Today: 6.3 Partial fractions

Warm up: Recall that if you require real coefficients (not complex), polynomials always factor into degree 1 or 2 parts. For example,

$$
x^{3}+x^{2}+3 x-5=\underbrace{(x-1)(x+1-2 i)(x+1+2 i)}_{\text {allowing complex coeffs }}=\underbrace{(x-1)\left(x^{2}+2 x+5\right)}_{\text {using only real coeffs }}
$$

1. Factor the following polynomials (as far as possible) into factors with real coefficients.

$$
\begin{array}{lll}
\begin{array}{ll}
\text { (a) } x^{2}+3 x+2 & \text { (b) } 3 x^{2}-4 x+1
\end{array} & \text { (c) } x^{3}-7 x \\
\text { (d) } x^{4}-16 & \text { (e) } x^{3}-x^{2}+9 x-9
\end{array}
$$

2. Calculate the following (you may want to factor the denominator).

$$
\begin{array}{ll}
\text { (a) } \int \frac{1}{x^{2}-4 x+4} d x & \text { (b) } \int \frac{x+2}{x^{2}+5 x+6} d x \\
\text { (c) } \int \frac{2 x-1}{x^{2}+1} d x & \text { (d) } \int \frac{x^{3}+2 x+1}{x-1} d x
\end{array}
$$

(1a) $x^{2}+3 x+2=(x+1)(x+2)$
(1b) $3 x^{2}-4 x+1=(3 x-1)(x-1)$
(1c) $x^{3}-7 x=x(x+\sqrt{7})(x-\sqrt{7})$
(1d) $x^{4}-16=\left(x^{2}-4\right)\left(x^{2}+4\right)=(x-2)(x+2)\left(x^{2}+4\right)$.
(1e) $x^{3}-x^{2}-9 x+9=x^{2}(x-1)-9(x-1)$

$$
=\left(x^{2}-9\right)(x-1)=(x+3)(x-3)(x-1)
$$

(2a) $\int \frac{1}{x^{2}-4 x+4} d x=\int \frac{1}{(x-2)^{2}} d x=-(x-2)^{-1}+C$
(2b) $\int \frac{x+2}{x^{2}+5 x+6} d x=\int \frac{x+2}{(x+2)(x+3)} d x=\int \frac{1}{x+3} d x=\ln |x+3|+C$
(2c) $\int \frac{2 x-1}{x^{2}+1} d x=\int \frac{2 x}{x^{2}+1}-\frac{1}{x^{2}+1} d x=\ln \left|x^{2}+1\right|-\tan ^{-1}(x)+C$
(2d) $\int \frac{x^{3}+2 x+1}{x-1} d x=\int x^{2}+x+3+\frac{4}{x-1} d x=$

$$
\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+3 x+4 \ln |x-1|+C
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 }
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x \text { into } x^{3} \\
& x - 1 \longdiv { x ^ { 2 } } \begin{array} { l }
{ x ^ { 3 } + 0 + 2 x + 1 }
\end{array}
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x \text { into } x^{3} \\
& x - 1 \longdiv { x ^ { 2 } } \begin{array} { l }
{ x ^ { 3 } + 0 + 2 x + 1 } \\
{ x ^ { 3 } - x ^ { 2 } \longleftarrow } \\
{ x - 1) x ^ { 2 } }
\end{array}
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x \text { into } x^{3} \\
& \stackrel{\downarrow}{x^{2}} \\
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& -(x-1) x^{2}
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{gathered}
x \text { into } x^{3} \\
x-1 \begin{array}{|c|c|}
x^{2} \\
\frac{-\left(x^{3}-x^{2}\right)}{x^{2}+2 x+1}
\end{array}(x-1) x^{2}
\end{gathered}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& \begin{array}{c}
x \text { into } x^{3} \\
x^{2}+\underset{x}{x} \text { into } x^{2}
\end{array} \\
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2}
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& \begin{array}{c}
x \text { into } x^{3} \\
\downarrow^{2}+\underset{x}{x} \text { into } x^{2}
\end{array} \\
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& x^{2}-x \quad \longleftarrow(x-1) x
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x \text { into } x^{3} \\
& \begin{array}{l}
\stackrel{x}{ }{ }^{2} \text { into } x^{2} \\
x-1 \begin{array}{l}
x^{2}+x
\end{array} \\
\frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{3}+0+2 x+1}(x-1) x^{2} \\
x^{2}+2 x+1 \\
-\left(x^{2}-x\right) \\
\hline
\end{array}
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& \begin{array}{c}
x \text { into } x^{3} \\
{ }^{2}+\underset{x}{x} \text { into } x^{2} \\
x^{2}+\underset{\sim}{x}
\end{array} \\
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& \frac{-\left(x^{2}-x\right) \longleftarrow}{3 x+1}(x-1) x
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& \frac{-\left(x^{2}-x\right) \longleftarrow}{3 x+1}(x-1) x
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& \frac{-\left(x^{2}-x\right) \longleftarrow}{3 x+1}(x-1) x \\
& 3 x-3 \longleftarrow(x-1) 3
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& \frac{-\left(x^{2}-x\right) \longleftarrow}{3 x+1}(x-1) x \\
& -(3 x-3) \longleftarrow(x-1) 3
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& x - 1 \longdiv { x ^ { 3 } + 0 + 2 x + 1 } \\
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& \frac{-\left(x^{2}-x\right) \longleftarrow}{3 x+1}(x-1) x \\
& \begin{aligned}
\frac{-(3 x-3)}{4} \longleftarrow(x-1) 3 \\
\text { remainder }
\end{aligned}
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& \frac{-\left(x^{2}-x\right) \longleftarrow}{3 x+1}(x-1) x \\
& \frac{-(3 x-3) \longleftarrow(x-1) 3}{4} \longleftarrow \text { remainder }
\end{aligned}
$$

Reviewing polynomial long division

Calculate $\frac{x^{3}+2 x+1}{x-1}$:

$$
\begin{aligned}
& \frac{-\left(x^{3}-x^{2}\right) \longleftarrow}{x^{2}+2 x+1}(x-1) x^{2} \\
& \frac{-\left(x^{2}-x\right) \longleftarrow}{3 x+1}(x-1) x \\
& \frac{-(3 x-3) \longleftarrow(x-1) 3}{4} \longleftarrow \text { remainder }
\end{aligned}
$$

