Welcome to Calculus 2!

Logistics:

Professor Zajj Daugherty, NAC 6-301
Office hours: Monday 2:30-3:30, Wednesday 11-12.
For now, the section's website is at http://math.sci.ccny.cuny.edu/pages?name=m202FGs16

Grades: You grades will be based on

1. 15% : Homework and occasional quizzes:

Homework though WebAssign (www.webassign.net)
Course key: ccny 42226935
Online homework due 1 week after content is covered.
2. 45% : Midterms

Midterms will be in class, and are tentatively scheduled for Wednesday $3 / 16$ and Wednesday $4 / 20$.
3. 40% : Course-wide final

The final will be modeled after the homework list on the course-wide syllabus. Most, but not all, will appear on your WebAssign homeworks.

This course will cover. . .

- Chapter 5: Inverse functions (exponential, logarithmic, inverse trig, and hyperbolic functions; indeterminate forms and L'Hospital's rule)
- Chapter 6: Techniques of integration (calculating integrals algebraically, educated guessing); skip: 6.4.
- Chapter 7: Applications of integration (area, volume, arc length, physics); skip: 7.5, 7.7.
- Chapter 9: Parametric equations and polar coordinates; skip 9.5.
- Other stuff: Conic sections

Recall that a function is a machine that takes a number from one set and puts a number of another set.

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in.

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in.
Examples:

1. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$; e.g.

1	-2	$-\pi$	$1 / 3$	etc.
I	\beth	\beth	\beth	
1	4	π^{2}	$1 / 9$	

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in.
Examples:

1. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$; e.g.

1	-2	$-\pi$	$1 / 3$	etc.
\square	\square	\beth	\beth	
1	4	π^{2}	$1 / 9$	

2. $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ defined by $x \mapsto|\sqrt{x}|$; e.g.

1	4	π^{2}	$1 / 9$	etc.
I	\beth	\beth	\beth	
1	2	π	$1 / 3$	

Recall that a function is a machine that takes a number from one set and puts a number of another set. Must be well-defined, meaning the function is decisive: (1) always has an answer and (2) always puts out one answer for each number taken in.
Examples:

1. $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$; e.g.

1	-2	$-\pi$	$1 / 3$	etc.
I	\square	\beth	\beth	
1	4	π^{2}	$1 / 9$	

2. $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ defined by $x \mapsto|\sqrt{x}|$; e.g.

1	4	π^{2}	$1 / 9$	etc.
\beth	\beth	\beth	\beth	
1	2	π	$1 / 3$	

Note that \sqrt{x} is only a function when we go to extra effort to decide that we're always going to choose the positive answer.
3. Let bacteria grow, and measure population over time. Consider $N: \mathbb{N} \rightarrow \mathbb{N}$ by $N(t)=\#$ bacteria at time t.

t (hours)	$N(t)=$ pop. at time t
0	100
1	168
2	259
3	258
4	445
5	509

3. Let bacteria grow, and measure population over time.

Consider $N: \mathbb{N} \rightarrow \mathbb{N}$ by $N(t)=\#$ bacteria at time t.

t (hours)	$N(t)=$ pop. at time t
0	100
1	168
2	259
3	258
4	445
5	509

Now suppose we we're trying to ask the question "how long will it take to grow at least 500 bacteria?'"
3. Let bacteria grow, and measure population over time.

Consider $N: \mathbb{N} \rightarrow \mathbb{N}$ by $N(t)=\#$ bacteria at time t.

t (hours)	$N(t)=$ pop. at time t
0	100
1	168
2	259
3	258
4	445
5	509

Now suppose we we're trying to ask the question "how long will it take to grow at least 500 bacteria?''

Answer: between 4 and 5 hours

Inverse functions

Given a function f, the inverse function f^{-1} is the machine that takes in f 's output, and returns the corresponding input.

$$
x \stackrel{f}{\longmapsto} f(x) \stackrel{f^{-1}}{\longmapsto} x
$$

Inverse functions

Given a function f, the inverse function f^{-1} is the machine that takes in f 's output, and returns the corresponding input.

$$
x \stackrel{f}{\longmapsto} f(x) \stackrel{f^{-1}}{\longrightarrow} x
$$

In notation, we write that

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x .
$$

Inverse functions

Given a function f, the inverse function f^{-1} is the machine that takes in f 's output, and returns the corresponding input.

$$
x \stackrel{f}{\longmapsto} f(x) \stackrel{f^{-1}}{\longmapsto} x
$$

In notation, we write that

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x .
$$

Example: If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x)=|\sqrt{x}|=\sqrt{x}
$$

Inverse functions

Given a function f, the inverse function f^{-1} is the machine that takes in f 's output, and returns the corresponding input.

$$
x \stackrel{f}{\longmapsto} f(x) \stackrel{f^{-1}}{\longmapsto} x
$$

In notation, we write that

$$
f^{-1}(f(x))=x \quad \text { and } \quad f\left(f^{-1}(x)\right)=x .
$$

Example: If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x)=|\sqrt{x}|=\sqrt{x}
$$

Non-Example: If $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x) \text { is not well-defined. }
$$

If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x)=|\sqrt{x}| .
$$

If $y=x^{2}$ and $x \geq 0$, then $x=|\sqrt{y}|$.

