Today: 5.3 The Natural Exponential Function (continued)

Warm up:

Recall that e is the number defined by $\ln(e) = 1$, so that

$$\ln(y) = x$$
 if any only if $y = e^x$.

Further, recall $\ln(ab) = \ln(a) + \ln(b)$ and $\ln(a^p) = p \ln(a)$.

Solve the following equations for x.

(1) $\ln(x) = 10$ (2) $e^x = 3$ (3) $10e^{17-6x} + 5 = 25$ (4) $e^{2\ln(x) + \ln(5x)} = 40$ Today: 5.3 The Natural Exponential Function (continued)

Warm up:

Recall that e is the number defined by $\ln(e) = 1$, so that

$$\ln(y) = x$$
 if any only if $y = e^x$.

Further, recall $\ln(ab) = \ln(a) + \ln(b)$ and $\ln(a^p) = p \ln(a)$.

Solve the following equations for x.

(1) $\ln(x) = 10$	Ans: $x = e^{10}$
(2) $e^x = 3$	Ans: $x = \ln(3)$
(3) $10e^{17-6x} + 5 = 25$	Ans: $x = \frac{1}{6}(17 - \ln(2))$
(4) $e^{2\ln(x) + \ln(5x)} = 40$	Ans: $x = 2$

Recall from last time:	
$\ln(ab) = \ln(a) + \ln(b)$	
$\ln(a^p) = p\ln(a)$	
$\ln(a/b) = \ln(a) - \ln(b)$	
$\lim_{x\to 0^+} \ln(x) = -\infty$	
$\lim_{x \to \infty} \ln(x) = \infty$	
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	

Recall from last time:	Corresp. exp facts:	
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	
$\ln(a^p) = p\ln(a)$		
$\ln(a/b) = \ln(a) - \ln(b)$		
$\lim_{x\to 0^+} \ln(x) = -\infty$		
$\lim_{x \to \infty} \ln(x) = \infty$		
$\frac{d}{dx}\ln(x) = \frac{1}{x}$		

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$		
$\ln(a/b) = \ln(a) - \ln(b)$		
$\lim_{x \to 0^+} \ln(x) = -\infty$		
$\lim_{x \to \infty} \ln(x) = \infty$		
$\frac{d}{dx}\ln(x) = \frac{1}{x}$		

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$		
$\lim_{x \to 0^+} \ln(x) = -\infty$		
$\lim_{x \to \infty} \ln(x) = \infty$		
$\frac{d}{dx}\ln(x) = \frac{1}{x}$		

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$		
$\lim_{x \to \infty} \ln(x) = \infty$		
$\frac{d}{dx}\ln(x) = \frac{1}{x}$		

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to -\infty} e^x = 0$	$e^x = y \Leftrightarrow x = \ln(y)$
$\lim_{x \to \infty} \ln(x) = \infty$		
$\frac{d}{dx}\ln(x) = \frac{1}{x}$		

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to -\infty} e^x = 0$	$e^x = y \Leftrightarrow x = \ln(y)$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to \infty} e^x = \infty$	$e^x = y \Leftrightarrow x = \ln(y)$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$		

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to -\infty} e^x = 0$	$e^x = y \Leftrightarrow x = \ln(y)$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to \infty} e^x = \infty$	$e^x = y \Leftrightarrow x = \ln(y)$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\frac{d}{dx}e^x = e^x$	Logarithmic diff'n

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to -\infty} e^x = 0$	$e^x = y \Leftrightarrow x = \ln(y)$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to \infty} e^x = \infty$	$e^x = y \Leftrightarrow x = \ln(y)$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\frac{d}{dx}e^x = e^x$	Logarithmic diff'n

Let $y = e^x$. Then $\ln(y) = x$.

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to -\infty} e^x = 0$	$e^x = y \Leftrightarrow x = \ln(y)$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to \infty} e^x = \infty$	$e^x = y \Leftrightarrow x = \ln(y)$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\frac{d}{dx}e^x = e^x$	Logarithmic diff'n

Let $y = e^x$. Then $\ln(y) = x$. Thus

$$\frac{d}{dx}(LHS) = \ln(y) = \frac{1}{y}\frac{dy}{dx}$$

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to -\infty} e^x = 0$	$e^x = y \Leftrightarrow x = \ln(y)$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to \infty} e^x = \infty$	$e^x = y \Leftrightarrow x = \ln(y)$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\frac{d}{dx}e^x = e^x$	Logarithmic diff'n

Let $y = e^x$. Then $\ln(y) = x$. Thus

$$\frac{d}{dx}(\mathsf{LHS}) = \ln(y) = \frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}(\mathsf{RHS})\frac{d}{dx}x = 1.$$

