Today: 6.1 Integration by parts

Warm up: Differentiate the following functions

(1)
$$x \ln(x)$$
, (2) $\cosh(x) \sinh(x)$, (3) $\cos(x) \sin(x)$,

(4)
$$\sqrt{x} \sinh^{-1}(x)$$
, (5) $3^x x^3$, (6) $(1+x^2) \tan^{-1}(x)$,

Today: 6.1 Integration by parts

Warm up: Differentiate the following functions

(1)
$$x \ln(x)$$
, (2) $\cosh(x) \sinh(x)$, (3) $\cos(x) \sin(x)$,

(4)
$$\sqrt{x} \sinh^{-1}(x)$$
, (5) $3^x x^3$, (6) $(1+x^2) \tan^{-1}(x)$,

Answers:

(1)
$$\ln(x) + 1$$
, (2) $\sinh^2(x) + \cosh^2(x)$, (3) $\cos^2(x) - \sin^2(x)$,
(4) $\sinh^{-1}(x)/2\sqrt{x} + \sqrt{x}/\sqrt{x^2 + 1}$
(5) $3^x x^2 (\ln(3)x + 3)$, (6) $2x \tan^{-1}(x) + 1$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx.$$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx.$$

How this helps: Calculate

$$\int x \cos(x) dx.$$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx.$$

How this helps: Calculate

$$\int x \cos(x) dx.$$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int \frac{f(x)g'(x)}{f(x)}dx.$$

How this helps: Calculate

$$\int \underbrace{x \cos(x)}_{g'} dx.$$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx.$$

How this helps: Calculate

$$\int \underbrace{x \cos(x)}_{f} dx.$$

$$x\sin(x) = \int 1 \cdot \sin(x) \, dx + \int x \cos(x) \, dx$$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx.$$

How this helps: Calculate

$$\int \underbrace{x \cos(x)}_{g'} dx.$$

$$\frac{\mathbf{x}\sin(x)}{\mathbf{x}\sin(x)} = \int \mathbf{1}\cdot\sin(x) \, dx + \int \mathbf{x}\cos(x) \, dx = -\cos(x) + \int x\cos(x) \, dx.$$

Recall, product rule:

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).$$

Integrating both sides, we get

$$f(x)g(x) = \int f'(x)g(x)dx + \int f(x)g'(x)dx.$$

How this helps: Calculate

$$\int \underbrace{x \cos(x)}_{f} dx.$$

Wouldn't it be great if we could get rid of x?

$$\frac{\mathbf{x}\sin(x)}{\mathbf{x}} = \int \mathbf{1} \cdot \sin(x) \ dx + \int \mathbf{x}\cos(x) \ dx = -\cos(x) + \int x\cos(x) \ dx.$$

So $\int x \cos(x) dx = x \sin(x) + \cos(x)$.

Integrating both sides of $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ gives

f(x)g(x) =
$$\int f'(x)g(x) dx + \int f(x)g'(x) dx$$
.

Integrating both sides of $\frac{d}{dx}(f(x)g(x))=f'(x)g(x)+f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \ dx + \int f(x)g'(x) \ dx.$$

So

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Integrating both sides of $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \ dx + \int f(x)g'(x) \ dx.$$

So

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Revisiting the previous example: $\int x \cos(x) \ dx$.

Integrating both sides of $\frac{d}{dx}(f(x)g(x))=f'(x)g(x)+f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \ dx + \int f(x)g'(x) \ dx.$$

So

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Revisiting the previous example: $\int x \cos(x) dx$.

Start by picking

$$f(x)$$
 so that (usually) $f'(x)$ is simpler than $f(x)$, and $g'(x)$ so that we can compute $\int g'(x) \ dx$.

Integrating both sides of $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \ dx + \int f(x)g'(x) \ dx.$$

So

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Revisiting the previous example: $\int x \cos(x) dx$.

Start by picking

$$f(x)$$
 so that (usually) $f'(x)$ is simpler than $f(x)$,

and g'(x) so that we can compute $\int g'(x) \ dx$.

f(x):	g(x):
f'(x):	g'(x):
	$\cos(x)$

Integrating both sides of $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \ dx + \int f(x)g'(x) \ dx.$$

So

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Revisiting the previous example: $\int x \cos(x) dx$.

Start by picking

$$f(x)$$
 so that (usually) $f'(x)$ is simpler than $f(x)$,

and g'(x) so that we can compute $\int g'(x) \ dx$.

$$\begin{array}{c|c}
f(x): & g(x): \\
x & \\
\hline
f'(x): & g'(x): \\
\cos(x) & \\
\end{array}$$

Then compute f'(x) and g(x).

