation that has arisen in the description of some physical process.
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we can approximate 3-dimensional volumes as a bunch of cylinders:

For a solid that isn’t a cylinder we first “cut” into pieces and approximate each
piece by a cylinder. We estimate the volume of by adding the volumes of the cylin-
ders. We arrive at the exact volume of S through a limiting process in which the num-
ber of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The
cross-sectional area will vary as increases from to .

We consider a partition of the interval into subintervals with partition
points . We divide S into n “slabs” of width by using
the planes , , . . . to slice the solid. (Think of slicing a loaf of bread.) If we choose
sample points in , we can approximate the th slab (the part of that lies
between the planes and ) by a cylinder with base area and “height” .
(See Figure 3.)
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For a solid that isn’t a cylinder we first “cut” into pieces and approximate each
piece by a cylinder. We estimate the volume of by adding the volumes of the cylin-
ders. We arrive at the exact volume of S through a limiting process in which the num-
ber of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The
cross-sectional area will vary as increases from to .

We consider a partition of the interval into subintervals with partition
points . We divide S into n “slabs” of width by using
the planes , , . . . to slice the solid. (Think of slicing a loaf of bread.) If we choose
sample points in , we can approximate the th slab (the part of that lies
between the planes and ) by a cylinder with base area and “height” .
(See Figure 3.)

FIGURE 1 (a) Cylinder V=Ah

h

B¡

B™

(b) Circular cylinder V=πr@h

h

r

(c) Rectangular box V=lwh

h

l

w

S S
S

S. A!x" S Px

x x a ! x ! b
S x

A!x" x a b

FIGURE 2

y

x0 a bx

A(a)
A(b)

PxP

#a, b$ n
x0, x1, x2, . . . , xn "xi ! xi # xi#1

Px1 Px2

xi* #xi#1, xi $ i Si S
Pxi#1 Pxi A!xi*" "xi

FIGURE 3

xi-1 xi

y

0 xx*i

S

a b

y

0 xx¶=ba=x¸ ⁄ ¤ ‹ x¢x x∞ xß

Îxi

SECTION 7.2  VOLUMES 371

Unless otherwise noted, all content on this page is © Cengage Learning.

12280_ch07_ptg01_hr_365-375.qk_12280_ch07_ptg01_hr_365-375  11/17/11  10:57 AM  Page 371

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Non-cylindrical solids

We start with some 3D solid S, and take cross-sections of it
perpendicular to one of the axes (say x):

For a solid that isn’t a cylinder we first “cut” into pieces and approximate each
piece by a cylinder. We estimate the volume of by adding the volumes of the cylin-
ders. We arrive at the exact volume of S through a limiting process in which the num-
ber of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The
cross-sectional area will vary as increases from to .

We consider a partition of the interval into subintervals with partition
points . We divide S into n “slabs” of width by using
the planes , , . . . to slice the solid. (Think of slicing a loaf of bread.) If we choose
sample points in , we can approximate the th slab (the part of that lies
between the planes and ) by a cylinder with base area and “height” .
(See Figure 3.)
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Here, the shape goes out to the left as far as x = a and to the
right as far as x = b. Let A(x) be the area of the cross-section of
the shape at x. So the far left cross-section has area A(a), and the
far right cross-section has area A(b).

Non-cylindrical solids

Breaking the interval [a, b] into n pieces (just like before), we pick
an x

i

in each interval. Then we approximate the volume of the
shape “near by” each x

i

by a cylinder whose face is the shape of
the cross-section, and whose height is �x = b�a

n

:

For a solid that isn’t a cylinder we first “cut” into pieces and approximate each
piece by a cylinder. We estimate the volume of by adding the volumes of the cylin-
ders. We arrive at the exact volume of S through a limiting process in which the num-
ber of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The
cross-sectional area will vary as increases from to .

We consider a partition of the interval into subintervals with partition
points . We divide S into n “slabs” of width by using
the planes , , . . . to slice the solid. (Think of slicing a loaf of bread.) If we choose
sample points in , we can approximate the th slab (the part of that lies
between the planes and ) by a cylinder with base area and “height” .
(See Figure 3.)
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Since the area of the cross-section is A(x), the volume of that
(very short) cylinder is

�V

i

= A(x
i

)�x.



Non-cylindrical solids

The volume of each cylinder is �V

i

= A(x
i

)�x. Summing up, we
approximate the volume by

V ⇡
nX

i=1

A(x
i

)�x.

For a solid that isn’t a cylinder we first “cut” into pieces and approximate each
piece by a cylinder. We estimate the volume of by adding the volumes of the cylin-
ders. We arrive at the exact volume of S through a limiting process in which the num-
ber of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a
cross-section of Let be the area of the cross-section of in a plane perpen-
dicular to the -axis and passing through the point , where . (See Figure 2.
Think of slicing with a knife through and computing the area of this slice.) The
cross-sectional area will vary as increases from to .