Recall from last time:	Corresp. exp facts:	Why:
$\ln(ab) = \ln(a) + \ln(b)$	$e^{A+B} = e^A e^B$	$\ln(e^A e^B) = \cdots$
$\ln(a^p) = p\ln(a)$	$(e^A)^P = e^{PA}$	$\ln((e^A)^P) = \cdots$
$\ln(a/b) = \ln(a) - \ln(b)$	$e^{A-B} = e^A/e^B$	$e^{A-B} = e^A e^{-B} = \cdots$
$\lim_{x \to 0^+} \ln(x) = -\infty$	$\lim_{x \to -\infty} e^x = 0$	$e^x = y \Leftrightarrow x = \ln(y)$
$\lim_{x \to \infty} \ln(x) = \infty$	$\lim_{x \to \infty} e^x = \infty$	$e^x = y \Leftrightarrow x = \ln(y)$
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\frac{d}{dx}e^x = e^x$	Logarithmic diff'n

Let $y = e^x$. Then $\ln(y) = x$. Thus $\frac{d}{dx}(LHS) = \ln(y) = \frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}(RHS)\frac{d}{dx}x = 1.$ So

$$\frac{dy}{dx} = y = e^x.$$

$$e^{A+B} = e^A e^B,$$
 $(e^A)^P = e^{PA},$ $\frac{d}{dx}e^x = e^x$

$$e^{A+B} = e^A e^B$$
, $(e^A)^P = e^{PA}$, $\frac{d}{dx}e^x = e^x$, $\int e^x dx = e^x + C$

$$e^{A+B} = e^A e^B$$
, $(e^A)^P = e^{PA}$, $\frac{d}{dx}e^x = e^x$, $\int e^x dx = e^x + C$

1. Differentiate the following functions.

$$e^{\cos(x)}, \qquad e^{3x^2}\sin(x), \qquad e^{3x}\ln(\sin(x)).$$

2. Find the antiderivative of the following functions.

$$e^{3x}, \qquad xe^{x^2}, \qquad \frac{e^{\sqrt{1+x}}}{\sqrt{1+x}}$$

3. Sketch a graph of xe^x .

(Calculate intervals of pos./neg., incr./decr., concave up/down.)

WARNING: Study problems 5.3 #11-14. On syllabus, but not on webassign! Use graph transformations, not calculus.

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to \infty} e^{-x}$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to \infty} e^{-x} = \lim_{y \to -\infty} e^y = 0 \qquad (\text{let } y = -x)$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to \infty} e^{-x} = \lim_{y \to -\infty} e^y = 0 \qquad (\text{let } y = -x)$$

$$\lim_{x \to \infty} \frac{e^x - 1}{e^x + 1}$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to \infty} e^{-x} = \lim_{y \to -\infty} e^y = 0 \qquad (\text{let } y = -x)$$

$$\lim_{x \to \infty} \frac{e^x - 1}{e^x + 1} = \lim_{x \to \infty} \frac{e^x - 1}{e^x + 1} \left(\frac{e^{-x}}{e^{-x}}\right) \lim_{x \to \infty} \frac{1 - e^{-x}}{1 + e^{-x}}$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty$$

$$\lim_{x \to \infty} e^{-x} = \lim_{y \to -\infty} e^y = 0 \qquad (\text{let } y = -x)$$

$$\lim_{x \to \infty} \frac{e^x - 1}{e^x + 1} = \lim_{x \to \infty} \frac{e^x - 1}{e^x + 1} \left(\frac{e^{-x}}{e^{-x}}\right) \lim_{x \to \infty} \frac{1 - e^{-x}}{1 + e^{-x}} = \frac{1 - 0}{1 + 0} = 1.$$

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to \infty} e^x = \infty$$

Example:

$$\lim_{x \to \infty} e^{-x} = \lim_{y \to -\infty} e^y = 0 \qquad (\text{let } y = -x)$$

$$\lim_{x \to \infty} \frac{e^x - 1}{e^x + 1} = \lim_{x \to \infty} \frac{e^x - 1}{e^x + 1} \left(\frac{e^{-x}}{e^{-x}}\right) \lim_{x \to \infty} \frac{1 - e^{-x}}{1 + e^{-x}} = \frac{1 - 0}{1 + 0} = 1.$$

You try: Calculate the following limits:

$$\lim_{x \to \infty} \frac{6e^x + e^{-x}}{2e^x + 1}$$
$$\lim_{x \to 5^-} e^{1/(x-5)} \qquad \lim_{x \to -\infty} e^{x^2}$$

WARNING: Study problems 5.3 #17-20. On syllabus, but not on webassign!

Fix a number a > 0. We can already say things like $a^2 = a * a$, $a^3 = a * a * a$, and so on.

