
Today: 5.4 General log and exp functions (continued)
Warm up:

loga(x) = ln(x)/ ln(a)
d

dx
loga(x) =

1

ln(a)x

1. Evaluate the following functions.

log5(25) log7
√
7 log4 8− log4 2

2. Differentiate the following functions.

log10 x x log2(x) 2x+log3(x)

log5(x
2+1), x loge(x)−x, 3x ln(x),

√
1− (1/3)x

3. Calculate the following antiderivatives:∫
3x

3x + 3
dx

∫
21/x

x2
dx∫

ex(3ex + 1)1/3 dx

∫
1

x ln(x)
dx



Graphs
Recall, for a > 0, ax = eln(a)x and loga(x) = ln(x)/ ln(a).
Graphing ax: This graph behaves like erx, with r = ln(a).

For example,
I ax is always positive (since eu is always positive), and
I a0 = eln(a)∗0 = 1.

How does the graph depend on ln(a)?
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

Case 1: a > 1. In this case, ln(a) > 0. So ax grows like ex, e2x,

e
1
2
x, etc.. Graph transformation: x-axis contraction or dilation!

Case 2: a < 1. In this case, ln(a) < 0. So ax grows like e−x, e−2x,

e−
1
2
x, etc.. Graph transformation: y-axis flip, then x-axis

contraction or dilation!
Case 3: a = 1. This is the constant function y = 1x = 1.

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
Recall, for a > 0, ax = eln(a)x and loga(x) = ln(x)/ ln(a).
Graphing ax: This graph behaves like erx, with r = ln(a).
For example,

I ax is always positive (since eu is always positive), and
I a0 = eln(a)∗0 = 1.

How does the graph depend on ln(a)?
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

Case 1: a > 1. In this case, ln(a) > 0. So ax grows like ex, e2x,

e
1
2
x, etc.. Graph transformation: x-axis contraction or dilation!

Case 2: a < 1. In this case, ln(a) < 0. So ax grows like e−x, e−2x,

e−
1
2
x, etc.. Graph transformation: y-axis flip, then x-axis

contraction or dilation!
Case 3: a = 1. This is the constant function y = 1x = 1.

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
Recall, for a > 0, ax = eln(a)x and loga(x) = ln(x)/ ln(a).
Graphing ax: This graph behaves like erx, with r = ln(a).
For example,

I ax is always positive (since eu is always positive), and
I a0 = eln(a)∗0 = 1.

How does the graph depend on ln(a)?

0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

Case 1: a > 1. In this case, ln(a) > 0. So ax grows like ex, e2x,

e
1
2
x, etc.. Graph transformation: x-axis contraction or dilation!

Case 2: a < 1. In this case, ln(a) < 0. So ax grows like e−x, e−2x,

e−
1
2
x, etc.. Graph transformation: y-axis flip, then x-axis

contraction or dilation!
Case 3: a = 1. This is the constant function y = 1x = 1.

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
Recall, for a > 0, ax = eln(a)x and loga(x) = ln(x)/ ln(a).
Graphing ax: This graph behaves like erx, with r = ln(a).
For example,

I ax is always positive (since eu is always positive), and
I a0 = eln(a)∗0 = 1.

How does the graph depend on ln(a)?
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

Case 1: a > 1. In this case, ln(a) > 0. So ax grows like ex, e2x,

e
1
2
x, etc.. Graph transformation: x-axis contraction or dilation!

Case 2: a < 1. In this case, ln(a) < 0. So ax grows like e−x, e−2x,

e−
1
2
x, etc.. Graph transformation: y-axis flip, then x-axis

contraction or dilation!
Case 3: a = 1. This is the constant function y = 1x = 1.

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
Recall, for a > 0, ax = eln(a)x and loga(x) = ln(x)/ ln(a).
Graphing ax: This graph behaves like erx, with r = ln(a).
For example,

I ax is always positive (since eu is always positive), and
I a0 = eln(a)∗0 = 1.