So

$$
\frac{x^{3}+2 x+1}{x-1}=x^{2}+x+3+\frac{4}{x-1}
$$

Strategies for integrating rational functions

1. To compute

$$
\int \frac{x+2}{x^{2}+5 x+6} d x
$$

we noted that

$$
\frac{x+2}{x^{2}+5 x+6}=\frac{x+2}{(x+2)(x+3)}=\frac{1}{x+3},
$$

so that

$$
\int \frac{x+2}{x^{2}+5 x+6} d x=\int \frac{1}{x+3} d x=\ln |x+3|+C .
$$

Strategies for integrating rational functions

1. To compute

$$
\int \frac{x+2}{x^{2}+5 x+6} d x
$$

we noted that

$$
\frac{x+2}{x^{2}+5 x+6}=\frac{x+2}{(x+2)(x+3)}=\frac{1}{x+3},
$$

so that

$$
\int \frac{x+2}{x^{2}+5 x+6} d x=\int \frac{1}{x+3} d x=\ln |x+3|+C .
$$

2. To compute

$$
\int \frac{2 x+5}{x^{2}+5 x+6} d x
$$

we could note that
if $\quad u=x^{2}+5 x+6, \quad$ them $\quad d u=2 x+5$

Strategies for integrating rational functions

1. To compute

$$
\int \frac{x+2}{x^{2}+5 x+6} d x
$$

we noted that

$$
\frac{x+2}{x^{2}+5 x+6}=\frac{x+2}{(x+2)(x+3)}=\frac{1}{x+3},
$$

so that

$$
\int \frac{x+2}{x^{2}+5 x+6} d x=\int \frac{1}{x+3} d x=\ln |x+3|+C .
$$

2. To compute

$$
\int \frac{2 x+5}{x^{2}+5 x+6} d x
$$

we could note that

$$
\begin{gathered}
\text { if } \quad u=x^{2}+5 x+6, \quad \text { them } \quad d u=2 x+5, \quad \text { so } \\
\int \frac{2 x+5}{x^{2}+5 x+6} d x=\int \frac{1}{u} d u=\ln |u|+C=\ln \left|x^{2}+5 x+6\right|+C .
\end{gathered}
$$

Strategies for integrating rational functions

3. How about

$$
\int \frac{3 x+13}{x^{2}+5 x+6} d x ?
$$

Strategies for integrating rational functions

3. How about

$$
\int \frac{3 x+13}{x^{2}+5 x+6} d x ?
$$

What if I pointed out to you that

$$
\frac{7}{x+2}-\frac{4}{x+3}=\frac{7(x+3)}{(x+2)(x+3)}-\frac{4(x+2)}{(x+2)(x+3)}
$$

Strategies for integrating rational functions

3. How about

$$
\int \frac{3 x+13}{x^{2}+5 x+6} d x ?
$$

What if I pointed out to you that

$$
\begin{aligned}
\frac{7}{x+2} & -\frac{4}{x+3}=\frac{7(x+3)}{(x+2)(x+3)}-\frac{4(x+2)}{(x+2)(x+3)} \\
& =\frac{7 x+21-4 x-8}{(x+2)(x+3)}
\end{aligned}
$$

Strategies for integrating rational functions

3. How about

$$
\int \frac{3 x+13}{x^{2}+5 x+6} d x ?
$$

What if I pointed out to you that

$$
\begin{aligned}
\frac{7}{x+2} & -\frac{4}{x+3}=\frac{7(x+3)}{(x+2)(x+3)}-\frac{4(x+2)}{(x+2)(x+3)} \\
& =\frac{7 x+21-4 x-8}{(x+2)(x+3)}=\frac{3 x+13}{x^{2}+5 x+6} ?
\end{aligned}
$$

Strategies for integrating rational functions

3. How about

$$
\int \frac{3 x+13}{x^{2}+5 x+6} d x ?
$$

What if I pointed out to you that

$$
\begin{aligned}
\frac{7}{x+2} & -\frac{4}{x+3}=\frac{7(x+3)}{(x+2)(x+3)}-\frac{4(x+2)}{(x+2)(x+3)} \\
& =\frac{7 x+21-4 x-8}{(x+2)(x+3)}=\frac{3 x+13}{x^{2}+5 x+6} ?
\end{aligned}
$$

Well, then

$$
\int \frac{3 x+13}{x^{2}+5 x+6} d x=\int \frac{7}{x+2}-\frac{4}{x+3} d x
$$

Strategies for integrating rational functions

3. How about

$$
\int \frac{3 x+13}{x^{2}+5 x+6} d x ?
$$

What if I pointed out to you that

$$
\begin{aligned}
\frac{7}{x+2} & -\frac{4}{x+3}=\frac{7(x+3)}{(x+2)(x+3)}-\frac{4(x+2)}{(x+2)(x+3)} \\
& =\frac{7 x+21-4 x-8}{(x+2)(x+3)}=\frac{3 x+13}{x^{2}+5 x+6} ?
\end{aligned}
$$

Well, then

$$
\begin{gathered}
\int \frac{3 x+13}{x^{2}+5 x+6} d x=\int \frac{7}{x+2}-\frac{4}{x+3} d x \\
=7 \ln |x+2|-4 \ln |x+3|+C
\end{gathered}
$$

Strategies for integrating rational functions

How could I have found that

$$
\frac{3 x+13}{x^{2}+5 x+6}=\frac{7}{x+2}-\frac{4}{x+3}
$$

if I didn't already know?

Strategies for integrating rational functions

How could I have found that

$$
\frac{3 x+13}{x^{2}+5 x+6}=\frac{7}{x+2}-\frac{4}{x+3}
$$

if I didn't already know?
Well, since the denominator factors as

$$
x^{2}+5 x+6=(x+2)(x+3),
$$

if the fraction can be written as the sum of two fractions with linear denominators, those denominators will be $(x+2)$ and $(x+3)$.

