
Warm up: Recall we can approximate
∫ b
a f(x) dx using rectangles

as follows:

i. Pick a number n and divide [a, b] into n equal intervals. Note
that ∆x = (b− a)/n is the length of each of these intervals.

ii. Choose a point c in each of the intervals (usually either the
left-most point, the right-most point, or the mid point).

iii. Use a rectangle with base (b− a)/n and height f(c) to model
the area under the curve y = f(x) over each of the intervals.

iv. Add up the area of the rectangles.

Now consider I =
∫ 4
1 x

2 dx.

Approximate I using the given n and c, and draw a picture to go
with that shows (a) y = x2, (b) the n intervals on the x-axis, (c)
the point c in each of the intervals, and (d) the rectangle that
approximates the area under the curve.

(1) n = 3 and c being the left-most point of each of the intervals.

(2) n = 6 and c being the right-most point of each of the intervals.

(3) n = 2 and c being the midpoint of each of the intervals.



Approximating I =
∫ 4
1 x

2 dx with n = 3 intervals using left
endpoints:

1 2 3 4

5

10

15

I ≈ 1 · 12 + 1 · 22 + 1 · 32 = 14



Approximating I =
∫ 4
1 x

2 dx with n = 6 intervals using right
endpoints:

1 2 3 4

5

10

15

I ≈ .5 · 1.52 + .5 · 22 + .5 · 2.52 + .5 · 32 + .5 · 3.52 + .5 · 42 = 24.875



Approximating I =
∫ 4
1 x

2 dx with n = 2 intervals using midpoints:

1 2 3 4

5

10

15

I ≈ 1.5 · 1.752 + 1.5 · 3.252 = 20.4375



Review from Section 4.2

Approximating I =
∫ b
a f(x) dx using n intervals:

The intervals are of length ∆x = (b− a)/n and

I ≈
n∑
i=1

∆x ∗ f(ci),

where ci is. . .

a b = a+n∆xa+∆x a+2∆x

a+ 1
2∆x a+ 3

2∆x

· · ·

Left-hand endpoints: ci = a+ (i− 1)∆x
Right-hand endpoints: ci = a+ i∆x
Midpoints: ci = a+ (i− 1

2)∆x
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Section 6.5: Approximate integration
Why would we need approximations now that we have a bunch of
fancy new integration techniques?

Example: What is
∫
e−x

2
dx?

From Wikipedia: “In mathematics, the error function (also called the Gauss error function) is a special function

(non-elementary) of sigmoid shape which occurs in probability, statistics and partial differential equations.”
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Approximating
∫ 2

−2 e
−x2dx using rectangles

Let n = 4 (so that ∆x = (2− (−2))/4 = 1).

Left endpoints:

-2 -1 1 2

1

I ≈ e−4 + e−1 + e0 + e−1 = 1.7540 . . .

Right endpoints:

-2 -1 1 2

1

I ≈ e−1 + e0 + e−1 + e−4 = 1.7540 . . .
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Approximating
∫ 2

−2 e
−x2dx using rectangles

Let n = 4 (so that ∆x = (2− (−2))/4 = 1).

Midpoints:

-2 -1 1 2

1

I ≈ e−(−1.5)2 + e−(−.5)
2

+ e−(.5)
2

+ e−(1.5)
2

= 1.7684 . . .



Approximating
∫ 2

−2 e
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Error
Let Ln, Rn, and Mn be the estimates of a definite integral with n
intervals, using left, right, and midpoints, respectively.
For example, for the definite integral

∫ 2
−2 e

−x2 dx,

L4 = 1.7540 . . . , R4 = 1.7540 . . . , and M4 = 1.7684 . . . .

In reality, ∫ 2

−2
e−x

2
dx = 1.7641 . . . .

So the errors for L4 and R4 were about 0.01, and the error for M4

was about −0.004.

The reason I can tell you, definitively, to 4 digits, the value of this
integral is because we also have formulas for upper bounds on the
error using various approximation methods. This bound depends
on things like the number of intervals (the more the better), the
length of the total interval we integrate over (the smaller the
better), and the curvature (second derivative) of the function (the
flatter the better).
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Error
Let Ln, Rn, and Mn be the estimates of a definite integral with n
intervals, using left, right, and midpoints, respectively.
For example, for the definite integral

∫ 2
−2 e

−x2 dx,

L4 = 1.7540 . . . , R4 = 1.7540 . . . , and M4 = 1.7684 . . . .