How does the graph depend on ln(a)?
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

Case 1: a > 1. In this case, ln(a) > 0. So ax grows like ex, e2x,

e
1
2
x, etc.. Graph transformation: x-axis contraction or dilation!

Case 2: a < 1. In this case, ln(a) < 0. So ax grows like e−x, e−2x,

e−
1
2
x, etc.. Graph transformation: y-axis flip, then x-axis

contraction or dilation!
Case 3: a = 1. This is the constant function y = 1x = 1.

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
y = ax, a > 1

10

20

30

a=2

a=e

a=5

a=1.5

a=4

1

a=5

a=2/3

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
y = ax, a > 1

10

20

30

a=2

a=e

a=5

a=1.5

a=4

1

a=5

a=2/3

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1. Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
y = ax, a > 1

10

20

30

a=2

a=e

a=5

a=1.5

a=4

1

a=5

a=2/3

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
Recall, for a > 0, ax = eln(a)x and loga(x) = ln(x)/ ln(a).
Graphing ax: This graph behaves like erx, with r = ln(a).
For example,

I ax is always positive (since eu is always positive), and
I a0 = eln(a)∗0 = 1.

How does the graph depend on ln(a)?
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

Case 1: a > 1. In this case, ln(a) > 0. So ax grows like ex, e2x,

e
1
2
x, etc.. Graph transformation: x-axis contraction or dilation!

Case 2: a < 1. In this case, ln(a) < 0.

So ax grows like e−x, e−2x,

e−
1
2
x, etc.. Graph transformation: y-axis flip, then x-axis

contraction or dilation!
Case 3: a = 1. This is the constant function y = 1x = 1.

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

y = ax, a < 1

10

20

30

a=1/2

a=1/e
a=1/5

a=2/3

1

a=1/5

a=2/3

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

y = ax, a < 1

10

20

30

a=1/2

a=1/e
a=1/5

a=2/3

1

a=1/5

a=2/3

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

y = ax, a < 1

10

20

30

a=1/2

a=1/e
a=1/5

a=2/3

1

a=1/5

a=2/3

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs
Recall, for a > 0, ax = eln(a)x and loga(x) = ln(x)/ ln(a).
Graphing ax: This graph behaves like erx, with r = ln(a).
For example,

I ax is always positive (since eu is always positive), and
I a0 = eln(a)∗0 = 1.

How does the graph depend on ln(a)?
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

Case 1: a > 1. In this case, ln(a) > 0. So ax grows like ex, e2x,

e
1
2
x, etc.. Graph transformation: x-axis contraction or dilation!

Case 2: a < 1. In this case, ln(a) < 0. So ax grows like e−x, e−2x,

e−
1
2
x, etc.. Graph transformation: y-axis flip, then x-axis

contraction or dilation!
Case 3: a = 1. This is the constant function y = 1x = 1.

Notice: Slope at x = 0 is

d

dx
ax
∣∣
x=0

= ln(a)ax
∣∣
x=0

= ln(a).

So y = ex is the exponential function whose slope through the
point (0, 1) is 1. For a < e, the slope at x = 0 is less than 1, and
for a > e, the slope at x = 0 is greater than 1.

Notice:

(1/e)x = e−x, Graph transformation: flip over y-axis, then stretch.

So y = (1/e)x is the exponential function whose slope through the
point (0, 1) is −1. For a < 1/e, the slope at x = 0 is less than −1,
and for a > 1/e, the slope at x = 0 is greater than −1.



Graphs

10

a=5

a=1

a=1/5

a=2
a=1/2

y = ax,
dy

dx
= ln(a)ax.

0<a<1: Slope always negative, monotonically decreasing function.
a = 1: Slope always zero, constant function.
1 < a: Slope always positive, monotonically increasing function.



You try:

Recall loga(x) = ln(x)/ ln(a), so that d
dx loga(x) =

1
ln(a)x .

Complete a similar analysis of the graphs of y = loga(x). Namely,

I Break into cases based on a (there should be three, one of
which is very strange).

I Analyze the increasing/decreasing behavior in each of the
cases.

