
Today: 6.3 Partial fractions
Warm up: Recall that if you require real coefficients (not complex),
polynomials always factor into degree 1 or 2 parts. For example,

x3 + x2 + 3x− 5 = (x− 1)(x+ 1− 2i)(x+ 1 + 2i)︸ ︷︷ ︸
allowing complex coeffs

= (x− 1)(x2 + 2x+ 5)︸ ︷︷ ︸
using only real coeffs

1. Factor the following polynomials (as far as possible) into
factors with real coefficients.

(a) x2 + 3x+ 2 (b) 3x2 − 4x+ 1 (c) x3 − 7x

(d) x4 − 16 (e) x3 − x2 + 9x− 9

2. Calculate the following (you may want to factor the
denominator).

(a)

∫
1

x2 − 4x+ 4
dx (b)

∫
x+ 2

x2 + 5x+ 6
dx

(c)

∫
2x− 1

x2 + 1
dx (d)

∫
x3 + 2x+ 1

x− 1
dx



(1a) x2 + 3x+ 2 = (x+ 1)(x+ 2)

(1b) 3x2 − 4x+ 1 = (3x− 1)(x− 1)

(1c) x3 − 7x = x(x+
√
7)(x−

√
7)

(1d) x4 − 16 = (x2 − 4)(x2 + 4) = (x− 2)(x+ 2)(x2 + 4).

(1e) x3 − x2 − 9x+ 9 = x2(x− 1)− 9(x− 1)
= (x2 − 9)(x− 1) = (x+ 3)(x− 3)(x− 1)

(2a)
∫

1
x2−4x+4

dx =
∫

1
(x−2)2

dx = −(x− 2)−1 + C

(2b)
∫

x+2
x2+5x+6

dx =
∫

x+2
(x+2)(x+3) dx =

∫
1

x+3 dx = ln |x+3|+C

(2c)
∫

2x−1
x2+1

dx =
∫

2x
x2+1

− 1
x2+1

dx = ln |x2 + 1| − tan−1(x) + C

(2d)
∫
x3+2x+1
x−1 dx =

∫
x2 + x+ 3 + 4

x−1 dx =
1
3x

3 + 1
2x

2 + 3x+ 4 ln |x− 1|+ C.



Reviewing polynomial long division
Calculate x3+2x+1

x−1 :

x− 1 x3 0 2x 1+ + +

x2

x into x3

x3 x2− (x− 1)x2−( )

x2 2x 1+ +

x+

x into x2

x2 x− (x− 1)x−( )

3x 1+

3+

x into 3x

3x 3− (x− 1)3−( )

4 remainder

4
x−1+

So
x3 + 2x+ 1

x− 1
= x2 + x+ 3 +

4

x− 1
.
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Strategies for integrating rational functions

1. To compute ∫
x+ 2

x2 + 5x+ 6
dx

we noted that
x+ 2

x2 + 5x+ 6
=

x+ 2

(x+ 2)(x+ 3)
=

1

x+ 3
,

so that∫
x+ 2

x2 + 5x+ 6
dx =

∫
1

x+ 3
dx = ln |x+ 3|+ C.

2. To compute ∫
2x+ 5

x2 + 5x+ 6
dx,

we could note that

if u = x2 + 5x+ 6, them du = 2x+ 5, so∫
2x+ 5

x2 + 5x+ 6
dx =

∫
1

u
du = ln |u|+C = ln |x2+5x+6|+C.
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Strategies for integrating rational functions

3. How about ∫
3x+ 13

x2 + 5x+ 6
dx?

What if I pointed out to you that

7

x+ 2
− 4

x+ 3
=

7(x+ 3)

(x+ 2)(x+ 3)
− 4(x+ 2)

(x+ 2)(x+ 3)

=
7x+ 21− 4x− 8

(x+ 2)(x+ 3)
=

3x+ 13

x2 + 5x+ 6
?

Well, then∫
3x+ 13

x2 + 5x+ 6
dx =

∫
7

x+ 2
− 4

x+ 3
dx

= 7 ln |x+ 2| − 4 ln |x+ 3|+ C.
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Strategies for integrating rational functions

How could I have found that

3x+ 13

x2 + 5x+ 6
=

7

x+ 2
− 4

x+ 3

if I didn’t already know?

Well, since the denominator factors as

x2 + 5x+ 6 = (x+ 2)(x+ 3),

if the fraction can be written as the sum of two fractions with
linear denominators, those denominators will be (x+ 2) and
(x+ 3). So, for some A and B, we know

3x+ 13

x2 + 5x+ 6
=

A

x+ 2
+

B

x+ 3
.

So we can solve for A and B as follows!
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Suppose A and B satisfy

3x+ 13

(x+ 2)(x+ 3)
=

A

x+ 2
+

B

x+ 3
.

Then multiplying both sides by (x+ 2)(x+ 3), we get

3x+ 13 = A(x+ 3) +B(x+ 2) = (A+B)x+ (3A+ 2B).

