Today: 6.1 Integration by parts

Warm up: Differentiate the following functions
(1) $x \ln (x)$,
(2) $\cosh (x) \sinh (x)$,
(3) $\cos (x) \sin (x)$,
(4) $\sqrt{x} \sinh ^{-1}(x)$,
(5) $3^{x} x^{3}$,
(6) $\left(1+x^{2}\right) \tan ^{-1}(x)$,

Integration by parts: undoing product rule
Recall, product rule:

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Integrating both sides, we get

$$
f(x) g(x)=\int f^{\prime}(x) g(x) d x+\int f(x) g^{\prime}(x) d x
$$

How this helps: Calculate

$$
\int \underbrace{x \cos (x)}_{f} d x .
$$

Wouldn't it be great if we could get rid of x ?
$x \sin (x)=\int 1 \cdot \sin (x) d x+\int x \cos (x) d x=-\cos (x)+\int x \cos (x) d x$.
So $\int x \cos (x) d x=x \sin (x)+\cos (x)$.

Integration by parts: undoing product rule

Integrating both sides of $\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ gives

$$
f(x) g(x)=\int f^{\prime}(x) g(x) d x+\int f(x) g^{\prime}(x) d x
$$

So

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x .
$$

Revisiting the previous example: $\int x \cos (x) d x$.
Start by picking
$f(x)$ so that (usually) $f^{\prime}(x)$ is simpler than $f(x)$,
and $g^{\prime}(x)$ so that we can compute $\int g^{\prime}(x) d x$.

$f(x):$ x	$g(x):$ $\sin (x)$
$f^{\prime}(x):$	$g^{\prime}(x):$
1	$\cos (x)$

Then compute $f^{\prime}(x)$ and $g(x)$.
Finally, plug in and hope we're left with something we can compute:

$$
\int x \cos (x) d x=x \cdot \sin (x)-\int 1 \cdot \cos (x) d x \checkmark
$$

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

Compute the integral

$$
\int x e^{x} d x
$$

by letting

$$
f(x)=x \quad \text { and } \quad g^{\prime}(x)=e^{x} .
$$

(Compute $f^{\prime}(x)$ and $g(x)=\int g^{\prime}(x) d x$, and then plug into the formula)

You try: Do it twice

$$
\frac{\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x}{\text { Compute } \int x^{2} \cos (x) d x}
$$

Start by letting

$$
f(x)=x^{2} \quad \text { and } \quad g^{\prime}(x)=\cos (x) .
$$

When you get to computing $\int f^{\prime}(x) g(x) d x$, you'll need to use integration by parts again.
Answer: $\left(x^{2}-2\right) \sin (x)+2 x \cos (x)+C$

A note on notation: In the book, they use u and $d v$ in place of $f(x)$ and $g^{\prime}(x)$. You can use either.

You try: Something out of nothing

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x
$$

Compute

$$
\int \ln (x) d x
$$

using integration by parts by letting

$$
f(x)=\ln (x) \quad \text { and } \quad g^{\prime}(x)=1
$$

Answer: $x(\ln (x)-1)+C$
Note: This is a common technique for computing the integral of inverse functions, like $\sin ^{-1}(x), \tan ^{-1}(x), \sinh ^{-1}(x)$, etc..

Something else out of nothing, u-sub edition
Compute $\int e^{\sqrt{x}} d x$.
We could try letting $f(x)=e^{\sqrt{x}}$ and $g^{\prime}(x)=1$, like before.
So $f^{\prime}(x)=\frac{1}{2 \sqrt{x}} e^{\sqrt{x}}$ and $g(x)=x$. Thus

$$
\int e^{\sqrt{x}} d x=x e^{\sqrt{x}}-\frac{1}{2} \underbrace{\int \sqrt{x} e^{\sqrt{x}} d x}_{\text {not a lot better... }} .
$$

Instead, we can start with a u-substitution:
Let $u=\sqrt{x}$. So $d u=\frac{1}{2 \sqrt{x}} d x=\frac{1}{2 u} d x$.
So $2 u d u=d x$, giving

$$
\int e^{\sqrt{x}} d x=\int 2 u e^{u} d u
$$

Finish using integration by parts like before!

A cyclic example: Compute $\int e^{x} \cos (x) d x$.
Let $f(x)=e^{x}$ and $g^{\prime}(x)=\cos (x)$. So $f^{\prime}(x)=e^{x}$ and $g(x)=\sin (x)$.
Thus

$$
\int e^{x} \cos (x) d x=e^{x} \sin (x)-\int e^{x} \sin (x) d x
$$

Now, to compute $\int e^{x} \sin (x) d x$:
Let $f(x)=e^{x}$ and $g^{\prime}(x)=\sin (x)$. So $f^{\prime}(x)=e^{x}$ and $g(x)=-\cos (x)$.
Thus

$$
\int e^{x} \sin (x) d x=-e^{x} \cos (x)-\int e^{x}(-\cos (x)) d x
$$

Putting these together, we have

$$
\begin{gathered}
\int e^{x} \cos (x) d x=e^{x} \sin (x)-\left(-e^{x} \cos (x)+\int e^{x} \cos (x)\right) . \\
\text { So } \quad 2 \int e^{x} \cos (x) d x=e^{x} \sin (x)+e^{x} \cos (x)+C
\end{gathered}
$$

And thus

$$
\int e^{x} \cos (x) d x=\frac{1}{2} e^{x}(\sin (x)+\cos (x))+D
$$

Compute the following antiderivatives using integration by parts.

1. $\int x \sec ^{2}(x) d x$

Answer: $x \tan (x)+\ln (\cos (x))+C$
2. $\int \sin ^{-1}(x) d x$ Answer: $x \sin ^{-1}(x)+\sqrt{1-x^{2}}+C$
3. $\int x \ln (x) d x$ Answer: $x^{2}(2 \ln (x)-1) / 4+C$
(Try first by letting $f(x)=x$, and try again letting $f(x)=\ln (x)$)
4. $\int \cos ^{2}(x) d x \quad$ Answer: $\frac{1}{2}(x+\sin (x) \cos (x))+C$
(Try letting $f(x)=\cos (x)$ and $g^{\prime}(x)=\cos (x)$, and then using $\sin ^{2}(x)=1-\cos ^{2}(x)$. Then look back at the $e^{x} \cos (x)$ example.)