I Describe the graph transformations that take you from the
graph of ln(x) to loga(x) in each of the cases.

I Graph y = loga(x) for a few representative values of a on the
same axis (like we did on the last slide for y = ax), including
a = e and a = 1/e. (Recall 2 < e < 3.)

Check your reasoning against the fact that the graphs of y = f(x)
and y = f−1(x) are reflections of each other across the line y = x.



Continuously compounded interest and e as a limit
Say you put $1,000 into a savings account with a 1% interest rate.
How much will you have at the end of the year?

If the interest is calculated once, at the end of the year, then you
would have

$1, 000 ∗ (1 + .01) = $1, 010.

Suppose, instead, that 1% is spread out over the course of the
year, and compounded monthly. Then you’ll have

$1, 000 ∗ (1 + .01( 1
12)) = $1, 000.833 at the end of month 1,

$1, 000 ∗ (1 + .01( 1
12))

2 = $1, 001.667 at the end of month 2,

$1, 000 ∗ (1 + .01( 1
12))

3 = $1, 002.502 at the end of month 3,

...

$1, 000 ∗ (1 + .01( 1
12))

12 = $1, 010.046 at the end of month 12.,

i.e. a whole 4.6 cents more than if it had been compounded at the
end of the year.
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Similarly, if that 1% is compounded weekly, you’ll have
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52))

52 = $1, 010.049 at the end of the year,

or compounded daily, you’ll have

$1, 000 ∗ (1 + .01( 1
365))

365 = $1, 010.050 at the end of the year,

and so on.
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Continuously compounded interest and e as a limit
Say you put $1,000 into a savings account with a 1% interest rate.
How much will you have at the end of the year?
If the interest is compounded n times a year, then you’ll have

$1, 000 ∗ (1 + .01( 1n))
n at the end of the year.

In general, if the deposited amount is D, the interest rate is r, and
the number of times it’s compounded is n, you end up with

D(1 + r( 1n))
n at the end of the year.

Continuously compounded interest is when you let n→∞:

lim
n→∞

D(1 + r( 1n))
n = D lim

n→∞
(1 + ( rn))

n

= D lim
n→∞

(
(1 + ( rn))

n/r
)r

= D
(

lim
n→∞

(1 + ( rn))
n/r
)r

.
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Continuously compounded interest: D
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Back to logarithms: Let f(x) = ln(x).

Then f ′(x) = 1/x and
f ′(1) = 1. But let’s think back to what derivatives really are:
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m f ’(1)
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f ′(1)= lim
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f(1 + h)− f(1)
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(
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Since 1 = ln

(
lim
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(1 + h)1/h
)
, we have e = lim

h→0
(1 + h)1/h .
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If I deposit D into an account that accrues interest at a rate r,
compounded continuously, I will have

D
(
lim
n→∞

(1 + ( rn))
n/r
)r

at the end of one year,

and

D
((

lim
n→∞

(1 + ( rn))
n/r
)r)t

=
(
lim
n→∞

(1 + ( rn))
n/r
)tr

at the end of t years. On the other hand,

e = lim
h→0

(1 + h)1/h.

Putting these together, notice that

as n→∞, we have r/n→ 0.

So letting h = r/n,

lim
n→∞

(1 + ( rn))
n/r = lim

h→0
(1 + h)1/h = e.

So we’ll have

Dert at the end of t years.
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5.5 Exponential growth and decay

Say a population, at least initially, grows at a rate proportional to
its size (think bacteria in a petrie dish).

y = pop. size ,
dy

dt

= ky, where k > 0 is fixed.

Or say a mass of radioactive substance decays at a rate
proportional to its size.

y = mass ,
dy

dt

= ky, where k < 0 is fixed.

The equation dy
dt = ky is called a differential equation, because it is

an equation describing the function in terms of its derivative. This
particular differential equation is sometimes called the law of
natural growth (if k > 0) or natural decay (if k < 0). We call k
the proportionality constant.
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5.5 Exponential growth and decay

dy

dt
= ky, where k is fixed.

A solution to a differential equation is a function y = f(t) that
satisfies this equation.