We consider a partition of the interval into subintervals with partition
points . We divide S into n “slabs” of width by using
the planes , , . . . to slice the solid. (Think of slicing a loaf of bread.) If we choose
sample points in , we can approximate the th slab (the part of that lies
between the planes and ) by a cylinder with base area and “height” .
(See Figure 3.)
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As before, the more subintervals we have, the better the
approximation. So the exact volume is

V = lim
n!1

nX

i=1

A(x
i

)�x =

Z
b

a

A(x)dx by definition.

Example: Calculating the volume of a sphere

Place a sphere or radius r with its center at the origin:
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The volume of this cylinder is , so an approximation to our intuitive con-
ception of the volume of the th slab is 

Adding the volumes of these slabs, we get an approximation to the total volume (that
is, what we think of intuitively as the volume): 

This approximation appears to become better and better as the slices become thinner
and thinner. So we define the volume as the limit of these sums as . But
we recognize the limit of Riemann sums as a definite integral and so we have the fol-
lowing definition.

DEFINITION OF VOLUME Let be a solid that lies between and .
If the cross-sectional area of in the plane , through x and perpendicular to
the x-axis, is , where is an integrable function, then the volume of is

When we use the volume formula it is important to remember that 
is the area of a moving cross-section obtained by slicing through perpendicu-

lar to the -axis.
Notice that, for a cylinder, the cross-sectional area is constant: for all .

So our definition of volume gives ; this agrees with the for-
mula 

EXAMPLE 1 Show that the volume of a sphere of radius is .

SOLUTION If we place the sphere so that its center is at the origin (see Figure 4),
then the plane intersects the sphere in a circle whose radius (from the Py thag o-
 re an Theorem) is . So the cross-sectional area is

Using the definition of volume with and , we have

(The integrand is even.)

■

Figure 5 illustrates the definition of volume when the solid is a sphere with radius 
. From the result of Example 1, we know that the volume of the sphere is

. Here the slabs are circular cylinders, or disks, and the three parts of 
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independent of how is situated with
respect to the -axis. In other words, no
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The cross-sections perpendicular to the x-axis are circles. For a
fixed x, the cross-section’s area depends on the radius ⇢(x). So
what is the radius ⇢(x) of the corresponding circle??

We have the
triangle pictured, whose base is x (since that’s how far out we are),
whose hypotenuse is r (the radius of the whole sphere), and whose
height is y = ⇢(x). So ⇢

2(x) = r

2 � x

2

. Thus

A(x) = ⇡⇢

2(x) = ⇡(r2 � x

2).
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. Here the slabs are circular cylinders, or disks, and the three parts of 
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■ It can be proved that this definition is
independent of how is situated with
respect to the -axis. In other words, no
matter how we slice with parallel
planes, we always get the same answer
for .
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We have the triangle pictured, whose base is x (since that’s how
far out we are), whose hypotenuse is r (the radius of the whole
sphere), and whose height is y = ⇢(x). So ⇢

2(x) = r

2 � x

2

. Thus

A(x) = ⇡⇢

2(x) = ⇡(r2 � x

2).

Example: Calculating the volume of a sphere
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The volume of this cylinder is , so an approximation to our intuitive con-
ception of the volume of the th slab is 

Adding the volumes of these slabs, we get an approximation to the total volume (that
is, what we think of intuitively as the volume): 

This approximation appears to become better and better as the slices become thinner
and thinner. So we define the volume as the limit of these sums as . But
we recognize the limit of Riemann sums as a definite integral and so we have the fol-
lowing definition.

DEFINITION OF VOLUME Let be a solid that lies between and .
If the cross-sectional area of in the plane , through x and perpendicular to
the x-axis, is , where is an integrable function, then the volume of is

When we use the volume formula it is important to remember that 
is the area of a moving cross-section obtained by slicing through perpendicu-

lar to the -axis.
Notice that, for a cylinder, the cross-sectional area is constant: for all .

So our definition of volume gives ; this agrees with the for-
mula 

EXAMPLE 1 Show that the volume of a sphere of radius is .

SOLUTION If we place the sphere so that its center is at the origin (see Figure 4),
then the plane intersects the sphere in a circle whose radius (from the Py thag o-
 re an Theorem) is . So the cross-sectional area is

Using the definition of volume with and , we have

(The integrand is even.)