Integrating both sides of $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \ dx + \int f(x)g'(x) \ dx.$$

So

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Revisiting the previous example: $\int x \cos(x) dx$.

Start by picking

$$f(x)$$
 so that (usually) $f'(x)$ is simpler than $f(x)$, and $g'(x)$ so that we can compute $\int g'(x) \ dx$.

f(x):	$g(x)$: $\sin(x)$
f'(x):	$g'(x)$: $\cos(x)$

Then compute f'(x) and g(x).

Integrating both sides of $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ gives

$$f(x)g(x) = \int f'(x)g(x) \ dx + \int f(x)g'(x) \ dx.$$

So

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Revisiting the previous example: $\int x \cos(x) dx$.

Start by picking

$$f(x)$$
 so that (usually) $f'(x)$ is simpler than $f(x)$, and $g'(x)$ so that we can compute $\int g'(x) \ dx$.

f(x): g(x): $\sin(x)$

Then compute f'(x) and g(x). Finally, plug in and hope we're left with

Finally, plug in and hope we re left with something we can compute:
$$\int x \cos(x) \ dx = x \cdot \sin(x) - \int 1 \cdot \cos(x) \ dx \checkmark$$

You try

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute the integral

$$\int xe^x dx$$

by letting

$$f(x) = x$$
 and $g'(x) = e^x$.

(Compute f'(x) and $g(x) = \int g'(x) \ dx$, and then plug into the formula)

You try

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute the integral

$$\int xe^x \ dx$$

by letting

$$f(x) = x$$
 and $g'(x) = e^x$.

(Compute f'(x) and $g(x) = \int g'(x) \ dx$, and then plug into the formula) Answer:

$$f'(x) = 1$$
 and $g(x) = \int e^x dx = e^x$ (leave off $+C$)

So

$$\int xe^x \, dx = xe^x - \int 1 \cdot e^x \, dx = xe^x - e^x + C.$$

You try

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute the integral

$$\int xe^x \ dx$$

by letting

$$f(x) = x$$
 and $g'(x) = e^x$.

(Compute f'(x) and $g(x) = \int g'(x) \ dx$, and then plug into the formula) Answer:

$$f'(x) = 1$$
 and $g(x) = \int e^x dx = e^x$ (leave off $+C$)

So

$$\int xe^x\ dx=xe^x-\int 1\cdot e^x\ dx=xe^x-e^x+C.$$
 Check:
$$\frac{d}{dx}(xe^x+e^x)=e^x+xe^x-e^x=xe^x\checkmark$$

You try: Do it twice

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute
$$\int x^2 \cos(x) dx$$
.

Start by letting

$$f(x) = x^2$$
 and $g'(x) = \cos(x)$.

When you get to computing $\int f'(x)g(x)\ dx$, you'll need to use integration by parts again.

You try: Do it twice

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute
$$\int x^2 \cos(x) dx$$
.

Start by letting

$$f(x) = x^2$$
 and $g'(x) = \cos(x)$.

When you get to computing $\int f'(x)g(x)\ dx$, you'll need to use integration by parts again.

Answer:
$$(x^2 - 2)\sin(x) + 2x\cos(x) + C$$

You try: Do it twice

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute
$$\int x^2 \cos(x) dx$$
.

Start by letting

$$f(x) = x^2$$
 and $g'(x) = \cos(x)$.

When you get to computing $\int f'(x)g(x)\ dx$, you'll need to use integration by parts again.

Answer:
$$(x^2 - 2)\sin(x) + 2x\cos(x) + C$$

A note on notation: In the book, they use u and dv in place of f(x) and g'(x). You can use either.

You try: Something out of nothing

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute

$$\int \ln(x) \ dx$$

using integration by parts by letting

$$f(x) = \ln(x)$$
 and $g'(x) = 1$.

Note: This is a common technique for computing the integral of inverse functions, like $\sin^{-1}(x)$, $\tan^{-1}(x)$, $\sinh^{-1}(x)$, etc..

You try: Something out of nothing

$$\int f(x)g'(x) \ dx = f(x)g(x) - \int f'(x)g(x) \ dx.$$

Compute

$$\int \ln(x) \ dx$$

using integration by parts by letting

$$f(x) = \ln(x)$$
 and $g'(x) = 1$.