If $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad f^{-1}(x) \text { is not well-defined. }
$$

If $y=x^{2}$, then $x=|\sqrt{y}|$ or $-|\sqrt{y}|$. Which one???

If $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$
f(x)=x^{2}, \quad \text { then } \quad|\sqrt{x}| \text { is not the inverse. }
$$

If $y=x^{2}$ and $x<0$, then $x \neq|\sqrt{y}|$!

When is a function invertible?

A function f is one-to-one if no two inputs give the same output, that is, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

When is a function invertible?

A function f is one-to-one if no two inputs give the same output, that is, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Example: over all real numbers, $f(x)=x^{2}$ is not one-to-one. However, over non-negative real numbers, $f(x)=x^{2}$ is one-to-one.

When is a function invertible?

A function f is one-to-one if no two inputs give the same output, that is, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Example: over all real numbers, $f(x)=x^{2}$ is not one-to-one. However, over non-negative real numbers, $f(x)=x^{2}$ is one-to-one.

no!

yes!

When is a function invertible?

A function f is one-to-one if no two inputs give the same output, that is, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Example: over all real numbers, $f(x)=x^{2}$ is not one-to-one. However, over non-negative real numbers, $f(x)=x^{2}$ is one-to-one.

no!

yes!

Horizontal line test: A function is one-to-one if and only if no horizontal line intersects the function's graph more than once.

When is a function invertible?

A function f is one-to-one if no two inputs give the same output, that is, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Example: over all real numbers, $f(x)=x^{2}$ is not one-to-one.
However, over non-negative real numbers, $f(x)=x^{2}$ is one-to-one.

no!

yes!

Horizontal line test: A function is one-to-one if and only if no horizontal line intersects the function's graph more than once.
Answer: A function is invertible if and only if it is one-to-one.

Graphing inverses

For a one-to-one function f, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$

Graphing inverses

For a one-to-one function f, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$

Graphing inverses

For a one-to-one function f, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$

Graphing inverses

For a one-to-one function f, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$

Graphing inverses

For a one-to-one function f, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$

Graphing inverses

For a one-to-one function f, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$

The graph of $y=f^{-1}(x)$ is the reflection of the graph of f over the line $y=x$ (i.e. swap the axes).

Graphing inverses

For a one-to-one function f, we have

$$
f(x)=y \quad \text { if and only if } \quad x=f^{-1}(y)
$$

The graph of $y=f^{-1}(x)$ is the reflection of the graph of f over the line $y=x$ (i.e. swap the axes). Further, the domain of f is the range of f^{-1}, and the range of f is the domain of f^{-1}.

You try:

- For each of the following functions, (a) give the domain and range of f, and (b) decide if f is invertible.
- If f is invertible, then (c) sketch a graph of f^{-1}, (d) give the domain and range of f^{-1}, and (e) try to write a formula for f^{-1}.
- If f is not invertible over all of the real numbers, what is a restricted domain over which f is invertible? Over that restricted domain, do (c) and (d) from above.

(3) $f(x)=\cos (x)$
(4) $f(x)=1 /(x+2)$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Then

$$
y+2=1 / x
$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Then

$$
y+2=1 / x, \quad \text { so that } f^{-1}(x)=y=(1 / x)-2 \text {. }
$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Then

$$
y+2=1 / x, \quad \text { so that } f^{-1}(x)=y=(1 / x)-2 \text {. }
$$

Example: Let $f(x)=x^{3}+2$. (Check: is it invertible??)

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Then

$$
y+2=1 / x, \quad \text { so that } f^{-1}(x)=y=(1 / x)-2 \text {. }
$$

Example: Let $f(x)=x^{3}+2$. (Check: is it invertible??) Set

$$
x=f(y)=y^{3}+2 .
$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Then

$$
y+2=1 / x, \quad \text { so that } f^{-1}(x)=y=(1 / x)-2 \text {. }
$$

Example: Let $f(x)=x^{3}+2$. (Check: is it invertible??) Set

$$
x=f(y)=y^{3}+2 .
$$

Then

$$
y^{3}=x-2,
$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Then

$$
y+2=1 / x, \quad \text { so that } f^{-1}(x)=y=(1 / x)-2 \text {. }
$$

Example: Let $f(x)=x^{3}+2$. (Check: is it invertible??) Set

$$
x=f(y)=y^{3}+2 .
$$

Then

$$
y^{3}=x-2, \quad \text { so that } f^{-1}(x)=y=(x-2)^{1 / 3}
$$

Calculating the inverse function algebraically

Given an invertible f, solve for f^{-1} by setting $f(y)=x$, and solving for $y=f^{-1}(x)$.
Example: Let $f(x)=1 /(x+2)$.
Set