Strategies for integrating rational functions

How could I have found that

$$
\frac{3 x+13}{x^{2}+5 x+6}=\frac{7}{x+2}-\frac{4}{x+3}
$$

if I didn't already know?
Well, since the denominator factors as

$$
x^{2}+5 x+6=(x+2)(x+3),
$$

if the fraction can be written as the sum of two fractions with linear denominators, those denominators will be $(x+2)$ and $(x+3)$. So, for some A and B, we know

$$
\frac{3 x+13}{x^{2}+5 x+6}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Strategies for integrating rational functions

How could I have found that

$$
\frac{3 x+13}{x^{2}+5 x+6}=\frac{7}{x+2}-\frac{4}{x+3}
$$

if I didn't already know?
Well, since the denominator factors as

$$
x^{2}+5 x+6=(x+2)(x+3),
$$

if the fraction can be written as the sum of two fractions with linear denominators, those denominators will be $(x+2)$ and $(x+3)$. So, for some A and B, we know

$$
\frac{3 x+13}{x^{2}+5 x+6}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

So we can solve for A and B as follows!

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)
$$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B)
$$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!).

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!). So

$$
3=A+B \quad \text { and } \quad 13=3 A+2 B
$$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!). So

$$
3=A+B \quad \text { and } \quad 13=3 A+2 B
$$

Plugging $A=3-B$ (from the first equation) into the second equation, we get

$$
13=3(3-B)+2 B
$$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!). So

$$
3=A+B \quad \text { and } \quad 13=3 A+2 B
$$

Plugging $A=3-B$ (from the first equation) into the second equation, we get

$$
13=3(3-B)+2 B=9-3 B+2 B
$$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!). So

$$
3=A+B \quad \text { and } \quad 13=3 A+2 B
$$

Plugging $A=3-B$ (from the first equation) into the second equation, we get

$$
13=3(3-B)+2 B=9-3 B+2 B=9-B
$$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!). So

$$
3=A+B \quad \text { and } \quad 13=3 A+2 B
$$

Plugging $A=3-B$ (from the first equation) into the second equation, we get

$$
13=3(3-B)+2 B=9-3 B+2 B=9-B
$$

So $B=-4$

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!). So

$$
3=A+B \quad \text { and } \quad 13=3 A+2 B
$$

Plugging $A=3-B$ (from the first equation) into the second equation, we get

$$
13=3(3-B)+2 B=9-3 B+2 B=9-B
$$

So $B=-4$, and so $A=3-(-4)=7$.

Suppose A and B satisfy

$$
\frac{3 x+13}{(x+2)(x+3)}=\frac{A}{x+2}+\frac{B}{x+3} .
$$

Then multiplying both sides by $(x+2)(x+3)$, we get

$$
3 x+13=A(x+3)+B(x+2)=(A+B) x+(3 A+2 B) .
$$

Comparing both sides, we know that the constant terms have to match and the coefficients on x have to match (that's what it means for two polynomials to be equal!). So

$$
3=A+B \quad \text { and } \quad 13=3 A+2 B
$$

Plugging $A=3-B$ (from the first equation) into the second equation, we get

$$
13=3(3-B)+2 B=9-3 B+2 B=9-B
$$

$$
\begin{aligned}
& \text { So } B=-4 \text {, and so } A=3-(-4)=7 \text {. Thus } \\
& \qquad \frac{3 x+13}{(x+2)(x+3)}=\frac{7}{x+2}+\frac{-4}{x+3}, \text { as expected! }
\end{aligned}
$$

You try

1. Solve for A and B such that

$$
\frac{4 x+11}{(x-1)(x+4)}=\frac{A}{x-1}+\frac{B}{x+4} .
$$

2. Use your previous answer to calculate $\int \frac{4 x+11}{(x-1)(x+4)} d x$.

You try

1. Solve for A and B such that

$$
\frac{4 x+11}{(x-1)(x+4)}=\frac{A}{x-1}+\frac{B}{x+4} .
$$

$A=3$ and $B=1$.
2. Use your previous answer to calculate $\int \frac{4 x+11}{(x-1)(x+4)} d x$.

$$
=3 \ln |x-1|+\ln |x+4| .
$$

You try

1. Solve for A and B such that

$$
\frac{4 x+11}{(x-1)(x+4)}=\frac{A}{x-1}+\frac{B}{x+4} .
$$

Multiply both sides by $(x-1)(x+4)$ to get

$$
4 x+11=A(x+4)+B(x-1)=(A+B) x+(4 A-B) .
$$

Thus $4=A+B$, so that $B=4-A$, and

$$
11=4 A-B=4 A-(4-A)=5 A-4 \text {. So }
$$

$$
A=3 \text { and } B=1 \text {. }
$$

2. Use your previous answer to calculate $\int \frac{4 x+11}{(x-1)(x+4)} d x$.

$$
\begin{gathered}
\int \frac{4 x+11}{(x-1)(x+4)} d x=\int \frac{3}{x-1}+\frac{1}{x+4} d x \\
=3 \ln |x-1|+\ln |x+4| .
\end{gathered}
$$

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$: 0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x) .
$$

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)
$$

2. For each factor $p_{i}(x)$, add a term according to the following rules. Note that $p_{i}(x)$ might appear multiple times.

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)
$$

2. For each factor $p_{i}(x)$, add a term according to the following rules. Note that $p_{i}(x)$ might appear multiple times.
(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$.

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)
$$

2. For each factor $p_{i}(x)$, add a term according to the following rules. Note that $p_{i}(x)$ might appear multiple times.
(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$.
Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)
$$

2. For each factor $p_{i}(x)$, add a term according to the following rules. Note that $p_{i}(x)$ might appear multiple times.
(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$.
Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
For example, we would write

$$
\frac{1}{(x+1)(x-3)}=\frac{A}{x+1}+\frac{B}{x-3}
$$

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)
$$

2. For each factor $p_{i}(x)$, add a term according to the following rules. Note that $p_{i}(x)$ might appear multiple times.
(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$.
Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
For example, we would write

$$
\frac{1}{(x+1)(x-3)}=\frac{A}{x+1}+\frac{B}{x-3}, \quad \frac{1}{\left(x^{2}+1\right)(x-3)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-3},
$$

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)
$$

2. For each factor $p_{i}(x)$, add a term according to the following rules. Note that $p_{i}(x)$ might appear multiple times.
(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$.
Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
For example, we would write

$$
\begin{gathered}
\frac{1}{(x+1)(x-3)}=\frac{A}{x+1}+\frac{B}{x-3}, \quad \frac{1}{\left(x^{2}+1\right)(x-3)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-3}, \\
\text { and } \frac{1}{\left(x^{2}+1\right)\left(x^{2}+3\right)}=\frac{A x+B}{x^{2}+1}+\frac{C x+D}{x^{2}+3}
\end{gathered}
$$

Rules for splitting rational functions

If you're trying to split a rational function $Q(x) / P(x)$:
0 . If $\operatorname{deg}(Q(x)) \geq \operatorname{deg}(P(x))$, use long division first.

