Math 201 lecture for Friday, Week 13

The Spectral theorem

Theorem (Spectral theorem). Let A be an $n \times n$ symmetric matrix over \mathbb{R}. Then A is diagonalizable over \mathbb{R}, and there exists an orthonormal basis for \mathbb{R}^{n} (with respect to the standard inner product) consisting of eigenvectors for A.

Example. Let

$$
A=\left(\begin{array}{rrr}
-1 & -1 & -2 \\
-1 & -1 & 2 \\
-2 & 2 & 2
\end{array}\right)
$$

The characteristic polynomial of A is

$$
p_{A}(t)=\operatorname{det}\left(\begin{array}{rrr}
-1-t & -1 & -2 \\
-1 & -1-t & 2 \\
-2 & 2 & 2-t
\end{array}\right)=-t^{3}+12 t+16=(4-t)(-2-t)^{2}
$$

So the eigenvalues are $4,-2,-2$. We next compute bases for the eigenspaces. For $\lambda=4$,

$$
A-4 I_{4}=\left(\begin{array}{rrr}
-5 & -1 & -2 \\
-1 & -5 & 2 \\
-2 & 2 & -2
\end{array}\right) \rightsquigarrow\left(\begin{array}{rrr}
1 & 0 & \frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right)
$$

So the eigenspace for $\lambda=4$ is $E_{4}\left\{\left(-\frac{1}{2} t, \frac{1}{2} t, t\right): t \in \mathbb{R}\right\}$. One basis is $\{(-1,1,2)\}$. Normalizing gives the basis vector

$$
v_{1}=\frac{1}{\sqrt{6}}(-1,1,2)
$$

For the eigenvalue $\lambda=-2$, we have

$$
A+2 I_{4}=\left(\begin{array}{rrr}
1 & -1 & -2 \\
-1 & 1 & 2 \\
-2 & 2 & 4
\end{array}\right) \rightsquigarrow\left(\begin{array}{rrr}
1 & -1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and the eigenspace is $E_{-2}=\{(s+2 t, s, t): s, t \in \mathbb{R}\}$. A basis is $\{(1,1,0),(2,0,1)\}$. Applying Gram-Schmidt to these two vectors yields an orthonormal basis for E_{-2} consisting of

$$
v_{2}=\frac{1}{\sqrt{2}}(1,1,0), \quad v_{3}=\frac{1}{\sqrt{3}}(1,-1,1)
$$

Now note that something surprising has happened: these vectors are orthogonal to v_{1}. We arrive at an orthonormal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbb{R}^{3} consisting of eigenvectors for A. Letting P be the 3×3 matrix whose columns are v_{1}, v_{2}, v_{3}, we have

$$
P^{-1} A P=\operatorname{diag}(4,-2,2)
$$

Since the v_{i} form an orthonormal set, it turns out that $P^{-1}=P^{t}$, the transpose of P :

$$
P^{t} P=\left(\begin{array}{rrr}
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{ccc}
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Definition. A matrix $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if its columns form an orthonormal set in \mathbb{R}^{n}.
Lemma. $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if and only if $P^{-1}=P^{t}$.

Proof. Note that $\left(P^{t} P\right)_{i j}=v_{i} \cdot v_{j}$. So $P^{t} P=I_{n}$ if and only if the columns of P form and orthonormal set.

Restatement of the spectral theorem. If A is a real $n \times n$ symmetric matrix, then there exists a real diagonal matrix D and an orthogonal matrix P such that

$$
A=P D P^{t}
$$

Proof of the spectral theorem. We first prove that the characteristic polynomial of A splits over \mathbb{R}. By the Fundamental Theorem of Algebra, it splits over \mathbb{C}. So $p_{A}(t)=\prod_{k=1}^{n}\left(\lambda_{k}-t\right)$ for some $\lambda_{k} \in \mathbb{C}$. We must show that $\lambda_{k} \in \mathbb{R}$ for all k. So let $\lambda=\lambda_{k}$ for some k. Then there exists a nonzero $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$. Recall the standard inner product on \mathbb{C}^{n} : for $y, z \in \mathbb{C}^{n}$, we have $\langle y, z\rangle=y \cdot \bar{z}$. Thinking of y and z as column vectors, we have $\langle y, z\rangle=z^{*} y$ where ()* denotes the conjugate transpose:

$$
\langle y, z\rangle=y \cdot \bar{z}=\sum_{k=1}^{n} y_{i} \bar{z}_{i}=\left(\begin{array}{lll}
\bar{z}_{1} & \cdots & \bar{z}_{n}
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=z^{*} y .
$$

