Today: 5.8 L'Hospital’s rule continued.

Recall, L'Hospital’s rule says that if f and g are differentiable, ¢’(z) # 0 near a (but
g'(a) =0 is ok), and

lim f(z) = lim g(z) =0 or Jgnaf(ac) = gglgzg(ac) = oo,

then
lim f(2)/9(@) = lim f'(@)/g(@).

Same goes for one-sided limits and x — +oo0.

Warm up: Use whatever methods you have at your disposal to
calculate the following limits.
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You try: For what a does %/ In(x) approach co as z — co?



Other indeterminate forms
Our first two indeterminate forms were

(1) f/g if f,g—+oco and (2) f/g if f,g—0

(called type oo/oco and type 0/0). They're indeterminate since any
number of things can happen.
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(6) f9 if f—ocandg— 0 (called type o)
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You try:

To summarize, we have 7 indeterminate form types:

0
@, — 0-00, oco—o0, oo, 0° and 1%.
00 0
For each of the following limits, decide if the limit is an
indeterminate form. If so, identify which indeterminate form it is. |

[y

lim x — In(x)
T—00
2. lim z —In(z)
z—0t
3. lim *
T—00
4. lim
z—0t
: T
5. mh_}nolo(l/x)
6. lim (1 + sin(z))°t®
z—0t
7. i —t
m_>l7rII/12+ sec(x) — tan(z)



You try:

To summarize, we have 7 indeterminate form types:

00 0
—, =, 0-00, 00— 00,
00 0

>’ 0% and 1°.

For each of the following limits, decide if the limit is an
indeterminate form. If so, identify which indeterminate form it is. |

[y

lim x — In(x)

Ans: type oo — 00

T—00
lim z —In(z) =0 — (—o00) = 0 Ans: not indet
z—0t
lim 2% = oo Ans: not indet
T—00
lim z* Ans: type 0°
z—0t
lim (1/x)* =0 Ans: not indet! (see 5.8#52)
T—00
lim (1 + sin(z))*4®) Ans: type 1°°
z—07+

li —t
m_>l7rII/12+ sec(x) — tan(z)

Ans: type co — 00



Solving exponential indeterminate forms

Recall the property of limits, that if F'(x) is continuous at L and
lim,_,, G(x) = L, then

lim F(G(z)) = f (hm G(x)) = F(L).

T—a T—a
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Solving exponential indeterminate forms

Recall the property of limits, that if F'(x) is continuous at L and
lim,_,, G(x) = L, then

lim F(G(z)) = f (hm G(x)) = F(L).

T—a T—a

In particular, since F(x) = In(z) is continuous,

In (lim G(a:)) = lim In(G(z)).

Tr—ra r—a

Since In(x) is invertible over the positive real line, if | can compute
the limit of In(G(z)), then | can solve for the limit of G(z).

Why do | like this? Logarithms turn exponentials into products!

In(f(2)?®)) = g(z) In(f(2))
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Solving exponential indeterminate forms

Example: Compute lim,_ o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) =1In ( lim ZL‘$> = lim In(z*) = lim zln(z).

z—0+ z—0t z—0+

Now we've changed this into the indeterminate form 0 - oo, which
we know how to solve! We saw before that

1 ' -1
lim zln(z) = lim n(ai) LY fim
z—0t z—0+t T z—0+t —I

So
In(L) =0, implying L =¢°=1.



Solving exponential indeterminate forms

Example: Compute lim,_ o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) =1In ( lim ZEJ:) = lim In(z*) = lim zln(z).

z—0+ z—0t z—0+

Now we've changed this into the indeterminate form 0 - oo, which
we know how to solve! We saw before that

. . ' . €T .
lim zln(z) = lim - = lim = lim —z =0.
z—0t z—0+t T -

So

So [lim,_,g+ 2% =1 ‘
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approaches one of the three indeterminate forms (0%, co?, or 1%°).
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Step 1: Let L = lim,_,, f(x)g(x).
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Step 2: Simplify, and if necessary, use L'Hospital’s rule to calculate
lim, o g(z) In(f(x)) = M.
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Solving exponential indeterminate forms
Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).
Step 1: Let L = limx%af(x)g(z). Then
In(L) = lim In(f(x)"”) = lim g(a) In(f ().
Step 2: Simplify, and if necessary, use L'Hospital’s rule to calculate
lim, o g(z) In(f(x)) = M.
Step 3: Finally, In(L) = M implies L = M solves for L.
You try: Calculate the following limits.

(1) lim ¢ °, (2) lim (%)@

T—00 T—00

(3) lim (1 —i—sin(x))wt(a?) (4) lim (1+ Sin(Sx))COt(I)
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(recall, cos(0) =1, sin(0) = 0)



Solving exponential indeterminate forms
Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).
Step 1: Let L = limx%af(x)g(z). Then
In(L) = lim In(f(x)"”) = lim g(a) In(f ().
Step 2: Simplify, and if necessary, use L'Hospital’s rule to calculate
lim, o g(z) In(f(x)) = M.
Step 3: Finally, In(L) = M implies L = M solves for L.
You try: Calculate the following limits.