1. Factor the denominator $P(x)$ (as far as possible) into degree 1 and 2 factors with real coefficients:

$$
P(x)=p_{1}(x) p_{2}(x) \cdots p_{k}(x)
$$

2. For each factor $p_{i}(x)$, add a term according to the following rules. Note that $p_{i}(x)$ might appear multiple times.
(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$.
Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2 , add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for
$j=1,2, \ldots, n$.

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization: If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2 , add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization: If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2 , add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example,

$$
\frac{1}{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}}
$$

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2, add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example,

$$
\begin{gathered}
\frac{1}{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}} \\
=\frac{A}{x+2}+\frac{B x+C}{x^{2}+x+1}+\frac{D x+E}{\left(x^{2}+x+1\right)^{2}} \\
+\frac{F}{x+1}+\frac{G}{(x+1)^{2}}+\frac{H}{(x+1)^{3}}+\frac{I}{(x+1)^{4}} .
\end{gathered}
$$

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2, add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example,

$$
\begin{gathered}
\frac{1}{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}} \\
=\frac{A}{x+2}+\frac{B x+C}{x^{2}+x+1}+\frac{D x+E}{\left(x^{2}+x+1\right)^{2}} \\
+\frac{F}{x+1}+\frac{G}{(x+1)^{2}}+\frac{H}{(x+1)^{3}}+\frac{I}{(x+1)^{4}} .
\end{gathered}
$$

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2, add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example,

$$
\begin{gathered}
\frac{1}{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}} \\
=\frac{A}{x+2}+\frac{B x+C}{x^{2}+x+1}+\frac{D x+E}{\left(x^{2}+x+1\right)^{2}} \\
+\frac{F}{x+1}+\frac{G}{(x+1)^{2}}+\frac{H}{(x+1)^{3}}+\frac{I}{(x+1)^{4}} .
\end{gathered}
$$

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2, add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example, (split doesn't depend on numerator!)

$$
\begin{gathered}
\frac{1}{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}} \\
=\frac{A}{x+2}+\frac{B x+C}{x^{2}+x+1}+\frac{D x+E}{\left(x^{2}+x+1\right)^{2}} \\
+\frac{F}{x+1}+\frac{G}{(x+1)^{2}}+\frac{H}{(x+1)^{3}}+\frac{I}{(x+1)^{4}} .
\end{gathered}
$$

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2, add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example,
(split doesn't depend on numerator!) 10

$$
\begin{gathered}
\overline{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}} \\
=\frac{A}{x+2}+\frac{B x+C}{x^{2}+x+1}+\frac{D x+E}{\left(x^{2}+x+1\right)^{2}} \\
+\frac{F}{x+1}+\frac{G}{(x+1)^{2}}+\frac{H}{(x+1)^{3}}+\frac{I}{(x+1)^{4}} .
\end{gathered}
$$

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2, add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example,
(split doesn't depend on numerator!)

$$
5 x+2
$$

$$
\overline{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}}
$$

$$
=\frac{A}{x+2}+\frac{B x+C}{x^{2}+x+1}+\frac{D x+E}{\left(x^{2}+x+1\right)^{2}}
$$

$$
+\frac{F}{x+1}+\frac{G}{(x+1)^{2}}+\frac{H}{(x+1)^{3}}+\frac{I}{(x+1)^{4}}
$$

Rules for splitting rational functions

(a) If p_{i} appears exactly once in the factorization:

If p_{i} is degree 1 , add a term of the form $A / p_{i}(x)$;
If p_{i} is degree 2 , add aa term of the form $(A x+B) / p_{i}(x)$. Basically, add a term with $p_{i}(x)$ in the denominator and a generic polynomial of one degree less in the numerator.
(b) If p_{i} appears exactly n times in the factorization:

If p_{i} is degree 1 , add terms $A_{j} /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$;
If p_{i} is degree 2 , add terms $\left(A_{j} x+B_{j}\right) /\left(p_{i}(x)\right)^{j}$ for $j=1,2, \ldots, n$.
For example,
(split doesn't depend on numerator!)

$$
\begin{gathered}
\frac{x^{3}+9 x+15}{(x+2)\left(x^{2}+x+1\right)^{2}(x+1)^{4}} \\
=\frac{A}{x+2}+\frac{B x+C}{x^{2}+x+1}+\frac{D x+E}{\left(x^{2}+x+1\right)^{2}} \\
+\frac{F}{x+1}+\frac{G}{(x+1)^{2}}+\frac{H}{(x+1)^{3}}+\frac{I}{(x+1)^{4}} .
\end{gathered}
$$

You try:

Split the following rational functions. Don't solve for the constants; just set it up. If need be, factor the denominator first.

1. $\frac{1}{(x+3)(x-5)}$
2. $\frac{x}{3 x^{2}-4 x+1}$
3. $\frac{2 x+1}{x^{4}-16}$
4. $\frac{10 x^{2}-3 x+1}{x^{3}(x+1)\left(x^{2}+3\right)^{5}}$

You try:

Split the following rational functions. Don't solve for the constants; just set it up. If need be, factor the denominator first.

1. $\frac{1}{(x+3)(x-5)}=\frac{A}{x+3}+\frac{B}{x-5}$
2. $\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1}$
3. $\frac{2 x+1}{x^{4}-16}=\frac{A}{x+2}+\frac{B}{x-2}+\frac{C x+D}{x^{2}+4}$
4. $\frac{10 x^{2}-3 x+1}{x^{3}(x+1)\left(x^{2}+3\right)^{5}}$
$=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x+1}$

$$
+\frac{E}{x^{2}+3}+\frac{F x+G}{\left(x^{2}+3\right)^{2}}+\frac{H x+I}{\left(x^{2}+3\right)^{3}}+\frac{J x+K}{\left(x^{2}+3\right)^{4}}+\frac{L x+M}{\left(x^{2}+3\right)^{5}}
$$

You try:

Split the following rational functions. Don't solve for the constants; just set it up. If need be, factor the denominator first.

