
5.2 The Natural Logarithmic Function

Reminders:

1. Sign up through WebAssign for homework.
Course key: ccny 4222 6935
First two assignments due next Wednesday.

2. Email me at zdaugherty@gmail.com from your preferred email
address, subject line “Math 202 FG” with your full name and
why you are in this class (be specific). If you want to help me
learn your name, please include a recognizable picture of you.

Warmup: Recall d
dx sin(x) = cos(x). Differentiate the following

functions.

sin(x3), x3 sin(x), x3 sin(x−1 + 3x5)

Answers:

3x2 cos(x3), 3x2 sin(x) + x3 sin(x), and

3x2 sin(x−1 + 3x5) + x3(−x−2 + 15x4) cos(x−1 + 3x5),

respectively.
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Definition: ln(x)

Define the natural logarithmic function by

ln(x) =

∫ x

1
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t
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Recall some facts about definite integrals:
For a function f(t) that is integrable on [a, b] (a ≤ b), we have the
following.

1. The definite integral∫ b

a
f(t) dt evaluates to the signed area

between f(t) and the t axis, between a and b.

Signed area means that it takes a negative value if it falls
below the t-axis.

2. For any c in [a, b], ∫ c

c
f(t) dt = 0.

3. Reversing the order of integration gives∫ a

b
f(t) dt = −

∫ b

a
f(t) dt.
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Some examples of ln(x)

ln(x) =

∫ x

1

1

t
dt.

y

t1 2

ln(2) = 0.6731…

2.718…

y

t1

ln(2.718…) = 1

0.5

y

t1

ln(0.5) = -0.6931…

y

t1

ln(1) = 0



Back to some facts about definite integrals:

ln(x) =

∫ x

1

1

t
dt

y

t1 x

1. The definite integral∫ b

a
f(t) dt evaluates to the signed area. . .

Conclusion: For x > 1, ln(x) > 0.

2. For any c in [a, b],
∫ c
c f(t) dt = 0. Conclusion: ln(1) = 0

3. Reversing the order of integration gives∫ a

b
f(t) dt = −

∫ b

a
f(t) dt.

Conclusion: For 0 < x < 1, ln(x) < 0.
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Some facts about ln(x)

ln(x) =

∫ x

1

1

t
dt

y

t1 x

1. ln(x) < 0 for 0 < x < 1, ln(x) = 0 at x = 1, ln(x) > 0 for
x > 1, and ln(x) is undefined for x ≤ 0.

2. By the fundamental theorem of calculus,

d

dx
ln(x) =

d

dx

∫ x

1

1

t
dt =

1

x
.

So, for example, ln(x) is monotonically increasing since
1/x > 0 for x > 0.

3. We have the following algebraic properties:

ln(ab) = ln(a) + ln(b) and ln(ap) = p ln(a)

These both follow from the fact that d
dx ln(x) = 1/x.
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1. ln(x) < 0 for 0 < x < 1, ln(x) = 0 at x = 1, ln(x) > 0 for
x > 1, and ln(x) is undefined for x ≤ 0.

2. By the FToC, d
dx ln(x) = 1/x.

3. We have the following algebraic properties:

ln(ab) = ln(a) + ln(b) and ln(ap) = p ln(a)

These all follow from the fact that d
dx ln(x) = 1/x. So, for

example,

ln(a/b) = ln(ab−1) = ln(a) + ln(b−1) = ln(a)− ln(b).



You try:

1. Use the algebraic rules

ln(ab) = ln(a) + ln(b) ln(ap) = p ln(a) ln(a/b) = ln(a)− ln(b)

to expand the expressions
(write in terms of a bunch of ln(f(x))’s where f(x) is as simple as possible)

ln
(
(x2 + 2)3

)
, ln

(
(x2 + 2)3

5x+ 5

)
, and ln

(
(x2 + 2)3 sin(x)

5x+ 5

)
,

and to contract the expressions (write in terms of one ln(. . . ))

ln(x) + ln(2), 3 ln(x)− ln(2), and 5 (3 ln(x)− ln(2)) .

2. Differentiate the following functions. Simplify where you can.

ln(x3 + 2), ln(sin(x)), ln

(
x+ 1√
x− 2

)
.

