Math 201 lecture for Friday, Week 13

The Spectral theorem

Theorem (Spectral theorem). Let A be an $n \times n$ symmetric matrix over \mathbb{R} . Then A is diagonalizable over \mathbb{R} , and there exists an orthonormal basis for \mathbb{R}^n (with respect to the standard inner product) consisting of eigenvectors for A.

Example. Let

$$A = \left(\begin{array}{rrrr} -1 & -1 & -2 \\ -1 & -1 & 2 \\ -2 & 2 & 2 \end{array}\right)$$

The characteristic polynomial of A is

$$p_A(t) = \det \begin{pmatrix} -1 - t & -1 & -2 \\ -1 & -1 - t & 2 \\ -2 & 2 & 2 - t \end{pmatrix} = -t^3 + 12t + 16 = (4 - t)(-2 - t)^2.$$

So the eigenvalues are 4, -2, -2. We next compute bases for the eigenspaces. For $\lambda = 4$,

$$A - 4I_4 = \begin{pmatrix} -5 & -1 & -2 \\ -1 & -5 & 2 \\ -2 & 2 & -2 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}.$$

So the eigenspace for $\lambda = 4$ is $E_4\{(-\frac{1}{2}t, \frac{1}{2}t, t) : t \in \mathbb{R}\}$. One basis is $\{(-1, 1, 2)\}$. Normalizing gives the basis vector

$$v_1 = \frac{1}{\sqrt{6}}(-1, 1, 2).$$

For the eigenvalue $\lambda = -2$, we have

$$A + 2I_4 = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ -2 & 2 & 4 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and the eigenspace is $E_{-2} = \{(s + 2t, s, t) : s, t \in \mathbb{R}\}$. A basis is $\{(1, 1, 0), (2, 0, 1)\}$. Applying Gram-Schmidt to these two vectors yields an orthonormal basis for E_{-2} consisting of

$$v_2 = \frac{1}{\sqrt{2}}(1,1,0), \quad v_3 = \frac{1}{\sqrt{3}}(1,-1,1).$$

Now note that something surprising has happened: these vectors are orthogonal to v_1 . We arrive at an orthonormal basis $\{v_1, v_2, v_3\}$ for \mathbb{R}^3 consisting of eigenvectors for A. Letting P be the 3×3 matrix whose columns are v_1, v_2, v_3 , we have

$$P^{-1}AP = \text{diag}(4, -2, 2).$$

Since the v_i form an orthonormal set, it turns out that $P^{-1} = P^t$, the transpose of P:

$$P^{t}P = \begin{pmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Definition. A matrix $P \in M_{n \times n}(\mathbb{R})$ is *orthogonal* if its columns form an orthonormal set in \mathbb{R}^n .

Lemma. $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if and only if $P^{-1} = P^t$.

Proof. Note that $(P^tP)_{ij} = v_i \cdot v_j$. So $P^tP = I_n$ if and only if the columns of P form and orthonormal set.

Restatement of the spectral theorem. If A is a real $n \times n$ symmetric matrix, then there exists a real diagonal matrix D and an orthogonal matrix P such that

$$A = PDP^t$$
.

Proof of the spectral theorem. We first prove that the characteristic polynomial of A splits over \mathbb{R} . By the Fundamental Theorem of Algebra, it splits over \mathbb{C} . So $p_A(t) = \prod_{k=1}^n (\lambda_k - t)$ for some $\lambda_k \in \mathbb{C}$. We must show that $\lambda_k \in \mathbb{R}$ for all k. So let $\lambda = \lambda_k$ for some k. Then there exists a nonzero $v \in \mathbb{C}^n$ such that $Av = \lambda v$. Recall the standard inner product on \mathbb{C}^n : for $y, z \in \mathbb{C}^n$, we have $\langle y, z \rangle = y \cdot \overline{z}$. Thinking of y and z as column vectors, we have $\langle y, z \rangle = z^* y$ where ()* denotes the conjugate transpose:

$$\langle y, z \rangle = y \cdot \bar{z} = \sum_{k=1}^{n} y_i \bar{z}_i = \begin{pmatrix} \bar{z}_1 & \cdots & \bar{z}_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = z^* y.$$