1. $\frac{1}{(x+3)(x-5)}=\frac{A}{x+3}+\frac{B}{x-5}$
2. $\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1}$
3. $\frac{2 x+1}{x^{4}-16}=\frac{A}{x+2}+\frac{B}{x-2}+\frac{C x+D}{x^{2}+4}$
4. $\frac{10 x^{2}-3 x+1}{x^{3}(x+1)\left(x^{2}+3\right)^{5}}$
$=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x^{3}}+\frac{D}{x+1}$

$$
+\frac{E}{x^{2}+3}+\frac{F x+G}{\left(x^{2}+3\right)^{2}}+\frac{H x+I}{\left(x^{2}+3\right)^{3}}+\frac{J x+K}{\left(x^{2}+3\right)^{4}}+\frac{L x+M}{\left(x^{2}+3\right)^{5}}
$$

Definition: This split form is called partial fractions decomposition.

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1},
$$

so that

$$
x=A(x-1)+B(3 x-1)
$$

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x .
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1},
$$

so that

$$
x=A(x-1)+B(3 x-1)=(A+3 B) x+(-A-B) .
$$

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1},
$$

so that

$$
x=A(x-1)+B(3 x-1)=(A+3 B) x+(-A-B) .
$$

Then $1=A+3 B$ and $0=-A-B$.

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x .
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1},
$$

so that

$$
x=A(x-1)+B(3 x-1)=(A+3 B) x+(-A-B) .
$$

Then $1=A+3 B$ and $0=-A-B$. So
$1=A+3(\underbrace{-A}_{B})=-2 A$.

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x .
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1},
$$

so that

$$
x=A(x-1)+B(3 x-1)=(A+3 B) x+(-A-B) .
$$

Then $1=A+3 B$ and $0=-A-B$. So
$1=A+3(\underbrace{-A}_{B})=-2 A$. Thus $A=-1 / 2$ and $B=1 / 2$.

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x .
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1},
$$

so that

$$
x=A(x-1)+B(3 x-1)=(A+3 B) x+(-A-B) .
$$

Then $1=A+3 B$ and $0=-A-B$. So
$1=A+3(\underbrace{-A}_{B})=-2 A$. Thus $A=-1 / 2$ and $B=1 / 2$.
So

$$
\int \frac{x}{3 x^{2}-4 x+1} d x=\int \frac{-1 / 2}{3 x-1}+\frac{1 / 2}{x-1} d x
$$

You try:

Compute

$$
\int \frac{x}{3 x^{2}-4 x+1} d x \text {. }
$$

(use the previous slide to split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{x}{3 x^{2}-4 x+1}=\frac{A}{3 x-1}+\frac{B}{x-1},
$$

so that

$$
x=A(x-1)+B(3 x-1)=(A+3 B) x+(-A-B) .
$$

Then $1=A+3 B$ and $0=-A-B$. So
$1=A+3(\underbrace{-A}_{B})=-2 A$. Thus $A=-1 / 2$ and $B=1 / 2$.
So

$$
\begin{gathered}
\int \frac{x}{3 x^{2}-4 x+1} d x=\int \frac{-1 / 2}{3 x-1}+\frac{1 / 2}{x-1} d x \\
=-\frac{1}{2} \ln |3 x-1|+\frac{1}{2} \ln |x-1|+C
\end{gathered}
$$

You try:

Compute

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x
$$

(factor the denominator, split the fraction, solve for the unknowns, and use the split form to integrate)

You try:

Compute

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x
$$

(factor the denominator, split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

so that

$$
3 x^{2}-x+1=A\left(x^{2}+1\right)+(B x+C) x
$$

You try:

Compute

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x
$$

(factor the denominator, split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

so that

$$
3 x^{2}-x+1=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A .
$$

You try:

Compute

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x
$$

(factor the denominator, split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

so that

$$
3 x^{2}-x+1=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A
$$

Then $3=(A+B),-1=C$, and $1=A$. Thus $B=2$.

You try:

Compute

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x
$$

(factor the denominator, split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

so that

$$
3 x^{2}-x+1=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A .
$$

Then $3=(A+B),-1=C$, and $1=A$. Thus $B=2$.
So

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x=\int \frac{1}{x}+\frac{2 x-1}{x^{2}+1} d x
$$

You try:

Compute

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x
$$

(factor the denominator, split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

so that

$$
3 x^{2}-x+1=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A
$$

Then $3=(A+B),-1=C$, and $1=A$. Thus $B=2$.
So

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x=\int \frac{1}{x}+\frac{2 x-1}{x^{2}+1} d x
$$

$=\ln |x|+\int \frac{2 x}{x^{2}+1}-\frac{1}{x^{2}+1} d x$

You try:

Compute

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x
$$

(factor the denominator, split the fraction, solve for the unknowns, and use the split form to integrate)
Soln: Write

$$
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}
$$

so that

$$
3 x^{2}-x+1=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A
$$

Then $3=(A+B),-1=C$, and $1=A$. Thus $B=2$.
So

$$
\begin{aligned}
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x & =\int \frac{1}{x}+\frac{2 x-1}{x^{2}+1} d x \\
=\ln |x|+\int \frac{2 x}{x^{2}+1}-\frac{1}{x^{2}+1} d x & =\ln |x|+\ln \left|x^{2}+1\right|-\tan ^{-1}(x)+C
\end{aligned}
$$

We could have been a little more clever with

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x:
$$

Notice

$$
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{3 x^{2}+1}{x^{3}+x}-\frac{x}{x^{3}+x}
$$

We could have been a little more clever with

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x:
$$

Notice

$$
\begin{gathered}
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{3 x^{2}+1}{x^{3}+x}-\frac{x}{x^{3}+x} \\
=\frac{\frac{d}{d x}\left(x^{3}+x\right)}{x^{3}+x}-\frac{1}{x^{2}+1} .
\end{gathered}
$$

We could have been a little more clever with

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x:
$$

Notice

$$
\begin{gathered}
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{3 x^{2}+1}{x^{3}+x}-\frac{x}{x^{3}+x} \\
=\frac{\frac{d}{d x}\left(x^{3}+x\right)}{x^{3}+x}-\frac{1}{x^{2}+1} .
\end{gathered}
$$

So

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x=\int \frac{3 x^{2}+1}{x^{3}+x} d x-\int \frac{1}{x^{2}+1} d x
$$

We could have been a little more clever with

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x:
$$

Notice

$$
\begin{gathered}
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{3 x^{2}+1}{x^{3}+x}-\frac{x}{x^{3}+x} \\
=\frac{\frac{d}{d x}\left(x^{3}+x\right)}{x^{3}+x}-\frac{1}{x^{2}+1} .
\end{gathered}
$$

