Logistics:

Professor Zajj Daugherty, NAC 6-301

Office hours: Monday 2:30–3:30, Wednesday 11–12.

For now, the section's website is at

http://math.sci.ccny.cuny.edu/pages?name=m202FGs16

Grades: You grades will be based on

1. 15%: Homework and occasional quizzes:

Homework though WebAssign (www.webassign.net)

Course key: ccny 4222 6935

Online homework due 1 week after content is covered.

2. 45%: Midterms

Midterms will be in class, and are tentatively scheduled for Wednesday 3/16 and Wednesday 4/20.

3. 40%: Course-wide final

The final will be modeled after the homework list on the course-wide syllabus. Most, but not all, will appear on your WebAssign homeworks.

This course will cover...

- Chapter 5: Inverse functions (exponential, logarithmic, inverse trig, and hyperbolic functions; indeterminate forms and L'Hospital's rule)
- ► Chapter 6: Techniques of integration (calculating integrals algebraically, educated guessing); skip: 6.4.
- Chapter 7: Applications of integration (area, volume, arc length, physics); skip: 7.5, 7.7.
- Chapter 9: Parametric equations and polar coordinates; skip 9.5.
- Other stuff: Conic sections

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in.

Examples:

1. $f: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto x^2$; e.g.

2. $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ defined by $x \mapsto |\sqrt{x}|$; e.g.

Note that \sqrt{x} is only a function when we go to extra effort to decide that we're always going to choose the positive answer.

3. Let bacteria grow, and measure population over time. Consider $N: \mathbb{N} \to \mathbb{N}$ by N(t) = # bacteria at time t.

t	N(t) = pop. at time t
(hours)	
0	100
1	168
2	259
3	258
4	445
5	509

Now suppose we we're trying to ask the question "how long will it take to grow at least 500 bacteria?"

Answer: between 4 and 5 hours

Inverse functions

Given a function f, the *inverse function* f^{-1} is the machine that takes in f's output, and returns the corresponding input.

$$x \stackrel{f}{\longmapsto} f(x) \stackrel{f^{-1}}{\longmapsto} x$$

In notation, we write that

$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(x)) = x$.

Example: If $f:\mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by

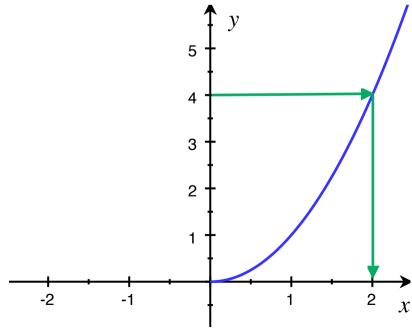
$$f(x) = x^2$$
, then $f^{-1}(x) = |\sqrt{x}| = \sqrt{x}$.

Non-Example: If $f:\mathbb{R} \to \mathbb{R}_{\geq 0}$ is given by

$$f(x) = x^2$$
, then $f^{-1}(x)$ is not well-defined.

If $f: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is given by

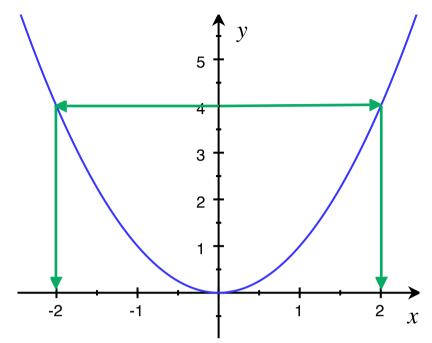
$$f(x) = x^2$$
, then $f^{-1}(x) = |\sqrt{x}|$.



If
$$y = x^2$$
 and $x \ge 0$, then $x = |\sqrt{y}|$.

