Today: 6.1 Integration by parts

Warm up: Differentiate the following functions

(1) $x \ln(x)$, (2) $\cosh(x) \sinh(x)$, (3) $\cos(x) \sin(x)$, (4) $\sqrt{x} \sinh^{-1}(x)$, (5) $3^x x^3$, (6) $(1 + x^2) \tan^{-1}(x)$,

Integration by parts: undoing product rule

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx.$$

How this helps: Calculate

$$\int \underbrace{x \cos(x)}_{f g'} dx.$$

Wouldn't it be great if we could get rid of x?

$$x\sin(x) = \int 1 \cdot \sin(x) \, dx + \int x \cos(x) \, dx = -\cos(x) + \int x \cos(x) \, dx.$$

So $\int x \cos(x) \, dx = x \sin(x) + \cos(x).$

Integration by parts: undoing product rule

Integrating both sides of $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \, dx + \int f(x)g'(x) \, dx.$$

So

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx.$$

Revisiting the previous example: $\int x \cos(x) dx$. Start by picking

f(x) so that (usually) f'(x) is simpler than f(x),

and g'(x) so that we can compute $\int g'(x) dx$.

f(x): x	g(x): $\sin(x)$
f'(x):	g'(x):
_	

Then compute
$$f'(x)$$
 and $g(x)$.
Finally, plug in and hope we're left with something we can compute:
 $\int x \cos(x) dx = x \cdot \sin(x) - \int 1 \cdot \cos(x) dx \checkmark$

You try

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx.$$

Compute the integral

$$\int x e^x \ dx$$

by letting

$$f(x) = x$$
 and $g'(x) = e^x$.

(Compute f'(x) and $g(x)=\int g'(x)\;dx,$ and then plug into the formula)

You try: Do it twice

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx.$$

Compute
$$\int x^2 \cos(x) \, dx.$$

Start by letting

$$f(x) = x^2$$
 and $g'(x) = \cos(x)$.

When you get to computing $\int f'(x)g(x) dx$, you'll need to use integration by parts again. Answer: $(x^2 - 2)\sin(x) + 2x\cos(x) + C$

A note on notation: In the book, they use u and dv in place of f(x) and g'(x). You can use either.

You try: Something out of nothing

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx.$$

Compute

$$\int \ln(x) \ dx$$

using integration by parts by letting

$$f(x) = \ln(x)$$
 and $g'(x) = 1$.

Answer: $x(\ln(x) - 1) + C$

Note: This is a common technique for computing the integral of inverse functions, like $\sin^{-1}(x)$, $\tan^{-1}(x)$, $\sinh^{-1}(x)$, etc..

Something else out of nothing, u-sub edition

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x) = e^{\sqrt{x}}$ and g'(x) = 1, like before. So $f'(x) = \frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x) = x. Thus

$$\int e^{\sqrt{x}} dx = x e^{\sqrt{x}} - \frac{1}{2} \underbrace{\int \sqrt{x} e^{\sqrt{x}} dx}_{\text{not a lot better...}}.$$

Instead, we can start with a *u*-substitution: Let $u = \sqrt{x}$. So $du = \frac{1}{2\sqrt{x}}dx = \frac{1}{2u}dx$. So $2u \ du = dx$, giving

$$\int e^{\sqrt{x}} \, dx = \int 2u e^u du.$$

Finish using integration by parts like before!

A cyclic example: Compute $\int e^x \cos(x) dx$.

Let $f(x) = e^x$ and $g'(x) = \cos(x)$. So $f'(x) = e^x$ and $g(x) = \sin(x)$. Thus

$$\int e^x \cos(x) \, dx = e^x \sin(x) - \int e^x \sin(x) \, dx.$$

Now, to compute $\int e^x \sin(x) dx$: Let $f(x) = e^x$ and $g'(x) = \sin(x)$. So $f'(x) = e^x$ and $g(x) = -\cos(x)$. Thus

$$\int e^x \sin(x) \, dx = -e^x \cos(x) - \int e^x (-\cos(x)) \, dx$$

Putting these together, we have

$$\int e^x \cos(x) \, dx = e^x \sin(x) - \left(-e^x \cos(x) + \int e^x \cos(x)\right)$$
So
$$2 \int e^x \cos(x) \, dx = e^x \sin(x) + e^x \cos(x) + C.$$

So $2 \int e^x \cos(x) \, dx = e^x \sin(x) + e^x \cos(x) + C$

And thus

$$\int e^x \cos(x) \, dx = \frac{1}{2} e^x (\sin(x) + \cos(x)) + D.$$

You try:

Compute the following antiderivatives using integration by parts.

1. $\int x \sec^2(x) dx$ Answer: $x \tan(x) + \ln(\cos(x)) + C$ 2. $\int \sin^{-1}(x) dx$ Answer: $x \sin^{-1}(x) + \sqrt{1 - x^2} + C$ 3. $\int x \ln(x) dx$ Answer: $x^2(2\ln(x) - 1)/4 + C$

(Try first by letting f(x) = x, and try again letting $f(x) = \ln(x)$)

4. $\int \cos^2(x) \, dx$ Answer: $\frac{1}{2}(x + \sin(x)\cos(x)) + C$

(Try letting $f(x) = \cos(x)$ and $g'(x) = \cos(x)$, and then using $\sin^2(x) = 1 - \cos^2(x)$. Then look back at the $e^x \cos(x)$ example.)