So

$$
\begin{gathered}
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x=\int \frac{3 x^{2}+1}{x^{3}+x} d x-\int \frac{1}{x^{2}+1} d x \\
=\ln \left|x^{3}+x\right|-\tan ^{-1}(x)+C
\end{gathered}
$$

We could have been a little more clever with

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x:
$$

Notice

$$
\begin{gathered}
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{3 x^{2}+1}{x^{3}+x}-\frac{x}{x^{3}+x} \\
=\frac{\frac{d}{d x}\left(x^{3}+x\right)}{x^{3}+x}-\frac{1}{x^{2}+1}
\end{gathered}
$$

So

$$
\begin{gathered}
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x=\int \frac{3 x^{2}+1}{x^{3}+x} d x-\int \frac{1}{x^{2}+1} d x \\
=\ln \left|x^{3}+x\right|-\tan ^{-1}(x)+C
\end{gathered}
$$

What we got before:
$\ln |x|+\ln \left|x^{2}+1\right|-\tan ^{-1}(x)+C$

We could have been a little more clever with

$$
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x:
$$

Notice

$$
\begin{gathered}
\frac{3 x^{2}-x+1}{x^{3}+x}=\frac{3 x^{2}+1}{x^{3}+x}-\frac{x}{x^{3}+x} \\
=\frac{\frac{d}{d x}\left(x^{3}+x\right)}{x^{3}+x}-\frac{1}{x^{2}+1}
\end{gathered}
$$

So

$$
\begin{gathered}
\int \frac{3 x^{2}-x+1}{x^{3}+x} d x=\int \frac{3 x^{2}+1}{x^{3}+x} d x-\int \frac{1}{x^{2}+1} d x \\
=\ln \left|x^{3}+x\right|-\tan ^{-1}(x)+C
\end{gathered}
$$

What we got before:
$\ln |x|+\ln \left|x^{2}+1\right|-\tan ^{-1}(x)+C=\ln \left|x\left(x^{2}+1\right)\right|-\tan ^{-1}(x)+C \checkmark$

How the integration of each part goes

Suppose you've done a partial fractions decomposition. Then each part looks like

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}}
$$

(where i may be 1).

How the integration of each part goes

Suppose you've done a partial fractions decomposition. Then each part looks like

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}}
$$

(where i may be 1). For calculating

$$
\int \frac{A}{(a x+b)^{i}} d x
$$

How the integration of each part goes

Suppose you've done a partial fractions decomposition. Then each part looks like

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}}
$$

(where i may be 1). For calculating

$$
\int \frac{A}{(a x+b)^{i}} d x, \quad \text { let } u=a x+b \text { every time. }
$$

For calculating

$$
\int \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}} d x
$$

How the integration of each part goes

Suppose you've done a partial fractions decomposition. Then each part looks like

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}}
$$

(where i may be 1). For calculating

$$
\int \frac{A}{(a x+b)^{i}} d x, \quad \text { let } u=a x+b \text { every time. }
$$

For calculating

$$
\int \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}} d x, \quad \text { there's a little more to be done. }
$$

How the integration of each part goes

Suppose you've done a partial fractions decomposition. Then each part looks like

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}}
$$

(where i may be 1). For calculating

$$
\int \frac{A}{(a x+b)^{i}} d x, \quad \text { let } u=a x+b \text { every time. }
$$

For calculating

$$
\int \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}} d x, \quad \text { there's a little more to be done. }
$$

Whenever $i=1$, you will split this into two fractions:

How the integration of each part goes

Suppose you've done a partial fractions decomposition. Then each part looks like

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}}
$$

(where i may be 1). For calculating

$$
\int \frac{A}{(a x+b)^{i}} d x, \quad \text { let } u=a x+b \text { every time. }
$$

For calculating

$$
\int \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}} d x, \quad \text { there's a little more to be done. }
$$

Whenever $i=1$, you will split this into two fractions:
one which has some constant times $\frac{d}{d x}\left(a x^{2}+b x+c\right)=2 a x+b$ in the numerator (so $u=a x^{2}+b x+c$)

How the integration of each part goes

Suppose you've done a partial fractions decomposition. Then each part looks like

$$
\frac{A}{(a x+b)^{i}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}}
$$

(where i may be 1). For calculating

$$
\int \frac{A}{(a x+b)^{i}} d x, \quad \text { let } u=a x+b \text { every time. }
$$

For calculating

$$
\int \frac{A x+B}{\left(a x^{2}+b x+c\right)^{i}} d x, \quad \text { there's a little more to be done. }
$$

Whenever $i=1$, you will split this into two fractions:
one which has some constant times $\frac{d}{d x}\left(a x^{2}+b x+c\right)=2 a x+b$ in the numerator (so $u=a x^{2}+b x+c$), and one which has a constant in the numerator (so I can use $\frac{d}{d x} \tan ^{-1}(\theta)=1 /\left(\theta^{2}+1\right)$, possibly after completing the square).

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x+1}{x^{2}+1} d x$.

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x+1}{x^{2}+1} d x$.
As I said, I want to break this up into two fractions, one which has some constant times $\frac{d}{d x}\left(x^{2}+1\right)=2 x$ in the numerator (so $u=x^{2}+1$), and one which has a constant in the numerator (so I can use $\frac{d}{d x} \tan ^{-1}(x)=1 /\left(x^{2}+1\right)$:

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x+1}{x^{2}+1} d x$.
As I said, I want to break this up into two fractions, one which has some constant times $\frac{d}{d x}\left(x^{2}+1\right)=2 x$ in the numerator (so $u=x^{2}+1$), and one which has a constant in the numerator (so I can use $\frac{d}{d x} \tan ^{-1}(x)=1 /\left(x^{2}+1\right)$:

$$
\frac{x+1}{x^{2}+1}=\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1}
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x+1}{x^{2}+1} d x$.
As I said, I want to break this up into two fractions, one which has some constant times $\frac{d}{d x}\left(x^{2}+1\right)=2 x$ in the numerator (so $u=x^{2}+1$), and one which has a constant in the numerator (so I can use $\frac{d}{d x} \tan ^{-1}(x)=1 /\left(x^{2}+1\right)$:

$$
\frac{x+1}{x^{2}+1}=\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1}
$$

so that

$$
\int \frac{x+1}{x^{2}+1} d x=\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x+1}{x^{2}+1} d x$.
As I said, I want to break this up into two fractions, one which has some constant times $\frac{d}{d x}\left(x^{2}+1\right)=2 x$ in the numerator (so $u=x^{2}+1$), and one which has a constant in the numerator (so I can use $\frac{d}{d x} \tan ^{-1}(x)=1 /\left(x^{2}+1\right)$:

$$
\frac{x+1}{x^{2}+1}=\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1}
$$

so that

$$
\begin{gathered}
\int \frac{x+1}{x^{2}+1} d x=\int \frac{x}{x^{2}+1} d x+\int \frac{1}{x^{2}+1} d x \\
=\frac{1}{2} \ln \left|x^{2}+1\right|+\tan ^{-1}(x)+C
\end{gathered}
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $\left.d u=2 x\right)$ and one $\tan ^{-1}(u)$ integral.