In reality, ∫ 2

−2
e−x

2
dx = 1.7641 . . . .

So the errors for L4 and R4 were about 0.01, and the error for M4

was about −0.004.
The reason I can tell you, definitively, to 4 digits, the value of this
integral is because we also have formulas for upper bounds on the
error using various approximation methods. This bound depends
on things like the number of intervals (the more the better), the
length of the total interval we integrate over (the smaller the
better), and the curvature (second derivative) of the function (the
flatter the better).



Error for the midpoint rule
Suppose we approximate

∫ b
a f(x) dx using n intervals and

midpoints. The error of the approximation Mn is exactly

EM =

∫ b

a
f(x) dx−Mn.

If I knew EM exactly, then I could actually calculate the integral
exactly (add it to the approximation), which we’re supposing we
can’t calculate exactly.

However, we can put an upper bound (how
bad could our approximation possibly be) on it as follows.. . .
Calculate f ′′(x). Find a smallest value 0 ≤ K where you can
calculate that |f ′′(x)| ≤ K over the interval [a, b].
Example: Calculating

∫ 4
1 x

2 dx. We calculated M2 = 20.4375.
Now, f ′′(x) = 2. So let K = 2.
Then

|EM | ≤
K(b− a)3

24n2
.

Example continued: K = 2, b− a = 3 and n = 2. So

|EM | ≤
2(3)3

24 · 22
= 9/16 = 0.5625.

Comparing against the exact value,
∫ 4
1 x

2 dx = 21. So
EM = 21− 20.4375 = 0.5625. So our bound was exact!
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Error for the midpoint rule

|EM | ≤ K(b−a)3
24n2 where |f ′′(x)| ≤ K over [a, b].

Another example: Calculating
∫ 2
−2 e

−x2 .

We showed M4 ≈ 1.7684.

Here, f ′′(x) = e−x
2
(4x2 − 1):

-2 -1 1 2

-1

1

Max value: 4/e5/4 = 1.1460 . . . , Min value: −1.
So let K = 1.1461.

Then since b− a = 4 and n = 4,
|EM | ≤ (1.1461)43

24·42 = 1.1910 · · · ≤ 1.1911.
Checking against exact values:

EM ≈ 0.004 ≤ 1.1911X.
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You try:

Mn =

n∑
i=1

∆x ∗ f(ci), where ∆x = (b− a)/n and ci = a+ (i− 1
2)∆x

|EM | ≤ K(b−a)3
24n2 where |f ′′(x)| ≤ K over [a, b].

1. Use the midpoint rule to approximate
∫ 2
−1 x

4 dx using n = 3.
Draw a picture to help yourself.

2. Calculate d2

dx2
x4 and maximize | d2

dx2
x4| over [−1, 2]. Let K be

that maximum value.

3. Calculate an upper bound on EM using the formula above.

4. Calculate
∫ 2
−1 x

4 dx exactly, and use that to calculate EM
exactly. Compare to your bound.



Approximations using other shapes: Trapezoids!
Instead of picking one height over each interval (approximating the
function as a constant) we can pick a sloped line over each interval
(approximating the function as a line) and use a trapezoid to
approximate the area under the curve.

Use the line that intersects
the function at both endpoints of each interval.
Example: Approximate

∫ 2
−2 e

−x2 dx using trapezoids with n = 4.

-2 -1 1 2

0.5

1

Area ( trapezoid ) = b ∗ h1+h22

For example: b = 1, h1 = f(−1), h2 = f(0),

so A2 = 1 ∗ f(−1)+f(0)2

A = 1 ∗
f(−2) + f(−1)

2
+ 1 ∗

f(−1) + f(0)

2
+ 1 ∗

f(0) + f(1)

2
+ 1 ∗

f(1) + f(2)

2

= 1
2 ∗ [f(−2) + f(−1) + f(−1) + f(0) + f(0) + f(1) + f(1) + f(2)]