$$
x=f(y)=1 /(y+2) .
$$

Then

$$
y+2=1 / x, \quad \text { so that } f^{-1}(x)=y=(1 / x)-2 \text {. }
$$

Example: Let $f(x)=x^{3}+2$. (Check: is it invertible??)
Set

$$
x=f(y)=y^{3}+2 .
$$

Then

$$
y^{3}=x-2, \quad \text { so that } f^{-1}(x)=y=(x-2)^{1 / 3} .
$$

Note: As the book outlines, you can alternatively start with $f(x)=y$, solve for x, and then swap x and y at the end. You will get the same answer either way.

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

$$
f\left(f^{-1}(x)\right)=1 /((1 / x)-2+2)
$$

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =1 /((1 / x)-2+2) \\
& =1 /(1 / x)=x
\end{aligned}
$$

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =1 /((1 / x)-2+2) \\
& =1 /(1 / x)=x
\end{aligned}
$$

and

$$
f^{-1}(f(x))
$$

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =1 /((1 / x)-2+2) \\
& =1 /(1 / x)=x
\end{aligned}
$$

and

$$
f^{-1}(f(x))=(1 / 1 /(x+2))-2
$$

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =1 /((1 / x)-2+2) \\
& =1 /(1 / x)=x
\end{aligned}
$$

and

$$
\begin{aligned}
f^{-1}(f(x)) & =(1 / 1 /(x+2))-2 \\
& =x+2-2=x
\end{aligned}
$$

Checking your answer algebraically

Recall that f^{-1} is defined by

$$
f\left(f^{-1}(x)\right)=x \quad \text { and } \quad f^{-1}(f(x))=x .
$$

Example: We calculated that if $f(x)=1 /(x+2)$, then $f^{-1}(x)=(1 / x)-2$. Let's check!

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =1 /((1 / x)-2+2) \\
& =1 /(1 / x)=x
\end{aligned}
$$

and

$$
\begin{aligned}
f^{-1}(f(x)) & =(1 / 1 /(x+2))-2 \\
& =x+2-2=x
\end{aligned}
$$

You try:

1. Check that if $f(x)=x^{3}+2$ then $f^{-1}(x)=(x-2)^{1 / 3}$ by calculating $f\left(f^{-1}(x)\right)$ and $f^{-1}(f(x))$.
2. For the following functions, calculate $f^{-1}(x)$ and verify your answer as above. (a) $f(x)=3 /(x-1) \quad$ (b) $f(x)=5 \sqrt{x-2}$

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f(y)=\frac{d}{d x} x
$$

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f(y)=\frac{d}{d x} x
$$

Now

$$
\frac{d}{d x} f(y)=\underbrace{f^{\prime}(y) * \frac{d y}{d x}}_{\text {chain rule! }}
$$

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f(y)=\frac{d}{d x} x
$$

Now

$$
\frac{d}{d x} f(y)=\underbrace{f^{\prime}(y) * \frac{d y}{d x}}_{\text {chain rule! }} \quad \text { and } \quad \frac{d}{d x} x=1
$$

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f(y)=\frac{d}{d x} x
$$

Now

$$
\frac{d}{d x} f(y)=\underbrace{f^{\prime}(y) * \frac{d y}{d x}}_{\text {chain rule! }} \quad \text { and } \quad \frac{d}{d x} x=1
$$

So

$$
f^{\prime}(y) * \frac{d y}{d x}=1
$$

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f(y)=\frac{d}{d x} x
$$

Now

$$
\frac{d}{d x} f(y)=\underbrace{f^{\prime}(y) * \frac{d y}{d x}}_{\text {chain rule! }} \quad \text { and } \quad \frac{d}{d x} x=1
$$

So

$$
f^{\prime}(y) * \frac{d y}{d x}=1
$$

Finally, solve for $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f(y)=\frac{d}{d x} x
$$

Now

$$
\frac{d}{d x} f(y)=\underbrace{f^{\prime}(y) * \frac{d y}{d x}}_{\text {chain rule! }} \quad \text { and } \quad \frac{d}{d x} x=1
$$

So

$$
f^{\prime}(y) * \frac{d y}{d x}=1
$$

Finally, solve for $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}=1 / f^{\prime}(y)
$$

Derivatives of inverse functions

Note, if f is invertible and continuous, then f^{-1} is also continuous.
If $f^{-1}(x)=y$, then $f(y)=x$.
So we can use implicit differentiation to calculate $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f(y)=\frac{d}{d x} x
$$