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $d u=2 x$) and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $d u=2 x$) and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1} .
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $d u=2 x$) and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1} .
$$

So

$$
\int \frac{3 x+5}{x^{2}+4} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+4} d x+\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $\left.d u=2 x\right)$ and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1}
$$

So

$$
\int \frac{3 x+5}{x^{2}+4} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+4} d x+\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x .
$$

For the first, let $u=x^{2}+4$, so $d u=2 x$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $d u=2 x$) and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1} .
$$

So

$$
\int \frac{3 x+5}{x^{2}+4} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+4} d x+\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x
$$

For the first, let $u=x^{2}+4$, so $d u=2 x$, and thus

$$
\left(\frac{3}{2}\right) \int \frac{2 x}{x^{2}+4} d x=\frac{3}{2} \int u^{-1} d u
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $\left.d u=2 x\right)$ and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1}
$$

So

$$
\int \frac{3 x+5}{x^{2}+4} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+4} d x+\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x
$$

For the first, let $u=x^{2}+4$, so $d u=2 x$, and thus

$$
\left(\frac{3}{2}\right) \int \frac{2 x}{x^{2}+4} d x=\frac{3}{2} \int u^{-1} d u=\frac{3}{2} \ln \left|x^{2}+4\right|+C
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $\left.d u=2 x\right)$ and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1}
$$

So

$$
\int \frac{3 x+5}{x^{2}+4} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+4} d x+\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x
$$

For the first, let $u=x^{2}+4$, so $d u=2 x$, and thus

$$
\left(\frac{3}{2}\right) \int \frac{2 x}{x^{2}+4} d x=\frac{3}{2} \int u^{-1} d u=\frac{3}{2} \ln \left|x^{2}+4\right|+C
$$

for the second, let $u=x / 2$, so $2 d u=d x$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $\left.d u=2 x\right)$ and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1} .
$$

So

$$
\int \frac{3 x+5}{x^{2}+4} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+4} d x+\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x
$$

For the first, let $u=x^{2}+4$, so $d u=2 x$, and thus

$$
\left(\frac{3}{2}\right) \int \frac{2 x}{x^{2}+4} d x=\frac{3}{2} \int u^{-1} d u=\frac{3}{2} \ln \left|x^{2}+4\right|+C
$$

for the second, let $u=x / 2$, so $2 d u=d x$, and thus

$$
\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x=\frac{5}{2} \int \frac{1}{u^{2}+1} d u
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{3 x+5}{x^{2}+4} d x$.
Again, I want one $u=x^{2}+4$ (so $\left.d u=2 x\right)$ and one $\tan ^{-1}(u)$ integral.

$$
\frac{3 x+5}{x^{2}+4}=\frac{3 x}{x^{2}+4}+\frac{5}{x^{2}+4}=\left(\frac{3}{2}\right) \frac{2 x}{x^{2}+4}+\left(\frac{5}{4}\right) \frac{1}{(x / 2)^{2}+1}
$$

So

$$
\int \frac{3 x+5}{x^{2}+4} d x=\frac{3}{2} \int \frac{2 x}{x^{2}+4} d x+\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x
$$

For the first, let $u=x^{2}+4$, so $d u=2 x$, and thus

$$
\left(\frac{3}{2}\right) \int \frac{2 x}{x^{2}+4} d x=\frac{3}{2} \int u^{-1} d u=\frac{3}{2} \ln \left|x^{2}+4\right|+C
$$

for the second, let $u=x / 2$, so $2 d u=d x$, and thus

$$
\frac{5}{4} \int \frac{1}{(x / 2)^{2}+1} d x=\frac{5}{2} \int \frac{1}{u^{2}+1} d u=\frac{5}{2} \tan ^{-1}(x / 2)+C .
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

$$
x^{2}+4 x+7=(x+2)^{2}-4+5
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

$$
x^{2}+4 x+7=(x+2)^{2}-4+5=(x+2)^{2}+1
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

$$
x^{2}+4 x+7=(x+2)^{2}-4+5=(x+2)^{2}+1
$$

Now let $u=x+2$ (so that $d u=d x$ and $x=u-2$):

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

$$
x^{2}+4 x+7=(x+2)^{2}-4+5=(x+2)^{2}+1
$$

Now let $u=x+2$ (so that $d u=d x$ and $x=u-2$):

$$
\int \frac{x}{x^{2}+4 x+5} d x=\int \frac{x}{(x+2)^{2}+1} d x=\int \frac{u-2}{u^{2}+1} d u
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

$$
x^{2}+4 x+7=(x+2)^{2}-4+5=(x+2)^{2}+1
$$

Now let $u=x+2$ (so that $d u=d x$ and $x=u-2$):

$$
\int \frac{x}{x^{2}+4 x+5} d x=\int \frac{x}{(x+2)^{2}+1} d x=\int \frac{u-2}{u^{2}+1} d u
$$

Now proceed as before!