(1) lim ¢ °, (2) lim (%)@

T—00 T—00

(3) lim (1 —i—sin(x))wt(a?) (4) lim (1+ Sin(Sx))COt(I)

z—0t z—0t
(recall, cos(0) =1, sin(0) = 0)
Answers: 1, oo, e, €3,



Alternate solution for limxﬁoo(e'”)l/ln(m)

| could have started by simplifying: (e%)? = ¢, so that

lim (¢%)Y/ @) = Jim /@)
Tr—00 T—r00



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp < li_)m x/ ln(:v))

T—00



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp ( li_)m x/ ln(:v))

T—00

LA oxp (xlingo 1/(1/:v)>



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp ( li_)m x/ ln(:v))

T—00

LB exp (xlingo 1/(1/:v)> = exp (xlgngo x)



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp ( li_)m x/ ln(:v))

T—00

LB exp (xlingo 1/(1/:v)> = exp (xlgngox) = o0.



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp ( li_)m x/ ln(x))

T—00

LB exp (xlingo 1/(1/:c)> = exp (xlglgox) = o0.

Moral: There are no exact rules for how to do these problems.
There are just lots of strategies. Get lots of practice!
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Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: L =lim, g+ csc(z) — cot(x). Note
1 cos(z) 1—cos(z)
sin(z) sin(z)  sin(z)

csc(x) — cot(x) =

So by L'Hospital,

I - lim 1—.cos(a:) LH o sin(x) _
z—0+  sin(x) a—0+ cos(x)
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2. Use identities like (a — b)(a +b) = a® — b? to get rid of square
roots.
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Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim, oo x — V22 — 2. Note

(S [T Ve e
e o (52

(@) = (Va? =)’
Vg
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This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim, oo x — V22 — 2. Note

(S [T Ve e
e o (52
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Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
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the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim, oo x — V22 — 2. Note
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e o (52
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Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim, oo x — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z

So
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Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim, oo x — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z

So
L=1lm ——F——

T (1/3:) , 1
= 11m ——
z—=00 x4+ /a2 — x 1/$ x—>001+\/1*1/l‘
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This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim, oo x — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z

So
L=1lm ——F——

T 1/;1: . 1
= lim —————==1/2
z—=00 x4+ /a2 — x 1/$ x—>001+\/1*1/l‘
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1. Find a common denominator.
Example: lim,_,+ csc(x) — cot(z) = lim,_,o+
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square
roots.
Example: lim, oo 2 — V22 — 2 = limy o x—h/% =1/2
3. Take exp(L) and use e*~? = ¢2/eb.

1—cos(z) _
sin(x) =0.
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This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square

roots.

Example: limy oo 2 — V22 — 2 = limy_00 Hﬁ =1/2

3. Take exp(L) and use e*~? = ¢2/eb.
Example: L = lim, .o In(z) — 22. Start with

el = exp ( lim In(z) — :zQ) — lim e@—2*
T—00 T—00

Then since en(®—7* = eln(u’v)/ex2



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square

roots.

Example: limy oo 2 — V22 — 2 = limy_00 Hﬁ =1/2

3. Take exp(L) and use e*~? = ¢2/eb.
Example: L = lim, .o In(z) — 22. Start with
el = exp ( lim In(z) — :L‘2) = lim e™®)-2*,
T—>r00 T—00

2

Then since (@ —7" = ¢In(@) /7* — g /eo*



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: lim,_,+ csc(x) — cot(z) = lim,_,o+
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square
roots.
Example: lim, oo 2 — V22 — 2 = limy o
3. Take exp(L) and use e*~? = ¢2/eb.
Example: L = lim, .o In(z) — 22. Start with

1—cos(z) _
sin(x) =0.

T —
pry eV

el = exp ( lim In(z) — :zQ) — lim e@—2*
T—00 T—00
2

. _ 2 2
Then since e(®)=2" = In(@) /7" — 1 /e*" we have

. 2
el = lim z/e® =0,
T—r00



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: lim,_,+ csc(x) — cot(z) = lim,_,o+
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square
roots.
Example: lim, oo 2 — V22 — 2 = limy o
3. Take exp(L) and use e*~? = ¢2/eb.
Example: L = lim, .o In(z) — 22. Start with

1—cos(z) _
sin(x) =0.

T —
pry eV

el = exp ( lim In(z) — :zQ) — lim e@—2*
T—00 T—00
2

. _ 2 2
Then since e(®)=2" = In(@) /7" — 1 /e*" we have

. 2
el = lim z/e® =0, so L = —o0.
T—r00



You try:

For each, find the limit. Use I'Hospital's rule where appropriate. If
there is a more elementary method, consider using it.

1. lim sin™!
Jlim, sin (z)/z

r b
e In(x)
3. li_}rn xsin(mw/x)

o V1422 -1 -4z
4. lim

z—0 T
5 lim xln(2)/(1+ln(:c))

T—00

tan(x)
im ———~
2—0 tanh(x)

Note: For extra practice, go back and prove the claims on the slides with the

graphical examples.



You try:

For each, find the limit. Use I'Hospital's rule where appropriate. If
there is a more elementary method, consider using it.

1. lim sin~!(z)/z Ans: 1

z—07t
1

2. lim —— — Ans: 1/2
a—lz—1  In(x)

3. lim zsin(7w/x) Ans: w
T—00

4. lim VIt - vi-do Ans: 3
z—0 x

5. lim zM®)/(+n@) Ans: 2
T—00

6. tan(z) Ans: 1

Py tanh(x)

Note: For extra practice, go back and prove the claims on the slides with the

graphical examples.