What is a function whose derivative is itself times a constant?

y = ekt is one solution!

So are 2ekt, 3ekt, −ekt. . . Every solution looks like

y = Cekt where C and k are constant.

We call this the general solution. Notice that

y(0) = Ce0 = C.
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We call this the general solution. Notice that
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Example 0: Compound interest

Let y be the amount of money we have in the bank at time t. We
saw before that if we deposit D = y(0) into an account that
accrues interest at a rate r, compounded continuously, then we’ll
have

y = y(0)ert at the end of t years.

Well this is equivalent to the fact that our money is growing
continuously at a rate

dy

dt
= r

(
y(0)ert

)
= ry,

i.e. it’s growing proportionally to its size.So continuously
compounded interest was a natural growth problem.
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Example 1: Population growth (see ex 1 in §5.5)
In 1950, the world population was about 2560 million. In 1960, it
was about 3040 million. Assuming population grows according to
the natural growth model, estimate the population in (1)1993, and
(2) 2020.

The ingredients:

dy

dt
= ky, so that y = y(0)ekt.

y =

population (in millions)

t =

# years since 1950

y(0) =

2560

k =

growth rate (which we need to calculate):

Use the other data point:

3040 = y(10) = 2560ek(10) so k =
1

10
ln

(
3040

2560

)
≈ .0172.

So (1) y(1993− 1950) = y(43) ≈ 2560e(.0172)43 ≈ 5360 million,
and (2) y(2020− 1950) = y(70) ≈ 2560e(.0172)70 ≈ 8520 million.
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Example 2: Radioactive decay (see ex 2 in §5.5)
The half-life of a radioactive substance is the amount of time that
it takes for the substance to decay to half its original amount.

In
other words, if

y = mass of substance at time t, m0 = y(0)

and T = half-life of substance, then y(T ) = 1
2m0. (∗)

You try: The half-life of radium-226 is 1590 years. Assume
radium-226 decays according to the law of natural decay, i.e.
dy
dt = ky so that y = y(0)ekt (∗∗), and suppose you start with
100mg of the substance.

1. What are T and y(0)? What are the units on y and t?
2. You have two data points — one comes from t = 0 that tells

you y(0); the other comes from y(T ) = 1
2y(0). Use the equ’ns

(∗) and (∗∗) to set up an equ’n where the only variable is k.
3. Solve for k.
4. Estimate the mass remaining after 1000 years.
5. How long will it take for the mass to be reduced to 30 mg?
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What solutions look like
A differential equation like dy

dt = ky actually says that if a solution
is at height y, then its slope is k ∗ y.

A slope field is a drawing of a bunch of slopes that solutions going
through each point would have. For example, if k = 1, the
corresponding slope field would have line segments of slope 1 at
height 1, slope 2 at height 2, slope −1 at height −1, and so on:

(Example solutions

y = Aet

with A = −3, −1, − 1
10 ,

0, 1
10 , 1, and 3.)

Then any solution to the equation will follow those slopes.
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Example slope fields and solutions for dy
dx = ky :

k = 1 : k = 1/10 :

k = −1 : k = −1/10 :



Newton’s law of cooling
Newton’s law of cooling states that the rate of cooling or warming
of an object is proportional to the temperature difference between
the object and its surroundings.

y = temperature of object,
dy

dt
= k(y − T ),

where T is the temperature of the surroundings.
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Newton’s law of cooling
Newton’s law of cooling states that the rate of cooling or warming
of an object is proportional to the temperature difference between
the object and its surroundings.

y = temperature of object,
dy

dt
= k(y − T ),

where T is the temperature of the surroundings.

To solve: Let Y (t) = y(t)− T ,

so

dY

dt
=

d

dt
(y − T ) =

dy

dt
= k(y − T ) = kY.

Thus Y (t) = Y (0)ekt. Substituting back, we have

y − T = (y(0)− T )ekt, i.e., y(t) = (y(0)− T )ekt + T .

Note, if y(0) = T , this is the constant function y = T .
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