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

$$
x^{2}+4 x+7=(x+2)^{2}-4+5=(x+2)^{2}+1
$$

Now let $u=x+2$ (so that $d u=d x$ and $x=u-2$):

$$
\int \frac{x}{x^{2}+4 x+5} d x=\int \frac{x}{(x+2)^{2}+1} d x=\int \frac{u-2}{u^{2}+1} d u
$$

Now proceed as before!

$$
\begin{aligned}
& \int \frac{u-2}{u^{2}+1} d u=\int \frac{u}{u^{2}+1} d u-2 \int \frac{1}{u^{2}+1} d u \\
& =\frac{1}{2} \ln \left|u^{2}+1\right|-2 \tan ^{-1}(u)+C
\end{aligned}
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)$
Example: $\int \frac{x}{x^{2}+4 x+5} d x$.
Complete the square of the denominator to get this fraction into the form of the previous two examples:

$$
x^{2}+4 x+7=(x+2)^{2}-4+5=(x+2)^{2}+1 .
$$

Now let $u=x+2$ (so that $d u=d x$ and $x=u-2$):

$$
\int \frac{x}{x^{2}+4 x+5} d x=\int \frac{x}{(x+2)^{2}+1} d x=\int \frac{u-2}{u^{2}+1} d u .
$$

Now proceed as before!

$$
\begin{gathered}
\int \frac{u-2}{u^{2}+1} d u=\int \frac{u}{u^{2}+1} d u-2 \int \frac{1}{u^{2}+1} d u \\
=\frac{1}{2} \ln \left|u^{2}+1\right|-2 \tan ^{-1}(u)+C=\frac{1}{2} \ln \left|(x+2)^{2}+1\right|-2 \tan ^{-1}(x+2)+C .
\end{gathered}
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator.

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator. In general, this goes as follows:

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator. In general, this goes as follows:

1. Factor out a^{i} : rewrite the denominator as $a^{i}\left(x^{2}+\beta x+\gamma\right)^{i}$, where $\beta=b / a$ and $\gamma=c / a$.

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator. In general, this goes as follows:

1. Factor out a^{i} : rewrite the denominator as $a^{i}\left(x^{2}+\beta x+\gamma\right)^{i}$, where $\beta=b / a$ and $\gamma=c / a$.
2. Complete the square of the rest:

$$
x^{2}+\beta x+\gamma=(x+\beta / 2)^{2}+\left(\gamma-\beta^{2} / 4\right)
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator. In general, this goes as follows:

1. Factor out a^{i} : rewrite the denominator as $a^{i}\left(x^{2}+\beta x+\gamma\right)^{i}$, where $\beta=b / a$ and $\gamma=c / a$.
2. Complete the square of the rest:

$$
\begin{aligned}
& x^{2}+\beta x+\gamma=(x+\beta / 2)^{2}+\left(\gamma-\beta^{2} / 4\right)=(x+\beta / 2)^{2}+\alpha^{2} \\
& \text { where } \alpha=\sqrt{\gamma-\beta^{2} / 4} . \quad \text { (real since the denom.'s not factorable) }
\end{aligned}
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator. In general, this goes as follows:

1. Factor out a^{i} : rewrite the denominator as $a^{i}\left(x^{2}+\beta x+\gamma\right)^{i}$, where $\beta=b / a$ and $\gamma=c / a$.
2. Complete the square of the rest:

$$
x^{2}+\beta x+\gamma=(x+\beta / 2)^{2}+\left(\gamma-\beta^{2} / 4\right)=(x+\beta / 2)^{2}+\alpha^{2}
$$

where $\alpha=\sqrt{\gamma-\beta^{2} / 4}$. (real since the denom.'s not factorable)
3. Make the constant term 1 by factoring out α^{2} :

$$
\left(a x^{2}+b x+c\right)^{i}=a^{i}\left((x+\beta / 2)^{2}+\alpha^{2}\right)^{i}=a^{i} \alpha^{2 i}\left(\left(\frac{x+\beta / 2}{\alpha}\right)^{2}+1\right)^{i}
$$

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator. In general, this goes as follows:

1. Factor out a^{i} : rewrite the denominator as $a^{i}\left(x^{2}+\beta x+\gamma\right)^{i}$, where $\beta=b / a$ and $\gamma=c / a$.
2. Complete the square of the rest:

$$
x^{2}+\beta x+\gamma=(x+\beta / 2)^{2}+\left(\gamma-\beta^{2} / 4\right)=(x+\beta / 2)^{2}+\alpha^{2}
$$

where $\alpha=\sqrt{\gamma-\beta^{2} / 4}$. (real since the denom.'s not factorable)
3. Make the constant term 1 by factoring out α^{2} :

$$
\left(a x^{2}+b x+c\right)^{i}=a^{i}\left((x+\beta / 2)^{2}+\alpha^{2}\right)^{i}=a^{i} \alpha^{2 i}\left(\left(\frac{x+\beta / 2}{\alpha}\right)^{2}+1\right)^{i}
$$

4. Let $u=\frac{x+\beta / 2}{\alpha}$. Use $x=\alpha x-\beta / 2$ to rewrite the numerator.

Integrating $(A x+B) /\left(a x^{2}+b x+c\right)^{i}$

If there's nothing obvious to be done, even for $i>1$, complete the square of the denominator. In general, this goes as follows:

1. Factor out a^{i} : rewrite the denominator as $a^{i}\left(x^{2}+\beta x+\gamma\right)^{i}$, where $\beta=b / a$ and $\gamma=c / a$.
2. Complete the square of the rest:

$$
x^{2}+\beta x+\gamma=(x+\beta / 2)^{2}+\left(\gamma-\beta^{2} / 4\right)=(x+\beta / 2)^{2}+\alpha^{2}
$$

where $\alpha=\sqrt{\gamma-\beta^{2} / 4}$. (real since the denom.'s not factorable)
3. Make the constant term 1 by factoring out α^{2} :

$$
\left(a x^{2}+b x+c\right)^{i}=a^{i}\left((x+\beta / 2)^{2}+\alpha^{2}\right)^{i}=a^{i} \alpha^{2 i}\left(\left(\frac{x+\beta / 2}{\alpha}\right)^{2}+1\right)^{i}
$$

4. Let $u=\frac{x+\beta / 2}{\alpha}$. Use $x=\alpha x-\beta / 2$ to rewrite the numerator.
(Don't try to memorize these equations. Just know that the process works every time.)

You try:

Compute

$$
\int \frac{4 x^{2}-3 x+2}{4 x^{2}-4 x+3} d x
$$

[Hint:

1. The degree of the numerator is not less than the degree of the denominator. So reduce first. You should end up with something that lookes like $A+\frac{B x+D}{4 x^{2}-4 x+3}$.
2. Since the denom. is not factorable, get it into the form $k\left((f(x))^{2}+1\right)$ as on the previous slide. Then let $u=f(x)$.]
