Today: 5.3 The Natural Exponential Function (continued)

Warm up:

Recall that e is the number defined by $\ln (e)=1$, so that

$$
\ln (y)=x \quad \text { if any only if } \quad y=e^{x} .
$$

Further, recall $\ln (a b)=\ln (a)+\ln (b)$ and $\ln \left(a^{p}\right)=p \ln (a)$.
Solve the following equations for x.
(1) $\ln (x)=10$
(2) $e^{x}=3$
(3) $10 e^{17-6 x}+5=25$
(4) $e^{2 \ln (x)+\ln (5 x)}=40$

Exponential functions facts

Recall from last time:	Corresp. exp facts:	Why:
$\ln (a b)=\ln (a)+\ln (b)$	$e^{A+B}=e^{A} e^{B}$	$\ln \left(e^{A} e^{B}\right)=\cdots$
$\ln \left(a^{p}\right)=p \ln (a)$	$\left(e^{A}\right)^{P}=e^{P A}$	$\ln \left(\left(e^{A}\right)^{P}\right)=\cdots$
$\ln (a / b)=\ln (a)-\ln (b)$	$e^{A-B}=e^{A} / e^{B}$	$e^{A-B}=e^{A} e^{-B}=\cdots$
$\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$	$\lim _{x \rightarrow-\infty} e^{x}=0$	$e^{x}=y \Leftrightarrow x=\ln (y)$
$\lim _{x \rightarrow \infty} \ln (x)=\infty$	$\lim _{x \rightarrow \infty} e^{x}=\infty$	$e^{x}=y \Leftrightarrow x=\ln (y)$
$\frac{d}{d x} \ln (x)=\frac{1}{x}$	$\frac{d}{d x} e^{x}=e^{x}$	Logarithmic diff'n

Let $y=e^{x}$. Then $\ln (y)=x$. Thus

$$
\frac{d}{d x}(\mathrm{LHS})=\ln (y)=\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}(\mathrm{RHS}) \frac{d}{d x} x=1
$$

So

$$
\frac{d y}{d x}=y=e^{x}
$$

$$
e^{A+B}=e^{A} e^{B}, \quad\left(e^{A}\right)^{P}=e^{P A}, \quad \frac{d}{d x} e^{x}=e^{x}, \quad \int e^{x} d x=e^{x}+C
$$

1. Differentiate the following functions.

$$
e^{\cos (x)}, \quad e^{3 x^{2}} \sin (x), \quad e^{3 x} \ln (\sin (x))
$$

2. Find the antiderivative of the following functions.

$$
e^{3 x}, \quad x e^{x^{2}}, \quad \frac{e^{\sqrt{1+x}}}{\sqrt{1+x}}
$$

3. Sketch a graph of $x e^{x}$.
(Calculate intervals of pos./neg., incr./decr., concave up/down.)
WARNING: Study problems 5.3 \#11-14. On syllabus, but not on webassign! Use graph transformations, not calculus.

Limits

$$
\lim _{x \rightarrow-\infty} e^{x}=0 \quad \lim _{x \rightarrow \infty} e^{x}=\infty
$$

Example:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} e^{-x}=\lim _{y \rightarrow-\infty} e^{y}=0 \quad(\text { let } y=-x) \\
\lim _{x \rightarrow \infty} \frac{e^{x}-1}{e^{x}+1}=\lim _{x \rightarrow \infty} \frac{e^{x}-1}{e^{x}+1}\left(\frac{e^{-x}}{e^{-x}}\right) \lim _{x \rightarrow \infty} \frac{1-e^{-x}}{1+e^{-x}}=\frac{1-0}{1+0}=1 .
\end{gathered}
$$

You try:
Calculate the following limits:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{6 e^{x}+e^{-x}}{2 e^{x}+1} \\
\lim _{x \rightarrow 5^{-}} e^{1 /(x-5)} \lim _{x \rightarrow-\infty} e^{x^{2}}
\end{gathered}
$$

WARNING: Study problems $5.3 \# 17-20$. On syllabus, but not on webassign!