(Hint: Lots of chain rule!! d
dx ln(f(x)) =

1
f(x)f

′(x))



Derivatives with absolute values
Example: Calculate d

dx ln |x|.

Recall

|x| =

{
x x ≥ 0

−x x < 0
.

So (1) the domain of ln |x| is (−∞, 0) ∪ (0,∞), and (2)

ln |x| =

{
ln(x) x ≥ 0,

ln(−x) x < 0.

So
d

dx
ln |x| =

{
1/x x ≥ 0,

−(1/(−x)) = 1/x x < 0,
= 1/x.

Therefore, ∫
1

x
dx = ln |x|+ C.

(Nice to know, since 1/x is defined over all real numbers 6= 0, but
ln(x) is only defined over positive real numbers!)
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Reviewing u-substitution
Example: Calculate

∫
tan(x) dx.

Recall tan(x) = sin(x)/ cos(x). So∫
tan(x) dx =

∫
sin(x)

cos(x)
dx

Let u = cos(x)

So du = − sin(x)dx.

= −
∫

1

u
du

= − ln |u|+ C

= − ln | cos(x)|+ C

= ln | sec(x)|+ C since | cos(x)|−1 = | sec(x)|.

You try: calculate∫
x

x2 + 1
dx,

∫
cot(x) dx,

∫
ln(x)

x
dx.
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Logarithmic differentiation
Sometimes, we can use the logarithm rules together with implicit
differentiation to simplify otherwise complicated derivatives as
follows.

Example: Calculate the derivative of y = (x2+2)3 sin(x)
5x+5

Step 1: Take logarithms of both sides.

ln(y) = ln

(
(x2 + 2)3 sin(x)

5x+ 5

)
Step 2: Use algebraic log rules to expand.
Before, we showed that

ln

(
(x2 + 2)3 sin(x)

5x+ 5

)
= 3 ln(x2+2)+ln(sin(x))−ln(x+1)−ln(5).

Step 3: Take d
dx of both sides using implicit differentiation.

1

y

dy

dx
= 3

2x

x2 + 2
+

cos(x)

sin(x)
− 1

x+ 1
− 0.

Step 4: Solve for dy
dx and substitute for y.

dy

dx
=

(
3

2x

x2 + 2
+

cos(x)

sin(x)
− 1

x+ 1

)
y.
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Logarithmic differentiation
Sometimes, we need logarithmic differentiation to calculate
derivatives at all!

Example: Calculate the derivative of y = xx.
Step 1: Take logarithms of both sides.

ln(y) = ln(xx) = x ln(x)

Step 2: Use algebraic log rules to expand.
Step 3: Take d

dx of both sides using implicit differentiation.

1

y

dy

dx
= ln(x) + x

1

x
= ln(x) + 1

Step 4: Solve for dy
dx and substitute for y.

dy

dx
= (ln(x) + 1)y = (ln(x) + 1)xx.
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Some facts about ln(x)

ln(x) =

∫ x

1

1

t
dt

y

t1 x

1.
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

2. d
dx ln(x) = 1/x.

3. ln(ab) = ln(a) + ln(b) and ln(ap) = p ln(a).

4. We have the limits

lim
x→∞

ln(x) =∞ and lim
x→0+

= −∞.

These follow from setting x = 2r, and letting r → ±∞.
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Graphing ln(x)

Recall graph sketching techniques:

1. Calculate domain, plot points. Especially, plot roots, and
evaluate pos/neg intervals.

Domain: (0,∞),
0 < x < 1 x = 0 x > 1

ln(x): neg. 0 pos.

2. Calculate limits as x goes to boundaries of the domain.

lim
x→∞

ln(x) =∞ and lim
x→0+

= −∞

3. Calculate first derivative and evaluate pos/neg intervals.
(Increasing/decreasing)

d
dx ln(x) = 1/x > 0 for x > 0: always increasing

4. Calculate second derivative and evaluate pos/neg intervals.
(Concave up/down)

d2

dx2 ln(x) = −1/x2 < 0 for x > 0: always concave down
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Graphing ln(x)

y

x1

Define the number e by ln(e) = 1
(such a number exists by the intermediate value theorem).

e = 2.718 . . .
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Section 5.3: The natural exponential function
Note that since ln(x) is always increasing, it is one-to-one, and
therefore invertible!

