Today: 6.6 Improper integrals

Consider

$$\int_{1}^{a} x^{-2} dx, \quad \text{for } a = 2, 3, 4, 5.$$

$$\int_{1}^{2} x^{-2} dx = -x^{-1} \Big|_{x=1}^{2} = -\frac{1}{2} + 1 = \frac{1}{2}$$

Today: 6.6 Improper integrals

Consider

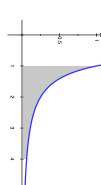
$$\int_{1}^{\infty} x^{-2} dx, \quad \text{for } a = 2, 3, 4, 5.$$

$$\int_{1}^{3} x^{-2} dx = -x^{-1} \Big|_{x=1}^{3} = -\frac{1}{3} + 1 = \frac{2}{3}$$

Today: 6.6 Improper integrals

Conside

$$\int_{1}^{a} x^{-2} dx, \quad \text{for } a = 2, 3, 4, 5.$$

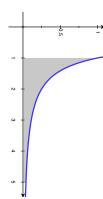


$$\int_{1}^{4} x^{-2} dx = -x^{-1} \Big|_{x=1}^{4} = -\frac{1}{4} + 1 = \frac{3}{4}$$

Today: 6.6 Improper integrals

Consider

$$\int_{1}^{a} x^{-2} dx, \quad \text{for } a = 2, 3, 4, 5.$$

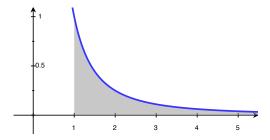


$$\int_{1}^{5} x^{-2} dx = -x^{-1} \Big|_{x=1}^{5} = -\frac{1}{5} + 1 = \frac{4}{5}$$

Today: 6.6 Improper integrals

Consider

$$\int_{1}^{a} x^{-2} dx, \quad \text{for } a = 2, 3, 4, 5.$$



$$\int_{1}^{n} x^{-2} dx = -x^{-1} \Big|_{x=1}^{n} = -\frac{1}{n} + 1 = \frac{n-1}{n}$$

Notice that

$$\lim_{n \to \infty} \int_{1}^{n} x^{-2} \ dx = \lim_{n \to \infty} \frac{n-1}{n} = 1.$$

So we say $\int_1^\infty x^{-2} dx = 1!$

Improper integrals: type 1 (infinite intervals)

1 If

(a) $\int_a^t f(x) \ dx$ exists for every $t \ge a$, and

(b) $\lim_{t\to\infty} \int_a^t f(x) \ dx$ exists,

then

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx.$$

2. If

(a) $\int_t^b f(x) \ dx$ exists for every $t \leq b$, and

(b) $\lim_{t\to\infty} \int_t^b f(x) \ dx$ exists,

then

$$\int_{-\infty}^{b} f(x) \ dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \ dx.$$

These integrals are called convergent if the limit exists, and divergent if the limit doesn't exist.

If $\int_{-\infty}^a f(x) \ dx$ and $\int_a^\infty f(x) \ dx$ are both convergent, then

$$\int_{-\infty}^{\infty} f(x) \ dx = \int_{-\infty}^{a} f(x) \ dx + \int_{a}^{\infty} f(x) \ dx.$$

You try

- 1. Show that $\int_1^\infty \frac{1}{x} \, dx$ is divergent. [First calculate $\int_1^t \frac{1}{x} \, dx$. Then take the limit as $t \to \infty$.]
- 2. Calculate

$$\int_0^\infty \frac{1}{1+x^2} \ dx, \quad \int_{-\infty}^0 \frac{1}{1+x^2} \ dx, \quad \text{ and } \quad \int_{-\infty}^\infty \frac{1}{1+x^2} \ dx.$$

(Recall, $\lim_{t\to\pm\infty}\tan^{-1}(t)=\pm\pi/2$.) [First calculate $\int_1^t\frac{1}{x}\;dx$ and $\int_t^1\frac{1}{x}\;dx$. Then take the limits as $t\to\pm\infty$.]

You try

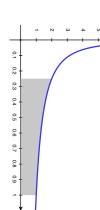
Decide which of the following converge (if so, to what) or diverge.

$$\int_0^\infty x e^x \ dx, \quad \int_{-\infty}^0 x e^x \ dx, \quad \text{ and } \quad \int_{-\infty}^\infty x e^x \ dx.$$

Improper integrals: type 2 (discontinuous functions)

Example: Consider

$$\int_{a}^{1} x^{-1/2} dx, \quad \text{ for } a = 1/4, 1/9, 1/16, 1/25.$$

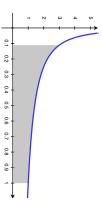


$$\int_{1/4}^{1} x^{-1/2} dx = 2x^{1/2} \Big|_{x=1/4}^{1} = 2 - 2 \cdot \frac{1}{2} = 1$$

Improper integrals: type 2 (discontinuous functions)

Example: Consider

$$\int_{a}^{1} x^{-1/2} dx, \quad \text{ for } a = 1/4, 1/9, 1/16, 1/25.$$

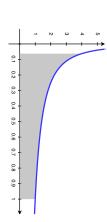


$$\int_{1/9}^{1} x^{-1/2} dx = 2x^{1/2} \Big|_{x=1/9}^{1} = 2 - 2 \cdot \frac{1}{3} = 2 \cdot \frac{2}{3}$$

Improper integrals: type 2 (discontinuous functions)