Fix a number a > 0. We can already say things like

 $a^2 = a * a,$ $a^3 = a * a * a,$ and so on. We've defined things like

$$a^{-1}=1/a, \qquad a^{1/2}=\sqrt{a}, \qquad \text{and so on,}$$

Fix a number a > 0. We can already say things like

$$a^2 = a * a,$$
 $a^3 = a * a * a,$ and so on.

We've defined things like

$$a^{-1}=1/a, \qquad a^{1/2}=\sqrt{a}, \qquad \text{and so on,}$$

and found rules like

$$a^p a^q = a^{p+q},$$
 $(a^p)^q = a^{pq},$ and so on.

Fix a number a > 0. We can already say things like

$$a^2 = a * a,$$
 $a^3 = a * a * a,$ and so on.

We've defined things like

$$a^{-1}=1/a, \qquad a^{1/2}=\sqrt{a}, \qquad \text{and so on,}$$

and found rules like

$$a^p a^q = a^{p+q},$$
 $(a^p)^q = a^{pq},$ and so on.

So I know things like

$$a^{4/3} = (a^{1/3})^4 = \sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a}.$$

Fix a number a > 0. We can already say things like

 $a^2 = a * a,$ $a^3 = a * a * a,$ and so on.

We've defined things like

$$a^{-1}=1/a, \qquad a^{1/2}=\sqrt{a}, \qquad \text{and so on,}$$

and found rules like

$$a^p a^q = a^{p+q}, \qquad (a^p)^q = a^{pq}, \qquad \text{and so on}.$$

So I know things like

$$a^{4/3} = (a^{1/3})^4 = \sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a}.$$

But what could I possibly mean by something like a^{π} ???

Fix a number a > 0. We can already say things like

$$a^2 = a * a,$$
 $a^3 = a * a * a,$ and so on.

We've defined things like

$$a^{-1}=1/a, \qquad a^{1/2}=\sqrt{a}, \qquad \text{and so on,}$$

and found rules like

$$a^p a^q = a^{p+q},$$
 $(a^p)^q = a^{pq},$ and so on

So I know things like

$$a^{4/3} = (a^{1/3})^4 = \sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a} * \sqrt[3]{a}.$$

But what could I possibly mean by something like a^{π} ???

Answer: Since

$$e^{AB} = (e^A)^B$$
 and $e^{\ln(A)} = A$,

we can *define*

$$a^x = \left(e^{\ln(a)}\right)^x = e^{\ln(a)x}.$$

$\label{eq:exponential function with base a} a$

For a > 0, define

 $a^x = e^{\ln(a)x}.$

For a > 0, define

$$a^x = e^{\ln(a)x}.$$

This definition still preserves all the rules we know and love, like

$$a^{x+y} = a^x a^y$$
, $(a^x)^y = a^{xy}$, $a^x b^x = (ab)^x$.

For a > 0, define

$$a^x = e^{\ln(a)x}.$$

This definition still preserves all the rules we know and love, like

$$a^{x+y} = a^x a^y$$
, $(a^x)^y = a^{xy}$, $a^x b^x = (ab)^x$.

$$a^{x+y} = e^{\ln(a)(x+y)}$$

For a > 0, define

$$a^x = e^{\ln(a)x}.$$

This definition still preserves all the rules we know and love, like

$$a^{x+y} = a^x a^y$$
, $(a^x)^y = a^{xy}$, $a^x b^x = (ab)^x$.

$$a^{x+y} = e^{\ln(a)(x+y)} = e^{\ln(a)x + \ln(a)y}$$

For a > 0, define

$$a^x = e^{\ln(a)x}.$$

This definition still preserves all the rules we know and love, like

$$a^{x+y} = a^x a^y$$
, $(a^x)^y = a^{xy}$, $a^x b^x = (ab)^x$.

$$a^{x+y} = e^{\ln(a)(x+y)} = e^{\ln(a)x + \ln(a)y} = e^{\ln(a)x}e^{\ln(a)y}$$

For a > 0, define

$$a^x = e^{\ln(a)x}.$$

This definition still preserves all the rules we know and love, like

$$a^{x+y} = a^x a^y$$
, $(a^x)^y = a^{xy}$, $a^x b^x = (ab)^x$.

$$a^{x+y} = e^{\ln(a)(x+y)} = e^{\ln(a)x+\ln(a)y} = e^{\ln(a)x}e^{\ln(a)y} = a^x a^y.$$

For a > 0, define

$$a^x = e^{\ln(a)x}.$$

This definition still preserves all the rules we know and love, like

$$a^{x+y} = a^x a^y$$
, $(a^x)^y = a^{xy}$, $a^x b^x = (ab)^x$.