Define exp(x) as the inverse function of ln(x),
e.g.

exp(x) = y if and only if x = ln(y). (∗)
Some facts about exp(x):

1. Since ln(1) = 0, we have exp(0) = 1. Similarly, ln(e) = 1
implies exp(1) = e.

2. Domain: (range of ln(x)) (−∞,∞)
Range: (domain of ln(x)) (0,∞)

3. Graph:
y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function
Note that since ln(x) is always increasing, it is one-to-one, and
therefore invertible! Define exp(x) as the inverse function of ln(x),
e.g.

exp(x) = y if and only if x = ln(y). (∗)

Some facts about exp(x):

1. Since ln(1) = 0, we have exp(0) = 1. Similarly, ln(e) = 1
implies exp(1) = e.

2. Domain: (range of ln(x)) (−∞,∞)
Range: (domain of ln(x)) (0,∞)

3. Graph:
y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function
Note that since ln(x) is always increasing, it is one-to-one, and
therefore invertible! Define exp(x) as the inverse function of ln(x),
e.g.

exp(x) = y if and only if x = ln(y). (∗)
Some facts about exp(x):

1. Since ln(1) = 0, we have exp(0) = 1. Similarly, ln(e) = 1
implies exp(1) = e.

2. Domain: (range of ln(x)) (−∞,∞)
Range: (domain of ln(x)) (0,∞)

3. Graph:
y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function
Note that since ln(x) is always increasing, it is one-to-one, and
therefore invertible! Define exp(x) as the inverse function of ln(x),
e.g.

exp(x) = y if and only if x = ln(y). (∗)
Some facts about exp(x):

1. Since ln(1) = 0, we have exp(0) = 1. Similarly, ln(e) = 1
implies exp(1) = e.

2. Domain: (range of ln(x)) (−∞,∞)

Range: (domain of ln(x)) (0,∞)
3. Graph:

y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function
Note that since ln(x) is always increasing, it is one-to-one, and
therefore invertible! Define exp(x) as the inverse function of ln(x),
e.g.

exp(x) = y if and only if x = ln(y). (∗)
Some facts about exp(x):

1. Since ln(1) = 0, we have exp(0) = 1. Similarly, ln(e) = 1
implies exp(1) = e.

2. Domain: (range of ln(x)) (−∞,∞)
Range: (domain of ln(x)) (0,∞)

3. Graph:
y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function
Note that since ln(x) is always increasing, it is one-to-one, and
therefore invertible! Define exp(x) as the inverse function of ln(x),
e.g.

exp(x) = y if and only if x = ln(y). (∗)
Some facts about exp(x):

1. Since ln(1) = 0, we have exp(0) = 1. Similarly, ln(e) = 1
implies exp(1) = e.

2. Domain: (range of ln(x)) (−∞,∞)
Range: (domain of ln(x)) (0,∞)

3. Graph:
y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function

exp(x) = y if and only if x = ln(y). (∗)
Some facts about exp(x):

1. Since ln(1) = 0, we have exp(0) = 1. Similarly, ln(e) = 1
implies exp(1) = e.

2. Domain: (range of ln(x)) (−∞,∞)
Range: (domain of ln(x)) (0,∞)

3. Graph:
y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function
Some facts about exp(x):

1. exp(0) = 1, exp(1) = e.
2. Domain: (range of ln(x)) (−∞,∞)

Range: (domain of ln(x)) (0,∞)
3. Graph:

y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.



Section 5.3: The natural exponential function
Some facts about exp(x):

1. exp(0) = 1, exp(1) = e.

2. Domain: (−∞,∞); Range: (0,∞).

3. Graph:
y

x
ln(x)

exp(x)

4. We have ln(ex) = x ln(e) = x ∗ 1 = x, and so (∗) gives

ln(ex) = x implies exp(x) = ex

So

eln(x) = x for x > 0, and ln(ex) = x for all x.

Exercise: Use logarithmic differentiation to calculate d
dxe

x.