Now

$$
\frac{d}{d x} f(y)=\underbrace{f^{\prime}(y) * \frac{d y}{d x}}_{\text {chain rule! }} \quad \text { and } \quad \frac{d}{d x} x=1
$$

So

$$
f^{\prime}(y) * \frac{d y}{d x}=1
$$

Finally, solve for $\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}$:

$$
\frac{d}{d x} f^{-1}(x)=\frac{d y}{d x}=1 / f^{\prime}(y)=1 / f^{\prime}\left(f^{-1}(x)\right)
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}+2\right)
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}+2\right)=3 x^{2}
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}+2\right)=3 x^{2}
$$

so

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{3\left((x-2)^{1 / 3}\right)^{2}}
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}+2\right)=3 x^{2}
$$

SO

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{3\left((x-2)^{1 / 3}\right)^{2}}=\frac{1}{3 *(x-2)^{2 / 3}} .
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}+2\right)=3 x^{2}
$$

so

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{3\left((x-2)^{1 / 3}\right)^{2}}=\frac{1}{3 *(x-2)^{2 / 3}}
$$

Now check by calculating directly:

$$
\frac{d}{d x}(x-2)^{1 / 3}
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}+2\right)=3 x^{2}
$$

so

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{3\left((x-2)^{1 / 3}\right)^{2}}=\frac{1}{3 *(x-2)^{2 / 3}}
$$

Now check by calculating directly:

$$
\frac{d}{d x}(x-2)^{1 / 3}=(1 / 3) *(x-2)^{-2 / 3}
$$

Derivatives of inverse functions

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=x^{3}+2$, so that $f^{-1}(x)=(x-2)^{1 / 3}$.
Let's calculate $\frac{d}{d x} f^{-1}(x)$ in two ways.
First, use the formula:

$$
f^{\prime}(x)=\frac{d}{d x}\left(x^{3}+2\right)=3 x^{2}
$$

so

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{3\left((x-2)^{1 / 3}\right)^{2}}=\frac{1}{3 *(x-2)^{2 / 3}}
$$

Now check by calculating directly:

$$
\frac{d}{d x}(x-2)^{1 / 3}=(1 / 3) *(x-2)^{-2 / 3}=\frac{1}{3 *(x-2)^{2 / 3}}
$$

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$. One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$. One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.
One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Calculate the inverse?

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.
One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Calculate the inverse? Why bother? Note that since $f(0)=1$, we have $f^{-1}(1)=0$.

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.
One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Calculate the inverse? Why bother? Note that since $f(0)=1$, we have $f^{-1}(1)=0$.
Calculate the derivative:

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.
One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Calculate the inverse? Why bother? Note that since $f(0)=1$, we have $f^{-1}(1)=0$.
Calculate the derivative:

$$
\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}
$$

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.
One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Calculate the inverse? Why bother? Note that since $f(0)=1$, we have $f^{-1}(1)=0$.
Calculate the derivative:

$$
\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(0)}
$$

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.
One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Calculate the inverse? Why bother? Note that since $f(0)=1$, we have $f^{-1}(1)=0$.
Calculate the derivative:

$$
\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{2-\sin (0)}
$$

Derivatives of inverse functions at points

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Example: Let $f(x)=2 x+\cos (x)$. Find $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}$.
One-to-one? Note that if a function is continuous and always increasing, then it must be one-to-one!

$$
f^{\prime}(x)=2-\sin (x)>0 \quad \text { so } f \text { is one-to-one! }
$$

Calculate the inverse? Why bother? Note that since $f(0)=1$, we have $f^{-1}(1)=0$.
Calculate the derivative:

$$
\left.\frac{d}{d x} f^{-1}(x)\right|_{x=1}=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{2-\sin (0)}=\frac{1}{2} .
$$

You try:

For each of the following:
(a) Show that f is one-to-one.
(Show $f^{\prime} \geq 0$ over the domain, and that f is never constant)
(b) Use the formula $\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$ to calculate
$\left.\frac{d}{d x} f^{-1}(x)\right|_{x=8}$.
(c) Calculate $f^{-1}(x)$, and state the domain and range of $f^{-1}(x)$.
(d) Calculate $\left.\frac{d}{d x} f^{-1}(x)\right|_{x=8}$ directly using the formula from part (c). Check it against your answer for part (b).
(e) Sketch graphs of $f(x)$ and $f^{-1}(x)$ on the same axis. Then sketch a tangent line to $f^{-1}(x)$ at $x=8$ and visually check that your answer to parts (b) and (d) roughly match the slope of this line.

$$
\text { (1) } f(x)=x^{3} . \quad \text { (2) } f(x)=9-x^{2}, 0 \leq x \leq 3
$$