Therefore, for an arbitrary $n \times n$ complex matrix B, we have

$$
\left\langle y, B^{*} z\right\rangle=\left(B^{*} z\right)^{*} y=z^{*}\left(B^{*}\right)^{*} y=z^{*} B y=\langle B y, z\rangle
$$

Our matrix, A, is real and symmetric; so $A^{*}=\bar{A}^{t}=A^{t}=A$. Therefore,

$$
\langle y, A z\rangle=\langle A y, z\rangle
$$

Going back to $A v=\lambda v$, we have

$$
\lambda\langle v, v\rangle=\langle\lambda v, v\rangle=\langle A v, v\rangle=\langle v, A v\rangle=\langle v, \lambda v\rangle=\bar{\lambda}\langle v, v\rangle
$$

Since $v \neq 0$ and inner products are positive-definite, it follows that $\lambda=\bar{\lambda}$, and hence $\lambda \in \mathbb{R}$.
We now prove the theorem by induction on n, the case $n=1$ being trivial. Suppose $n>1$ and let $\lambda_{1} \in \mathbb{R}$ and $v_{1} \in \mathbb{R}^{n}$ be an eigenvalue-eigenvector pair for A. Next, complete and apply GramSchmidt to construct and ordered orthonormal basis $\left\langle v_{1}, \cdots, v_{n}\right\rangle$ for \mathbb{R}^{n}. Let Q be the $n \times n$ matrix whose columns are the v_{i}. Then Q is orthogonal. Define

$$
\tilde{A}:=Q^{-1} A Q=Q^{t} A Q
$$

Then \tilde{A} is symmetric:

$$
\tilde{A}^{t}=\left(Q^{t} A Q\right)^{t}=Q^{t} A^{t}\left(Q^{t}\right)^{t}=Q^{t} A^{t} Q=Q^{t} A Q=\tilde{A}
$$

We would like to investigate the structure of \tilde{A} further. To find its first column, we use the fact that $A v_{1}=\lambda_{1} v_{1}$. Let e_{1} be the first standard basis vector of \mathbb{R}^{n}. Then the first column of \tilde{A} is

$$
\tilde{A} e_{1}=Q^{t} A Q e_{1}=Q^{t} A v_{1}=Q^{t} \lambda_{1} v_{1}=\lambda_{1} Q^{t} v_{1}
$$

The rows of Q^{t} are the orthonormal set v_{1}, \ldots, v_{n}. Therefore,

$$
\left(Q^{t} v_{1}\right)_{i}=v_{i} \cdot v_{1}= \begin{cases}1 & \text { if } i=1 \\ 0 & \text { otherwise }\end{cases}
$$

So the first column of \tilde{A} is the vector $\left(\lambda_{1}, 0, \cdots, 0\right)$. Since \tilde{A} is symmetric, its first column and first row are the same vector. Therefore, \tilde{A} has the form

$$
\left(\begin{array}{c|ccc}
\lambda_{1} & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right)
$$

where B is an $n \times n$ matrix. Since \tilde{A} is symmetric, so is B. So we can apply induction to find an $(n-1) \times(n-1)$ orthogonal matrix T and a real diagonal matrix E such that $B=T E T^{t}$. We then have

$$
\tilde{A}=\underbrace{\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & T & \\
0 & & &
\end{array}\right)}_{S} \underbrace{\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & E & \\
0 & & &
\end{array}\right)}_{D} \underbrace{\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & T^{t} & \\
0 & & &
\end{array}\right)}_{S^{t}}
$$

where the matrices S and T are defined as shown. Since T is orthogonal, so is S. Finally, define $P=Q S$. Since Q and S are orthogonal, so is $P\left(\right.$ check: $\left.(Q S)^{t}(Q S)=S^{t}\left(Q^{t} Q\right) S=S^{t} I_{n} S=I_{n}\right)$. We have

$$
A=Q \tilde{A} Q^{t}=Q\left(S D S^{t}\right) Q^{t}=(Q S) D(Q S)^{t}=P D P^{t}
$$

as desired.

We now discuss a more general version of the spectral theorem.
Definition. A matrix $A \in M_{n \times n}(\mathbb{C})$ is Hermitian if $A^{*}=A\left(\right.$ so $\left.A=\bar{A}^{t}\right)$. A matrix $U \in M_{n \times n}(\mathbb{C})$ is unitary if its columns are orthonormal, or equivalently, if U is invertible with $U^{-1}=U^{*}$.

Theorem (Spectral theorem) Let A be an $n \times n$ Hermitian matrix. Then $A=U D U^{*}$ where U is unitary and D is a real diagonal matrix.