If $f:\mathbb{R} o \mathbb{R}_{\geq 0}$ is given by

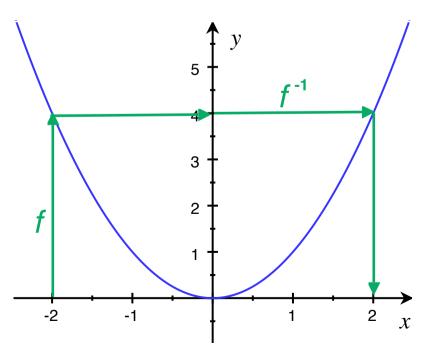
$$f(x) = x^2$$
, then $f^{-1}(x)$ is not well-defined.



If $y=x^2$, then $x=|\sqrt{y}|$ or $-|\sqrt{y}|$. Which one???

If $f:\mathbb{R} o \mathbb{R}_{\geq 0}$ is given by

$$f(x) = x^2$$
, then $|\sqrt{x}|$ is not the inverse.

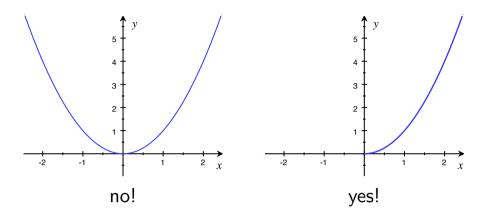


If $y = x^2$ and x < 0, then $x \neq |\sqrt{y}|!$

When is a function invertible?

A function f is one-to-one if no two inputs give the same output, that is, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$.

Example: over all real numbers, $f(x) = x^2$ is not one-to-one. However, over non-negative real numbers, $f(x) = x^2$ is one-to-one.



Horizontal line test: A function is one-to-one if and only if no horizontal line intersects the function's graph more than once.

Answer: A function is invertible if and only if it is one-to-one.

Graphing inverses

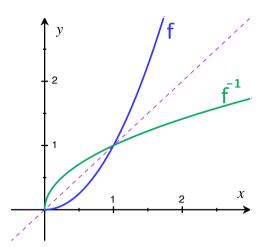
For a one-to-one function f, we have

f(x)=y if and only if $x=f^{-1}(y)$

Graphing inverses

For a one-to-one function f, we have

$$f(x) = y$$
 if and only if $x = f^{-1}(y)$



The graph of $y = f^{-1}(x)$ is the reflection of the graph of f over the line y=x (i.e. swap the axes). Further,

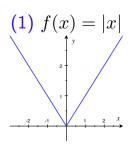
the domain of f is the range of f^{-1} ,

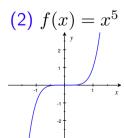
and

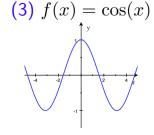
the range of f is the domain of f^{-1} .

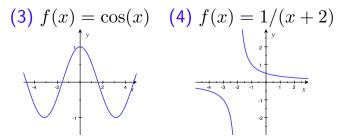
You try:

- ► For each of the following functions, (a) give the domain and range of f, and (b) decide if f is invertible.
- ▶ If f is invertible, then (c) sketch a graph of f^{-1} , (d) give the domain and range of f^{-1} , and (e) try to write a formula for f^{-1} .
- ▶ If f is not invertible over all of the real numbers, what is a restricted domain over which f is invertible? Over that restricted domain, do (c) and (d) from above.









Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting f(y) = x, and solving for $y = f^{-1}(x)$.

Example: Let f(x) = 1/(x+2).

Set

$$x = f(y) = 1/(y+2).$$

Then

$$y + 2 = 1/x$$
, so that $f^{-1}(x) = y = (1/x) - 2$.

Example: Let $f(x) = x^3 + 2$. (Check: is it invertible??)

Set

$$x = f(y) = y^3 + 2.$$

Then

$$y^3 = x - 2$$
, so that $f^{-1}(x) = y = (x - 2)^{1/3}$.

Note: As the book outlines, you can alternatively start with f(x) = y, solve for x, and then swap x and y at the end. You will get the same answer either way.

Checking your answer algebraically

Recall that f^{-1} is defined by

$$f(f^{-1}(x)) = x$$
 and $f^{-1}(f(x)) = x$.