Why? For example,

$$a^{x+y} = e^{\ln(a)(x+y)} = e^{\ln(a)x+\ln(a)y} = e^{\ln(a)x}e^{\ln(a)y} = a^x a^y.$$

Derivatives: Using chain rule, we have

$$\frac{d}{dx}a^x = \frac{d}{dx}e^{\ln(a)x} = \ln(a)e^{\ln(a)x} = \ln(a)a^x.$$

For a > 0, define

$$a^x = e^{\ln(a)x}.$$

This definition still preserves all the rules we know and love, like

$$a^{x+y} = a^x a^y$$
, $(a^x)^y = a^{xy}$, $a^x b^x = (ab)^x$.

Why? For example,

$$a^{x+y} = e^{\ln(a)(x+y)} = e^{\ln(a)x+\ln(a)y} = e^{\ln(a)x}e^{\ln(a)y} = a^x a^y.$$

Derivatives: Using chain rule, we have

$$\frac{d}{dx}a^x = \frac{d}{dx}e^{\ln(a)x} = \ln(a)e^{\ln(a)x} = \ln(a)a^x.$$

Integrals: Similarly, using substitution, we have

$$\int a^x \, dx = \frac{a^x}{\ln(a)} + C.$$

$$a^{x+y} = a^x a^y, \quad (a^x)^y = a^{xy}, \quad a^x b^x = (ab)^x,$$
$$\frac{d}{dx}a^x = \ln(a)a^x, \quad \text{and} \quad \int a^x \ dx = \frac{a^x}{\ln(a)} + C.$$

1. Write the following expressions as e^{stuff} (simplify).

$$2^x$$
, x^5 , π^2

2. Differentiate the following functions.

$$2^x$$
, $3^{\sin(x)}$, $(1/2)^{\sin(x)-5\ln(x)}$

3. Find the antiderivative of the following functions.

$$3^x$$
, $2^x \cos(2^x)$, $\frac{5^x}{5^x - 1}$

WARNING: 5.4 #3, 5, 21–27 (odd), 39 on syllabus but not on webassign.

Since e^x is invertible, so is e^{rx} , and thus so is a^x .

Since e^x is invertible, so is e^{rx} , and thus so is a^x . Define $\log_a(x)$ by

$$a^y = x$$
 if and only if $y = \log_a(x)$.

Since e^x is invertible, so is e^{rx} , and thus so is a^x . Define $\log_a(x)$ by

$$a^y = x$$
 if and only if $y = \log_a(x)$.

So, for example, since

$$\log_{10}(10^3) = 3$$
, $3^{\log_3(5)} = 5$, etc..

Since e^x is invertible, so is e^{rx} , and thus so is a^x . Define $\log_a(x)$ by

$$a^y = x$$
 if and only if $y = \log_a(x)$.

So, for example, since

$$\log_{10}(10^3) = 3$$
, $3^{\log_3(5)} = 5$, etc..

Note that $x = a^y$ also implies (take natural log of both sides)

$$\ln(x) = \ln(a^y) = \ln(e^{\ln(a)y}) = \ln(a)y$$

Since e^x is invertible, so is e^{rx} , and thus so is a^x . Define $\log_a(x)$ by

$$a^y = x$$
 if and only if $y = \log_a(x)$.

So, for example, since

$$\log_{10}(10^3) = 3$$
, $3^{\log_3(5)} = 5$, etc..

Note that $x = a^y$ also implies (take natural log of both sides)

$$\ln(x) = \ln(a^y) = \ln(e^{\ln(a)y}) = \ln(a)y,$$

so

$$\log_a(x) = y = \ln(x) / \ln(a).$$

Since e^x is invertible, so is e^{rx} , and thus so is a^x . Define $\log_a(x)$ by

$$a^y = x$$
 if and only if $y = \log_a(x)$.

So, for example, since

$$\log_{10}(10^3) = 3$$
, $3^{\log_3(5)} = 5$, etc..

Note that $x = a^y$ also implies (take natural log of both sides)

$$\ln(x) = \ln(a^y) = \ln(e^{\ln(a)y}) = \ln(a)y,$$

SO

$$\log_a(x) = y = \ln(x) / \ln(a).$$

Thus $\log_a(x)$ satisfies the same algebraic rules as $\ln(x)$, and

$$\frac{d}{dx}\log_a(x) = \frac{1}{\ln(a)x}$$

$$\log_a(x) = \ln(x) / \ln(a) \qquad \frac{d}{dx} \log_a(x) = \frac{1}{\ln(a)x}$$

1. Evaluate the following functions.

$$\log_5(25)$$
 $\log_7\sqrt{7}$ $\log_4 8 - \log_4 2$

2. Differentiate the following functions.

$$\log_{10} x$$
 $x \log_2(x)$ $2^{x + \log_3(x)}$

3. Sketch graphs of the following 3 functions on the same set of axes.

$$y = \ln(x),$$
 $y = \log_2(x),$ $y = \log_3(x).$

(Recall 2 < e < 3.)