Comparing both sides, we know that the constant terms have to
match and the coefficients on x have to match (that’s what it
means for two polynomials to be equal!). So

3 = A+B and 13 = 3A+ 2B.

Plugging A = 3−B (from the first equation) into the second
equation, we get

13 = 3(3−B) + 2B = 9− 3B + 2B = 9−B.

So B = −4 , and so A = 3− (−4) = 7 . Thus

3x+ 13

(x+ 2)(x+ 3)
=

7

x+ 2
+
−4
x+ 3

, as expected!
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You try

1. Solve for A and B such that

4x+ 11

(x− 1)(x+ 4)
=

A

x− 1
+

B

x+ 4
.

Multiply both sides by (x− 1)(x+ 4) to get
4x+ 11 = A(x+ 4) +B(x− 1) = (A+B)x+ (4A−B).
Thus 4 = A+B, so that B = 4−A, and
11 = 4A−B = 4A− (4−A) = 5A− 4. So

A = 3 and B = 1 .

2. Use your previous answer to calculate
∫

4x+11
(x−1)(x+4) dx.

∫
4x+ 11

(x− 1)(x+ 4)
dx =

∫
3

x− 1
+

1

x+ 4
dx

= 3 ln |x− 1|+ ln |x+ 4|.
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Rules for splitting rational functions
If you’re trying to split a rational function Q(x)/P (x):

0. If deg(Q(x)) ≥ deg(P (x)), use long division first.

1. Factor the denominator P (x) (as far as possible) into degree
1 and 2 factors with real coefficients:

P (x) = p1(x)p2(x) · · · pk(x).
2. For each factor pi(x), add a term according to the following

rules. Note that pi(x) might appear multiple times.

(a) If pi appears exactly once in the factorization:
If pi is degree 1, add a term of the form A/pi(x);
If pi is degree 2, add aa term of the form (Ax+B)/pi(x).

Basically, add a term with pi(x) in the denominator and a
generic polynomial of one degree less in the numerator.

For example, we would write

1

(x+ 1)(x− 3)
=

A

x+ 1
+

B

x− 3

,
1

(x2 + 1)(x− 3)
=
Ax+B

x2 + 1
+

C

x− 3
,

and
1

(x2 + 1)(x2 + 3)
=
Ax+B

x2 + 1
+
Cx+D

x2 + 3

(b) If pi appears exactly n times in the factorization:
If pi is degree 1, add terms Aj/(pi(x))

j for j = 1, 2, . . . , n;
If pi is degree 2, add terms (Ajx+Bj)/(pi(x))

j for
j = 1, 2, . . . , n.
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(split doesn’t depend on numerator!)

1

(x+ 2)(x2 + x+ 1)2(x+ 1)4

=
A

x+ 2
+

Bx+ C

x2 + x+ 1
+

Dx+ E

(x2 + x+ 1)2

+
F

x+ 1
+

G

(x+ 1)2
+

H

(x+ 1)3
+

I

(x+ 1)4
.
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Basically, add a term with pi(x) in the denominator and a
generic polynomial of one degree less in the numerator.

(b) If pi appears exactly n times in the factorization:
If pi is degree 1, add terms Aj/(pi(x))

j for j = 1, 2, . . . , n;
If pi is degree 2, add terms (Ajx+Bj)/(pi(x))

j for
j = 1, 2, . . . , n.

For example, (split doesn’t depend on numerator!)

x3 + 9x+ 15

(x+ 2)(x2 + x+ 1)2(x+ 1)4

=
A

x+ 2
+

Bx+ C

x2 + x+ 1
+

Dx+ E

(x2 + x+ 1)2

+
F

x+ 1
+

G

(x+ 1)2
+

H

(x+ 1)3
+

I

(x+ 1)4
.



You try:

Split the following rational functions. Don’t solve for the
constants; just set it up. If need be, factor the denominator first.

1.
1

(x+ 3)(x− 5)

=
A

x+ 3
+

B

x− 5

2.
x

3x2 − 4x+ 1

=
A

3x− 1
+

B

x− 1

3.
2x+ 1

x4 − 16

=
A

x+ 2
+

B

x− 2
+
Cx+D

x2 + 4

4.
10x2 − 3x+ 1

x3(x+ 1)(x2 + 3)5

=
A

x
+
B

x2
+
C

x3
+

D

x+ 1

+
E

x2 + 3
+
Fx+G

(x2 + 3)2
+
Hx+ I

(x2 + 3)3
+
Jx+K

(x2 + 3)4
+
Lx+M

(x2 + 3)5

Definition: This split form is called partial fractions decomposition.
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You try:
Compute ∫

x

3x2 − 4x+ 1
dx.

(use the previous slide to split the fraction, solve for the unknowns,
and use the split form to integrate)

Soln: Write
x

3x2 − 4x+ 1
=

A

3x− 1
+

B

x− 1
,

so that

x = A(x− 1) +B(3x− 1) = (A+ 3B)x+ (−A−B).