■

Figure 5 illustrates the definition of volume when the solid is a sphere with radius 
. From the result of Example 1, we know that the volume of the sphere is

. Here the slabs are circular cylinders, or disks, and the three parts of 
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■ It can be proved that this definition is
independent of how is situated with
respect to the -axis. In other words, no
matter how we slice with parallel
planes, we always get the same answer
for .
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A(x) = ⇡(r2 � x

2) (r is constant)

So using V =
R
b

a

A(x)dx, we have

V =

Z
r

�r
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Suppose we have a 3D shape S that can be described as follows:
(⇤) S has circular base of radius 1, and (⇤) parallel cross-sections
perpendicular to the base are equilateral triangles.

S :

■

We now find the volumes of two solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cross-
sections perpendicular to the base are equilateral triangles. Find the volume of the
solid.

SOLUTION Let’s take the circle to be . The solid, its base, and a typi-
cal cross-section at a distance from the origin are shown in Figure 13.

Since lies on the circle, we have and so the base of the triangle
is . Since the triangle is equilateral, we see from Figure 13(c) 

that its height is . The cross-sectional area is therefore

and the volume of the solid is

■

x 2 ! y 2 ! 1
x

FIGURE 13

y y
60° 60° BA

C

œ„œœ3y

(c) A cross-section

A

B(x, y)y=œ„„„„„„„≈

(b) Its base

x

y

0

y

x

(a) The solid

0

A

B

1_1 x

y
C

B y ! s1 " x 2 

ABC ! AB ! ! 2s1 " x 2 

s3 y ! s3 s1 " x 2 

A"x# ! 1
2 ! 2s1 " x 2 ! s3 s1 " x 2 ! s3 "1 " x 2 #

V ! y1

"1
A"x# dx ! y1

"1
s3 "1 " x 2 # dx

! 2 y1

0
s3 "1 " x 2 # dx ! 2s3 $x "

x 3

3 %0

1

!
4s3

3

FIGURE 11
x=_1

y

y

x0

x=œ„y

y

x=y

y

1
1+y

1+œ„

SECTION 7.2  VOLUMES 377

Unless otherwise noted, all content on this page is © Cengage Learning.

FIGURE 12
Computer-generated picture
of the solid in Example 7

y

x

Visual 7.2C shows how the solid in
Figure 12 is generated.
TEC
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S with cross-sections : Base of S :

Slices: height �x and triangular face

A(x) = 1
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y ⇤
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p
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=
p
3
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You try: What is V ?

Suppose we have a 3D shape S that can be described as follows:
(⇤) S has circular base of radius 1, and (⇤) parallel cross-sections
perpendicular to the base are equilateral triangles.

S with cross-sections :

■

We now find the volumes of two solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cross-
sections perpendicular to the base are equilateral triangles. Find the volume of the
solid.

SOLUTION Let’s take the circle to be . The solid, its base, and a typi-
cal cross-section at a distance from the origin are shown in Figure 13.

Since lies on the circle, we have and so the base of the triangle
is . Since the triangle is equilateral, we see from Figure 13(c) 

that its height is . The cross-sectional area is therefore

and the volume of the solid is
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FIGURE 12
Computer-generated picture
of the solid in Example 7
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Visual 7.2C shows how the solid in
Figure 12 is generated.
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Base of S :

■

We now find the volumes of two solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cross-
sections perpendicular to the base are equilateral triangles. Find the volume of the
solid.

SOLUTION Let’s take the circle to be . The solid, its base, and a typi-
cal cross-section at a distance from the origin are shown in Figure 13.

Since lies on the circle, we have and so the base of the triangle
is . Since the triangle is equilateral, we see from Figure 13(c) 

that its height is . The cross-sectional area is therefore

and the volume of the solid is

■
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FIGURE 12
Computer-generated picture
of the solid in Example 7
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Visual 7.2C shows how the solid in
Figure 12 is generated.
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Slices: height �x and triangular face

■

We now find the volumes of two solids that are not solids of revolution.

EXAMPLE 7 Figure 12 shows a solid with a circular base of radius 1. Parallel cross-
sections perpendicular to the base are equilateral triangles. Find the volume of the
solid.

SOLUTION Let’s take the circle to be . The solid, its base, and a typi-
cal cross-section at a distance from the origin are shown in Figure 13.

Since lies on the circle, we have and so the base of the triangle
is . Since the triangle is equilateral, we see from Figure 13(c) 

that its height is . The cross-sectional area is therefore

and the volume of the solid is
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FIGURE 12
Computer-generated picture
of the solid in Example 7
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You try: What is V ?



Volumes of revolution

Now say we have a volume that can be described as a
2-dimensional shape rotated around an axis.
Think of working with a lathe or a pottery wheel:

How much wood is left?

For example, if I rotate the area bounded between y =
p
x, the

x-axis, and the line x = 1, around the x-axis, I get

We do the same thing as before, adding up volumes of slices.
Slices: Circular cylinders of height �x and radius

p
x.

What is A(x)? What is V ?