Example: We calculated that if f(x) = 1/(x+2), then $f^{-1}(x) = (1/x) - 2$. Let's check!

$$f(f^{-1}(x)) = 1/((1/x) - 2 + 2)$$
$$= 1/(1/x) = x \checkmark$$

and

$$f^{-1}(f(x)) = (1/1/(x+2)) - 2$$
$$= x + 2 - 2 = x \quad \checkmark$$

You try:

- 1. Check that if $f(x) = x^3 + 2$ then $f^{-1}(x) = (x-2)^{1/3}$ by calculating $f(f^{-1}(x))$ and $f^{-1}(f(x))$.
- 2. For the following functions, calculate $f^{-1}(x)$ and verify your answer as above. (a) f(x) = 3/(x-1) (b) $f(x) = 5\sqrt{x-2}$

Derivatives of inverse functions

Note, if
$$f$$
 is invertible and continuous, then f^{-1} is also continuous. If $f^{-1}(x)=y$, then $f(y)=x$.

So we can use implicit differentiation to calculate $\frac{d}{dx}f^{-1}(x) = \frac{dy}{dx}$:

$$\frac{d}{dx}f(y) = \frac{d}{dx}x.$$

Now

$$\frac{d}{dx}f(y) = \underbrace{f'(y) * \frac{dy}{dx}}_{\text{chain rule!}} \qquad \text{and} \qquad \frac{d}{dx}x = 1.$$

So

$$f'(y) * \frac{dy}{dx} = 1.$$

Finally, solve for $\frac{d}{dx}f^{-1}(x) = \frac{dy}{dx}$:

$$\frac{d}{dx}f^{-1}(x) = \frac{dy}{dx} = 1/f'(y) = 1/f'(f^{-1}(x)).$$

Derivatives of inverse functions

Example: Let $f(x)=x^3+2$, so that $f^{-1}(x)=(x-2)^{1/3}$. Let's calculate $\frac{d}{dx}f^{-1}(x)$ in two ways.

First, use the formula:

$$f'(x) = \frac{d}{dx}(x^3 + 2) = 3x^2,$$

SO

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{3((x-2)^{1/3})^2} = \frac{1}{3*(x-2)^{2/3}}.$$

Now check by calculating directly:

$$\frac{d}{dx}(x-2)^{1/3} = (1/3) * (x-2)^{-2/3} = \frac{1}{3 * (x-2)^{2/3}}.$$

Derivatives of inverse functions at points

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}$$

Example: Let $f(x) = 2x + \cos(x)$. Find $\frac{d}{dx}f^{-1}(x)\big|_{x=1}$. One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$f'(x) = 2 - \sin(x) > 0$$
 so f is one-to-one!

Calculate the inverse? Why bother? Note that since f(0) = 1, we have $f^{-1}(1) = 0$.

Calculate the derivative:

$$\frac{d}{dx}f^{-1}(x)\big|_{x=1} = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{2-\sin(0)} = \boxed{\frac{1}{2}}.$$

You try:

For each of the following:

- (a) Show that f is one-to-one. (Show $f' \ge 0$ over the domain, and that f is never constant)
- (b) Use the formula $\frac{d}{dx}f^{-1}(x)=\frac{1}{f'(f^{-1}(x))}$ to calculate $\frac{d}{dx}f^{-1}(x)\big|_{x=8}.$
- (c) Calculate $f^{-1}(x)$, and state the domain and range of $f^{-1}(x)$.
- (d) Calculate $\frac{d}{dx}f^{-1}(x)\big|_{x=8}$ directly using the formula from part (c). Check it against your answer for part (b).
- (e) Sketch graphs of f(x) and $f^{-1}(x)$ on the same axis. Then sketch a tangent line to $f^{-1}(x)$ at x=8 and visually check that your answer to parts (b) and (d) roughly match the slope of this line.

(1)
$$f(x) = x^3$$
. (2) $f(x) = 9 - x^2, 0 \le x \le 3$.