Answer: $x(\ln(x) - 1) + C$

Note: This is a common technique for computing the integral of inverse functions, like $\sin^{-1}(x)$, $\tan^{-1}(x)$, $\sinh^{-1}(x)$, etc..

Compute
$$\int e^{\sqrt{x}} dx$$
.

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x) = e^{\sqrt{x}}$ and g'(x) = 1, like before.

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x)=e^{\sqrt{x}}$ and g'(x)=1, like before. So $f'(x)=\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x)=x.

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x)=e^{\sqrt{x}}$ and g'(x)=1, like before. So $f'(x)=\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x)=x. Thus

$$\int e^{\sqrt{x}} dx = xe^{\sqrt{x}} - \frac{1}{2} \underbrace{\int \sqrt{x}e^{\sqrt{x}} dx}.$$

not a lot better...

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x)=e^{\sqrt{x}}$ and g'(x)=1, like before. So $f'(x)=\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x)=x. Thus

$$\int e^{\sqrt{x}} dx = xe^{\sqrt{x}} - \frac{1}{2} \underbrace{\int \sqrt{x}e^{\sqrt{x}} dx}_{\text{not a lot better...}}.$$

Instead, we can start with a u-substitution: Let $u = \sqrt{x}$.

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x) = e^{\sqrt{x}}$ and g'(x) = 1, like before. So $f'(x) = \frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x) = x. Thus

$$\int e^{\sqrt{x}} dx = xe^{\sqrt{x}} - \frac{1}{2} \underbrace{\int \sqrt{x}e^{\sqrt{x}} dx}_{\text{not a lot better...}}.$$

Instead, we can start with a u-substitution: Let $u = \sqrt{x}$. So $du = \frac{1}{2\sqrt{x}}dx$

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x) = e^{\sqrt{x}}$ and g'(x) = 1, like before. So $f'(x) = \frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x) = x. Thus

$$\int e^{\sqrt{x}} dx = xe^{\sqrt{x}} - \frac{1}{2} \underbrace{\int \sqrt{x}e^{\sqrt{x}} dx}_{\text{not a lot better.}}.$$

Instead, we can start with a u-substitution: Let $u = \sqrt{x}$. So $du = \frac{1}{2\sqrt{x}}dx = \frac{1}{2u}dx$.

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x)=e^{\sqrt{x}}$ and g'(x)=1, like before. So $f'(x)=\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x)=x. Thus

$$\int e^{\sqrt{x}} \ dx = x e^{\sqrt{x}} - \frac{1}{2} \underbrace{\int \sqrt{x} e^{\sqrt{x}} \ dx}_{\text{not a lot better...}}.$$

Instead, we can start with a u-substitution:

Let
$$u = \sqrt{x}$$
. So $du = \frac{1}{2\sqrt{x}}dx = \frac{1}{2u}dx$.

So
$$2u \ du = dx$$

Compute
$$\int e^{\sqrt{x}} dx$$
.

We could try letting $f(x)=e^{\sqrt{x}}$ and g'(x)=1, like before. So $f'(x)=\frac{1}{2\sqrt{x}}e^{\sqrt{x}}$ and g(x)=x. Thus

$$\int e^{\sqrt{x}} \ dx = x e^{\sqrt{x}} - \frac{1}{2} \underbrace{\int \sqrt{x} e^{\sqrt{x}} \ dx}_{\text{not a lot better...}}.$$

Instead, we can start with a u-substitution:

Let $u = \sqrt{x}$. So $du = \frac{1}{2\sqrt{x}}dx = \frac{1}{2u}dx$.

So $2u \ du = dx$, giving

$$\int e^{\sqrt{x}} dx = \int 2ue^u du.$$

Finish using integration by parts like before!

A cyclic example: Compute $\int e^x \cos(x) dx$.

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \cos(x)$.

 $\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

so
$$f'(x) = e^x$$
 and $g(x) = \sin(x)$

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

Now, to compute $\int e^x \sin(x) dx$:

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

Now, to compute
$$\int e^x \sin(x) dx$$
:

Let $f(x) = e^x$ and $g'(x) = \sin(x)$.

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

Now, to compute $\int e^x \sin(x) dx$:

Let
$$f(x) = e^x$$
 and $g'(x) = \sin(x)$.

Let
$$f(x) = e^x$$
 and $g'(x) = \sin(x)$.
So $f'(x) = e^x$ and $g(x) = -\cos(x)$.

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

Now, to compute $\int e^x \sin(x) dx$:

Let $f(x) = e^x$ and $g'(x) = \sin(x)$.

So $f'(x) = e^x$ and $g(x) = -\cos(x)$.