Example: Consider

$$\int_{a}^{1} x^{-1/2} dx$$
, for $a = 1/4, 1/9, 1/16, 1/25$

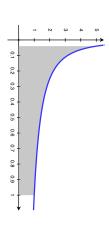


$$\int_{1/16}^{1} x^{-1/2} dx = 2x^{1/2} \Big|_{x=1/16}^{1} = 2 - 2 \cdot \frac{1}{4} = 2 \cdot \frac{3}{4}$$

Improper integrals: type 2 (discontinuous functions)

Example: Consider

$$\int_{a}^{+} x^{-1/2} dx, \quad \text{ for } a = 1/4, 1/9, 1/16, 1/25.$$

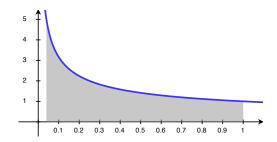


$$\int_{1/25}^{1} x^{-1/2} dx = 2x^{1/2} \Big|_{x=1/25}^{1} = 2 - 2 \cdot \frac{1}{5} = 2 \cdot \frac{4}{5}$$

Improper integrals: type 2 (discontinuous functions)

Example: Consider

$$\int_{a}^{1} x^{-1/2} dx, \quad \text{for } a = 1/4, 1/9, 1/16, 1/25.$$



$$\int_{1/n^2}^1 x^{-1/2} \ dx = 2x^{1/2}\big|_{x=1/n^2}^1 = 2 - 2 \cdot \frac{1}{n} = 2 \cdot \frac{n-1}{n} \to 2 \text{ as } n \to \infty$$

So we say

$$\int_0^1 x^{-1/2} \ dx = \lim_{t \to 0^+} \int_t^1 x^{-1/2} \ dx = \lim_{t \to 0^+} 2 - 2 \cdot \sqrt{t} = 2.$$

Improper integrals: type 2 (discontinuous functions)

1. If

(a) f(x) is continuous on [a,b) but is discontinuous at b, and

(b) $\lim_{t\to b^-} \int_a^t f(x) \ dx$ exists,

then

$$\int_a^b f(x) \ dx = \lim_{t \to b^-} \int_a^t f(x) \ dx.$$

2. If

(a) f(x) is continuous on (a,b] but is discontinuous at a, and

(b) $\lim_{t\to a^+} \int_t^b f(x) \ dx$ exists,

then

$$\int_a^b f(x) \ dx = \lim_{t \to a^+} \int_t^b f(x) \ dx.$$

These integrals are called convergent if the limit exists, and divergent if the limit doesn't exist. If f(x) has a discontinuity at c, where a < c < b, and $\int_b^c f(x) \ dx$ and $\int_c^a f(x) \ dx$ are both convergent, then

$$\int_{a}^{b} f(x) \ dx = \int_{a}^{c} f(x) \ dx + \int_{c}^{b} f(x) \ dx.$$

You try:

- 1. Show $\int_2^5 \frac{1}{x-2} \ dx$ converges to $2\sqrt{3}$. [First calculate $\int_t^5 \frac{1}{x-2} \ dx$. Then take the limit as $t \to 2^+$.]
- 2. Show $\int_0^3 \frac{1}{x-1} \ dx$ diverges. [Break it up into $\int_0^1 \frac{1}{x-1} \ dx + \int_1^3 \frac{1}{x-1} \ dx$.]
- 3. Decide whether $\int_0^{\pi/2}\sec(x)\ dx$ diverges or converges. [Recall $\sec(x)$ has vertical asymptotes at $\pi/2+k\pi$.]

Comparison test for improper integrals

Example: Show that $\int_1^\infty e^{-x^2} dx$ is convergent.

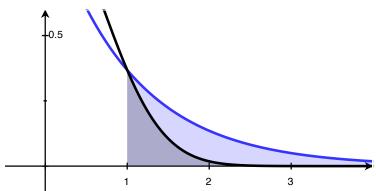
Recall, we can't calculate $\int e^{-x^2} dx$ exactly.

However, for x > 1 we have

$$x^2 > x$$
, so that $1/e^{x^2} > 1/e^x$.

Also, since $e^{-x^2} > 0$, we have $0 < \int_1^\infty e^{-x^2} \ dx$. Therefore

$$0 < \int_{1}^{\infty} e^{-x^2} \ dx < \int_{1}^{\infty} e^{-x} \ dx.$$



Comparison test for improper integrals

Example: Show that $\int_{1}^{\infty} e^{-x^2} dx$ is convergent.

Recall, we can't calculate $\int e^{-x^2} dx$ exactly.

However, for x > 1 we have

$$x^2 > x$$
, so that $1/e^{x^2} > 1/e^x$.

Also, since $e^{-x^2} > 0$, we have $0 < \int_1^\infty e^{-x^2} dx$. Therefore

$$0 < \int_{1}^{\infty} e^{-x^2} \ dx < \int_{1}^{\infty} e^{-x} \ dx.$$

But

$$\int_{1}^{\infty} e^{-x} dx = \lim_{t \to \infty} \int_{1}^{t} e^{-x} dx$$
$$= \lim_{t \to \infty} -e^{-x} \Big|_{1}^{t} = \lim_{t \to \infty} -e^{-t} + 1 = 0 + 1 = 1.$$

So

$$0 < \int_{1}^{\infty} e^{-x^2} dx < 1,$$

and is therefore convergent. (Still can't calculate exactly)

You try

Decide whether

$$\int_0^\pi \frac{\cos^2(x)}{\sqrt{x}} \ dx$$

converges or diverges. [Hint: $-1 \le \cos(x) \le 1$]