In general,
Tn = 1

2∆x(f(c0) + f(cn) + 2(f(c1) + f(c2) + · · ·+ f(cn−1)))
where ∆x = (b− a)/n and ci = a+ i∆x.
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You try:

1. Draw a graph of f(x) = x4 over [−1, 2].

2. Let n = 3 and calculate ∆x and ci = a+ i∆x for i = 0, 1, 2,
and 3. Mark the ci’s on the x-axis.

3. Mark the 4 points on the graph corresponding to f(ci).

4. Draw the three trapezoids whose tops are the line segments
joining f(ci−1) to f(ci).

5. Calculate the areas of the three trapezoids.

6. Add the areas together to get Tn.

7. Use the formula
Tn = 1

2∆x(f(c0) + f(cn) + 2(f(c1) + f(c2) + · · ·+ f(cn−1)))
and compare to your previous answer (you should get the
same thing).

8. Compare your answer to the exact value of
∫ 2
−1 x

4 dx.



Trapezoid error

Let K be such that |f ′′(x)| ≤ K over [a, b] as before. Then the
error

ET =

∫ b

a
f(x) dx− Tn

is bounded above by

|ET | ≤
K(b− a)3

12n2
.

(Recall |EM | ≤ K(b−a)3
24n2 .)

You try: Give an upper bound for ET for our estimate T3 of∫ 2
−1 x

4 dx.
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Simpson’s rule

Rectangles are like approximating f(x) as a constant. (Needed one
point over each interval.)

Trapezoids are like approximating f(x) as a line. (Needed two
points over each interval.)
Simpson’s rule is approximating f(x) as a parabola.

A generic parabola is given by a0 + a1x+ a2x
2. So we need three

points to define a parabola.

So over each interval, take (1) the left endpoint, (2) the midpoint,
and (3) the right endpoint, and find the parabola that passes
through f(x) above those three points. Actually, caution!! The
book’s convention is to call this 2n intervals, and pick one
parabola for every two intervals.
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Simpson’s rule
So over each n intervals, take (1) the left endpoint, (2) the
midpoint, and (3) the right endpoint, and find the parabola that
passes through f(x) above those three points. Actually, caution!!
The book’s convention is to call this 2n intervals, and pick one
parabola for every two intervals.

Example:
∫ 2
−2 e

−x2 dx. Calculate S8. (This has 4 parabolas for n = 8.)

-2 -1 1 2

1

Whatever a0, a1, and a2 are, we can calculate∫ ci

ci−1

a0 + a1x+ a2x
2 dx = a0x+ 1

2a1x
2 + 1

3a2x
3
∣∣∣ci
ci−1

exactly.
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parabola for every two intervals.

Example:
∫ 2
−2 e

−x2 dx. Calculate S8. (This has 4 parabolas for n = 8.)

-2 -1 1 2

1

Whatever a0, a1, and a2 are, we can calculate∫ ci

ci−1

a0 + a1x+ a2x
2 dx = a0x+ 1

2a1x
2 + 1

3a2x
3
∣∣∣ci
ci−1

exactly.
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Simpson’s rule

Let n be even. The resulting approximation, once the curves are fit
and the integrals are taken, gives

Sn = 1
3∆x

(
f(c0) + 4f(c1) + 2f(c2) + 4f(c3)

+ · · ·+ 2f(cn−2) + 4f(cn−1) + f(cn)
)

where ∆x = (b− a)/n and ci = a+ i∆x. (Read pp 351–353 in the book)

You try: Approximate
∫ 2
−1 x

4 dx using S6.

Error: For ES =
∫ b
a f(x) dx− Sn and K ≥ |f (4)(x)| over [a, b]

(new K!!),

|ES | ≤
K(b− a)5

180n4
.

You try: Calculate an upper bound for |ES | for
∫ 2
−1 x

4 dx and
n = 6. Compare to the exact value of |ES |.
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Consider
∫ π
0 sin(x).

1. Calculate the maximum value of
∣∣∣ d2dx2 sin(x)

∣∣∣ over [0, π]. Let

this be K.

2. For each of M4, T4 and S4, do the following:

(a) Draw a picture of the approximation, with y = sin(x) overlaid.
(b) Calculate the approximation.
(c) Calculate an upper bound of the error of the approximation.
(d) Compare your upper bound against the actual value of the

error.