Thus
$$f(x) = e^{-x} \text{ and } g(x) = -\cos(x).$$

 $\int e^x \sin(x) \ dx = -e^x \cos(x) - \int e^x (-\cos(x)) \ dx$

$$\int e^x \sin(x) \ dx = -e^x \cos(x) - \int e^x (-\cos(x)) \ dx$$

- Let $f(x) = e^x$ and $g'(x) = \cos(x)$.
- So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

- Now, to compute $\int e^x \sin(x) dx$:
- Let $f(x) = e^x$ and $g'(x) = \sin(x)$.
- So $f'(x) = e^x$ and $g(x) = -\cos(x)$.
- Thus

$$\int e^x \sin(x) \ dx = -e^x \cos(x) - \int e^x (-\cos(x)) \ dx$$

- Putting these together, we have
- - $\int e^x \cos(x) \ dx = e^x \sin(x) \left(-e^x \cos(x) + \int e^x \cos(x) \right).$

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

Now, to compute $\int e^x \sin(x) dx$:

Let $f(x) = e^x$ and $g'(x) = \sin(x)$.

So $f'(x) = e^x$ and $g(x) = -\cos(x)$.

Thus

$$\int e^x \sin(x) \ dx = -e^x \cos(x) - \int e^x (-\cos(x)) \ dx$$

Putting these together, we have

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \left(-e^x \cos(x) + \int e^x \cos(x) \right).$$

Let $f(x) = e^x$ and $g'(x) = \cos(x)$.

So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

Now, to compute $\int e^x \sin(x) dx$:

Let $f(x) = e^x$ and $g'(x) = \sin(x)$.

So $f'(x) = e^x$ and $g(x) = -\cos(x)$.

Thus

$$\int e^x \sin(x) \ dx = -e^x \cos(x) - \int e^x (-\cos(x)) \ dx$$

Putting these together, we have

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \left(-e^x \cos(x) + \int e^x \cos(x)\right).$$

So
$$2 \int e^x \cos(x) dx = e^x \sin(x) + e^x \cos(x) + C.$$

Let $f(x) = e^x$ and $g'(x) = \cos(x)$. So $f'(x) = e^x$ and $g(x) = \sin(x)$.

Thus

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \int e^x \sin(x) \ dx.$$

Now, to compute $\int e^x \sin(x) dx$: Let $f(x) = e^x$ and $g'(x) = \sin(x)$. So $f'(x) = e^x$ and $g(x) = -\cos(x)$.

Thus

$$\int e^x \sin(x) \ dx = -e^x \cos(x) - \int e^x (-\cos(x)) \ dx$$

Putting these together, we have

$$\int e^x \cos(x) \ dx = e^x \sin(x) - \left(-e^x \cos(x) + \int e^x \cos(x) \right).$$

So $2 \int e^x \cos(x) dx = e^x \sin(x) + e^x \cos(x) + C.$

And thus

$$\int e^x \cos(x) \ dx = \frac{1}{2}e^x(\sin(x) + \cos(x)) + D.$$

You try:

Compute the following antiderivatives using integration by parts.

1.
$$\int x \sec^2(x) \ dx$$

$$2. \int \sin^{-1}(x) \ dx$$

3.
$$\int x \ln(x) \ dx$$
 (Try first by letting $f(x) = x$, and try again letting $f(x) = \ln(x)$)

4.
$$\int \cos^2(x) \ dx$$
 (Try letting $f(x) = \cos(x)$ and $g'(x) = \cos(x)$, and then using $\sin^2(x) = 1 - \cos^2(x)$. Then look back at the $e^x \cos(x)$ example.)

You try:

Compute the following antiderivatives using integration by parts.

1.
$$\int x \sec^2(x) dx$$
 Answer: $x \tan(x) + \ln(\cos(x)) + C$

2.
$$\int \sin^{-1}(x) dx$$
 Answer: $x \sin^{-1}(x) + \sqrt{1 - x^2} + C$

3.
$$\int x \ln(x) \ dx$$
 Answer: $x^2(2\ln(x)-1)/4+C$ (Try first by letting $f(x)=x$, and try again letting $f(x)=\ln(x)$)

4.
$$\int \cos^2(x) \ dx$$
 Answer: $\frac{1}{2}(x + \sin(x)\cos(x)) + C$ (Try letting $f(x) = \cos(x)$ and $g'(x) = \cos(x)$, and then using

 $\sin^2(x) = 1 - \cos^2(x)$. Then look back at the $e^x \cos(x)$ example.)