Volumes of revolution

Now say we have a volume that can be described as a
2-dimensional shape rotated around an axis.
For example, if I rotate the area bounded between y =

p
x, the

x-axis, and the line x = 1, around the x-axis, I get

Figure 5 show the geometric interpretations of the Riemann sums

when , 10, and 20 if we use regular partitions and choose the sample points
to be the midpoints . Notice that as we increase the number of approximating cylin-
ders, the corresponding Riemann sums become closer to the true volume.

EXAMPLE 2 Find the volume of the solid obtained by rotating about the x-axis
the region under the curve from 0 to 1. Illustrate the definition of volume
by sketching a typical approximating cylinder.

SOLUTION The region is shown in Figure 6(a). If we rotate about the x-axis, we
get the solid shown in Figure 6(b). When we slice through the point x, we get a disk
with radius . The area of this cross-section is

and the volume of the approximating cylinder (a disk with thickness ) is

The solid lies between and , so its volume is

■
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FIGURE 5
Approximating the volume  
of a sphere with radius 1 

Visual 7.2A shows an animation of
Figure 5.
TEC

■ Did we get a reasonable answer in 
Example 2? As a check on our work,
let’s replace the given region by a
square with base and height . If
we rotate this square, we get a cylinder
with radius , height , and volume

. We computed that the
given solid has half this volume. That
seems about right.

11
" ! 12 ! 1 ! "

1%0, 1&

Visual 7.2B shows how the solids
of revolution in Examples 2–6 are
formed.
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We do the same thing as before, adding up volumes of slices.
Slices: Circular cylinders of height �x and radius

p
x.

What is A(x)? What is V ?



Answer:

A(x) = ⇡r

2(x) = ⇡(
p
x)2 = ⇡x

So

V =

Z
1

0

A(x) dx =

Z

0

1
⇡x dx = ⇡

3

x

3

���
1

x=0

= ⇡

3

.

Example

Find the volume of the solid obtained by rotating the region
bounded by y = x

3, y = 8, and x = 0 about the y-axis.

The issue here is that the circular cross-sections are horizontal now!
Slices: Circular cylinders, with height �y and radius r(y) = 3

p
y. So

A(y) = ⇡r

2(y) = ⇡y

2/3

.

And thus

V =

Z
8

0

A(y)dy =

Z
8

0

⇡y

2/3

dy = 3⇡

5

y

5/3

���
8

0

= 3⇡

5

25.



Washers: Volumes that are not convex

Notice that the volume of a hollowed out circular cylinder is
Vol(Outer cylinder) � Vol(Inner cylinder)

We call these washers. If the radius of the outer circular cylinder is
r

out

and the radius of the inner circular cylinder is r
in

, then the
volume of the washer is

V (washer) = ⇡r

2

out

h� ⇡r

2

in

h = ⇡(r2
out

� r

2

in

)h.

Note this is the same as before, except that the face of the
cylinder is not convex anymore. But the area of the face is the
area of the big circle minus the area of the small circle:

A = ⇡r

2

out

� ⇡r

2

in

,

so that V = hA give the same answer as above!

Washers: Volumes that are not convex

V (washer) = ⇡(r2
out

� r

2

in

)h.

Example: Take the region bounded by y = x and y = x

2, and
rotate is around the x-axis. What is the resulting volume?

Slice: Washer, with height �x and area A = ⇡(r2
out

� r

2

out

). Since

r

out

= x and r

in

= x

2

, A(x) = ⇡(x2 � x

4).
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You try

Take the region bounded by y = 4, y = 4x2, and x = 0.

1. Draw the region y = 4, y = 4x2, and x = 0. What are the
end-points of this region in terms of x? in terms of y?

2. Rotating around the x-axis:
(a) When you rotate this shape around the x-axis, what is the

shape of the slices?
(b) For each slice, what the height? What is the variable? Do I

want A(x) or A(y)?
(c) What is A(x) or A(y) (whichever you chose above)?
(d) What is the volume?

3. Rotating around the y-axis:
(a) When you rotate this shape around the y-axis, what is the

shape of the slices?
(b) For each slice, what the height? What is the variable? Do I

want A(x) or A(y)?
(c) What is A(x) or A(y) (whichever you chose above)?
(d) What is the volume?



General strategy for calculating volumes

1. What are your slices? So far, this is some sort of cylinder with
face of area A and very small height.

2. What is your variable? This should be the thickness of your
slice (�x, �y, �z).

3. What are the endpoints with respect to the variable?

4. What is the area of the face of the slice (in terms of the
variable)?

Integrate the area in part 4 versus the variable in part 2, between
the endpoints in part 3.

Tips: Draw lots of pictures, labeling everything. Write each part
explicitly. Volume should always be positive.