5.4: General logarithmic and exponential functions

Fix a number $a>0$. We can already say things like

$$
a^{2}=a * a, \quad a^{3}=a * a * a, \quad \text { and so on. }
$$

We've defined things like

$$
a^{-1}=1 / a, \quad a^{1 / 2}=\sqrt{a}, \quad \text { and so on, }
$$

and found rules like

$$
a^{p} a^{q}=a^{p+q}, \quad\left(a^{p}\right)^{q}=a^{p q}, \quad \text { and so on. }
$$

So I know things like

$$
a^{4 / 3}=\left(a^{1 / 3}\right)^{4}=\sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a}
$$

But what could I possibly mean by something like a^{π} ???
Answer: Since

$$
e^{A B}=\left(e^{A}\right)^{B} \quad \text { and } \quad e^{\ln (A)}=A
$$

we can define

$$
a^{x}=\left(e^{\ln (a)}\right)^{x}=e^{\ln (a) x} .
$$

Exponential function with base a

For $a>0$, define

$$
a^{x}=e^{\ln (a) x} .
$$

This definition still preserves all the rules we know and love, like

$$
a^{x+y}=a^{x} a^{y}, \quad\left(a^{x}\right)^{y}=a^{x y}, \quad a^{x} b^{x}=(a b)^{x} .
$$

Why? For example,

$$
a^{x+y}=e^{\ln (a)(x+y)}=e^{\ln (a) x+\ln (a) y}=e^{\ln (a) x} e^{\ln (a) y}=a^{x} a^{y}
$$

Derivatives: Using chain rule, we have

$$
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{\ln (a) x}=\ln (a) e^{\ln (a) x}=\ln (a) a^{x} .
$$

Integrals: Similarly, using substitution, we have

$$
\int a^{x} d x=\frac{a^{x}}{\ln (a)}+C .
$$

$$
\begin{gathered}
a^{x+y}=a^{x} a^{y}, \quad\left(a^{x}\right)^{y}=a^{x y}, \quad a^{x} b^{x}=(a b)^{x}, \\
\frac{d}{d x} a^{x}=\ln (a) a^{x}, \quad \text { and } \quad \int a^{x} d x=\frac{a^{x}}{\ln (a)}+C .
\end{gathered}
$$

1. Write the following expressions as $e^{\text {stuff }}$ (simplify).

$$
2^{x}, \quad x^{5}, \quad \pi^{2}
$$

2. Differentiate the following functions.

$$
2^{x}, \quad 3^{\sin (x)}, \quad(1 / 2)^{\sin (x)-5 \ln (x)}
$$

3. Find the antiderivative of the following functions.

$$
3^{x}, \quad 2^{x} \cos \left(2^{x}\right), \quad \frac{5^{x}}{5^{x}-1}
$$

WARNING: $5.4 \# 3,5,21-27$ (odd), 39 on syllabus but not on webassign.

General logarithmic function

Since e^{x} is invertible, so is $e^{r x}$, and thus so is a^{x}. Define $\log _{a}(x)$ by

$$
a^{y}=x \quad \text { if and only if } \quad y=\log _{a}(x) .
$$

So, for example, since

$$
\log _{10}\left(10^{3}\right)=3, \quad 3^{\log _{3}(5)}=5, \quad \text { etc. }
$$

Note that $x=a^{y}$ also implies (take natural log of both sides)

$$
\ln (x)=\ln \left(a^{y}\right)=\ln \left(e^{\ln (a) y}\right)=\ln (a) y
$$

so

$$
\log _{a}(x)=y=\ln (x) / \ln (a) .
$$

Thus $\log _{a}(x)$ satisfies the same algebraic rules as $\ln (x)$, and

$$
\frac{d}{d x} \log _{a}(x)=\frac{1}{\ln (a) x}
$$

You try:

$$
\log _{a}(x)=\ln (x) / \ln (a) \quad \frac{d}{d x} \log _{a}(x)=\frac{1}{\ln (a) x}
$$

1. Evaluate the following functions.

$$
\log _{5}(25) \quad \log _{7} \sqrt{7} \quad \log _{4} 8-\log _{4} 2
$$

2. Differentiate the following functions.

$$
\log _{10} x \quad x \log _{2}(x) \quad 2^{x+\log _{3}(x)}
$$

3. Sketch graphs of the following 3 functions on the same set of axes.

$$
y=\ln (x), \quad y=\log _{2}(x), \quad y=\log _{3}(x)
$$

(Recall $2<e<3$.)