Therefore, for an arbitrary $n \times n$ complex matrix B, we have

$$\langle y,B^*z\rangle=(B^*z)^*y=z^*(B^*)^*y=z^*By=\langle By,z\rangle.$$

Our matrix, A, is real and symmetric; so $A^* = \overline{A}^t = A^t = A$. Therefore,

$$\langle y, Az \rangle = \langle Ay, z \rangle.$$

Going back to $Av = \lambda v$, we have

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Av, v \rangle = \langle v, Av \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle.$$

Since $v \neq 0$ and inner products are positive-definite, it follows that $\lambda = \overline{\lambda}$, and hence $\lambda \in \mathbb{R}$.

We now prove the theorem by induction on n, the case n = 1 being trivial. Suppose n > 1 and let $\lambda_1 \in \mathbb{R}$ and $v_1 \in \mathbb{R}^n$ be an eigenvalue-eigenvector pair for A. Next, complete and apply Gram-Schmidt to construct and ordered orthonormal basis $\langle v_1, \dots, v_n \rangle$ for \mathbb{R}^n . Let Q be the $n \times n$ matrix whose columns are the v_i . Then Q is orthogonal. Define

$$\tilde{A} := Q^{-1}AQ = Q^t AQ.$$

Then \tilde{A} is symmetric:

$$\tilde{A}^{t} = \left(Q^{t}AQ\right)^{t} = Q^{t}A^{t}\left(Q^{t}\right)^{t} = Q^{t}A^{t}Q = Q^{t}AQ = \tilde{A}.$$

We would like to investigate the structure of \tilde{A} further. To find its first column, we use the fact that $Av_1 = \lambda_1 v_1$. Let e_1 be the first standard basis vector of \mathbb{R}^n . Then the first column of \tilde{A} is

$$\tilde{A}e_1 = Q^t A Q e_1 = Q^t A v_1 = Q^t \lambda_1 v_1 = \lambda_1 Q^t v_1.$$

The rows of Q^t are the orthonormal set v_1, \ldots, v_n . Therefore,

$$(Q^t v_1)_i = v_i \cdot v_1 = \begin{cases} 1 & \text{if } i = 1\\ 0 & \text{otherwise.} \end{cases}$$

So the first column of \tilde{A} is the vector $(\lambda_1, 0, \dots, 0)$. Since \tilde{A} is symmetric, its first column and first row are the same vector. Therefore, \tilde{A} has the form

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ \hline 0 & & & \\ \vdots & & B \\ 0 & & & \end{pmatrix}$$

where B is an $n \times n$ matrix. Since \tilde{A} is symmetric, so is B. So we can apply induction to find an $(n-1) \times (n-1)$ orthogonal matrix T and a real diagonal matrix E such that $B = TET^t$. We then have

$$\tilde{A} = \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & T & \\ 0 & & & \\ S & & D & \\ \end{bmatrix}}_{S} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & E & \\ 0 & & & \\ D & & \\ D & & \\ S^{t} & \\ \end{bmatrix}}_{D} \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & T^{t} & \\ 0 & & & \\ S^{t} & \\ \end{bmatrix}}_{S^{t}},$$

where the matrices S and T are defined as shown. Since T is orthogonal, so is S. Finally, define P = QS. Since Q and S are orthogonal, so is P (check: $(QS)^t(QS) = S^t(Q^tQ)S = S^tI_nS = I_n)$. We have

$$A = Q\hat{A}Q^t = Q(SDS^t)Q^t = (QS)D(QS)^t = PDP^t,$$

as desired.

We now discuss a more general version of the spectral theorem.

Definition. A matrix $A \in M_{n \times n}(\mathbb{C})$ is *Hermitian* if $A^* = A$ (so $A = \overline{A}^t$). A matrix $U \in M_{n \times n}(\mathbb{C})$ is *unitary* if its columns are orthonormal, or equivalently, if U is invertible with $U^{-1} = U^*$.

Theorem (Spectral theorem) Let A be an $n \times n$ Hermitian matrix. Then $A = UDU^*$ where U is unitary and D is a real diagonal matrix.