Then 1 = A+ 3B and 0 = −A−B. So
1 = A+ 3( −A︸︷︷︸

B

) = −2A. Thus A = −1/2 and B = 1/2.

So ∫
x

3x2 − 4x+ 1
dx =

∫
−1/2
3x− 1

+
1/2

x− 1
dx

= −1
2 ln |3x− 1|+ 1

2 ln |x− 1|+ C.
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You try:
Compute ∫

3x2 − x+ 1

x3 + x
dx.

(factor the denominator, split the fraction, solve for the unknowns,
and use the split form to integrate)

Soln: Write
3x2 − x+ 1

x3 + x
=
A

x
+
Bx+ C

x2 + 1
,

so that

3x2 − x+ 1 = A(x2 + 1) + (Bx+ C)x = (A+B)x2 + Cx+A.

Then 3 = (A+B), −1 = C, and 1 = A. Thus B = 2.
So ∫

3x2 − x+ 1

x3 + x
dx =

∫
1

x
+

2x− 1

x2 + 1
dx

= ln |x|+
∫

2x

x2 + 1
− 1

x2 + 1
dx = ln |x|+ln |x2+1|−tan−1(x)+C
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We could have been a little more clever with∫
3x2 − x+ 1

x3 + x
dx :

Notice
3x2 − x+ 1

x3 + x
=

3x2 + 1

x3 + x
− x

x3 + x

=
d
dx(x

3 + x)

x3 + x
− 1

x2 + 1
.

So ∫
3x2 − x+ 1

x3 + x
dx =

∫
3x2 + 1

x3 + x
dx−

∫
1

x2 + 1
dx

= ln |x3 + x| − tan−1(x) + C.

What we got before:

ln |x|+ln |x2+1|−tan−1(x)+C = ln |x(x2+1)|−tan−1(x)+C X
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How the integration of each part goes
Suppose you’ve done a partial fractions decomposition. Then each
part looks like

A

(ax+ b)i
or

Ax+B

(ax2 + bx+ c)i

(where i may be 1).

For calculating∫
A

(ax+ b)i
dx, let u = ax+ b every time.

For calculating∫
Ax+B

(ax2 + bx+ c)i
dx, there’s a little more to be done.

Whenever i = 1, you will split this into two fractions:
one which has some constant times d

dx(ax
2 + bx+ c) = 2ax+ b in

the numerator (so u = ax2 + bx+ c), and one which has a
constant in the numerator (so I can use d

dx tan
−1(θ) = 1/(θ2 + 1),

possibly after completing the square).
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Integrating (Ax+B)/(ax2 + bx+ c)

Example:

∫
x

x2 + 4x+ 5
dx.

Complete the square of the denominator to get this fraction into
the form of the previous two examples:

x2 + 4x+ 7 = (x+ 2)2 − 4 + 5 = (x+ 2)2 + 1.

Now let u = x+ 2 (so that du = dx and x = u− 2):∫
x

x2 + 4x+ 5
dx =

∫
x

(x+ 2)2 + 1
dx =

∫
u− 2

u2 + 1
du.

Now proceed as before!∫
u− 2

u2 + 1
du =

∫
u

u2 + 1
du− 2

∫
1

u2 + 1
du

= 1
2 ln |u

2+1|−2 tan−1(u)+C = 1
2 ln |(x+2)2+1|−2 tan−1(x+2)+C.
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∫
x

(x+ 2)2 + 1
dx =

∫
u− 2

u2 + 1
du.

Now proceed as before!∫
u− 2

u2 + 1
du =

∫
u

u2 + 1
du− 2

∫
1

u2 + 1
du

= 1
2 ln |u

2+1|−2 tan−1(u)+C = 1
2 ln |(x+2)2+1|−2 tan−1(x+2)+C.



Integrating (Ax+B)/(ax2 + bx+ c)i

If there’s nothing obvious to be done, even for i > 1, complete the
square of the denominator.

In general, this goes as follows:

1. Factor out ai: rewrite the denominator as ai(x2 + βx+ γ)i,
where β = b/a and γ = c/a.

2. Complete the square of the rest:

x2 + βx+ γ = (x+ β/2)2 + (γ − β2/4) = (x+ β/2)2 + α2

where α =
√
γ − β2/4. (real since the denom.’s not factorable)

3. Make the constant term 1 by factoring out α2:

(ax2+bx+c)i = ai((x+β/2)2+α2)i = aiα2i

((
x+ β/2

α

)2

+ 1

)i
.

4. Let u = x+β/2
α . Use x = αx− β/2 to rewrite the numerator.

(Don’t try to memorize these equations. Just know that the
process works every time.)
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You try:
Compute ∫

4x2 − 3x+ 2

4x2 − 4x+ 3
dx.

[Hint:

1. The degree of the numerator is not less than the degree of the
denominator. So reduce first. You should end up with
something that lookes like A+ Bx+D

4x2−4x+3
.

2. Since the denom. is not factorable, get it into the form
k((f(x))2 + 1) as on the previous slide. Then let u = f(x). ]




