
Math 201 lecture for Friday, Week 13

The Spectral theorem

Theorem (Spectral theorem). Let A be an n×n symmetric matrix over R. Then A is diagonalizable
over R, and there exists an orthonormal basis for Rn (with respect to the standard inner product)
consisting of eigenvectors for A.

Example. Let

A =

 −1 −1 −2
−1 −1 2
−2 2 2

 .

The characteristic polynomial of A is

pA(t) = det

 −1− t −1 −2
−1 −1− t 2
−2 2 2− t

 = −t3 + 12t+ 16 = (4− t)(−2− t)2.

So the eigenvalues are 4,−2,−2. We next compute bases for the eigenspaces. For λ = 4,

A− 4I4 =

 −5 −1 −2
−1 −5 2
−2 2 −2

 
 1 0 1

2

0 1 − 1
2

0 0 0

 .

So the eigenspace for λ = 4 is E4{(− 1
2 t,

1
2 t, t) : t ∈ R}. One basis is {(−1, 1, 2)}. Normalizing gives

the basis vector

v1 =
1√
6

(−1, 1, 2).

For the eigenvalue λ = −2, we have

A+ 2I4 =

 1 −1 −2
−1 1 2
−2 2 4

 
 1 −1 −2

0 0 0
0 0 0

 ,

and the eigenspace is E−2 = {(s + 2t, s, t) : s, t ∈ R}. A basis is {(1, 1, 0), (2, 0, 1)}. Applying
Gram-Schmidt to these two vectors yields an orthonormal basis for E−2 consisting of

v2 =
1√
2

(1, 1, 0), v3 =
1√
3

(1,−1, 1).

Now note that something surprising has happened: these vectors are orthogonal to v1. We arrive
at an orthonormal basis {v1, v2, v3} for R3 consisting of eigenvectors for A. Letting P be the 3× 3
matrix whose columns are v1, v2, v3, we have

P−1AP = diag(4,−2, 2).

Since the vi form an orthonormal set, it turns out that P−1 = P t, the transpose of P :

P tP =


− 1√

6
1√
6

2√
6

1√
2

1√
2

0

1√
3
− 1√

3
1√
3



− 1√

6
1√
2

1√
3

1√
6

1√
2
− 1√

3
2√
6

0 1√
3

 =

 1 0 0
0 1 0
0 0 1

 .
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Definition. A matrix P ∈Mn×n(R) is orthogonal if its columns form an orthonormal set in Rn.

Lemma. P ∈Mn×n(R) is orthogonal if and only if P−1 = P t.

Proof. Note that (P tP )ij = vi·vj . So P tP = In if and only if the columns of P form and orthonormal
set.

Restatement of the spectral theorem. If A is a real n× n symmetric matrix, then there exists
a real diagonal matrix D and an orthogonal matrix P such that

A = PDP t.

Proof of the spectral theorem. We first prove that the characteristic polynomial of A splits over R.
By the Fundamental Theorem of Algebra, it splits over C. So pA(t) =

∏n
k=1(λk−t) for some λk ∈ C.

We must show that λk ∈ R for all k. So let λ = λk for some k. Then there exists a nonzero v ∈ Cn

such that Av = λv. Recall the standard inner product on Cn: for y, z ∈ Cn, we have 〈y, z〉 = y · z̄.
Thinking of y and z as column vectors, we have 〈y, z〉 = z∗y where ( )∗ denotes the conjugate
transpose:

〈y, z〉 = y · z̄ =

n∑
k=1

yiz̄i =
(
z̄1 · · · z̄n

) y1
...
yn

 = z∗y.

Therefore, for an arbitrary n× n complex matrix B, we have

〈y,B∗z〉 = (B∗z)∗y = z∗(B∗)∗y = z∗By = 〈By, z〉.

Our matrix, A, is real and symmetric; so A∗ = Āt = At = A. Therefore,

〈y,Az〉 = 〈Ay, z〉.

Going back to Av = λv, we have

λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v,Av〉 = 〈v, λv〉 = λ̄〈v, v〉.

Since v 6= 0 and inner products are positive-definite, it follows that λ = λ̄, and hence λ ∈ R.

We now prove the theorem by induction on n, the case n = 1 being trivial. Suppose n > 1 and
let λ1 ∈ R and v1 ∈ Rn be an eigenvalue-eigenvector pair for A. Next, complete and apply Gram-
Schmidt to construct and ordered orthonormal basis 〈v1, · · · , vn〉 for Rn. Let Q be the n×n matrix
whose columns are the vi. Then Q is orthogonal. Define

Ã := Q−1AQ = QtAQ.

Then Ã is symmetric:

Ãt =
(
QtAQ

)t
= QtAt

(
Qt
)t

= QtAtQ = QtAQ = Ã.
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We would like to investigate the structure of Ã further. To find its first column, we use the fact
that Av1 = λ1v1. Let e1 be the first standard basis vector of Rn. Then the first column of Ã is

Ãe1 = QtAQe1 = QtAv1 = Qtλ1v1 = λ1Q
tv1.

The rows of Qt are the orthonormal set v1, . . . , vn. Therefore,

(Qtv1)i = vi · v1 =

{
1 if i = 1

0 otherwise.

So the first column of Ã is the vector (λ1, 0, · · · , 0). Since Ã is symmetric, its first column and first
row are the same vector. Therefore, Ã has the form

λ1 0 · · · 0
0
... B
0


where B is an n × n matrix. Since Ã is symmetric, so is B. So we can apply induction to find an
(n− 1)× (n− 1) orthogonal matrix T and a real diagonal matrix E such that B = TET t. We then
have

Ã =


1 0 · · · 0
0
... T
0


︸ ︷︷ ︸

S


1 0 · · · 0
0
... E
0


︸ ︷︷ ︸

D


1 0 · · · 0
0
... T t

0


︸ ︷︷ ︸

St

,

where the matrices S and T are defined as shown. Since T is orthogonal, so is S. Finally, define
P = QS. Since Q and S are orthogonal, so is P (check: (QS)t(QS) = St(QtQ)S = StInS = In).
We have

A = QÃQt = Q(SDSt)Qt = (QS)D(QS)t = PDP t,

as desired.

We now discuss a more general version of the spectral theorem.

Definition. A matrix A ∈Mn×n(C) is Hermitian if A∗ = A (so A = Āt). A matrix U ∈Mn×n(C)
is unitary if its columns are orthonormal, or equivalently, if U is invertible with U−1 = U∗.

Theorem (Spectral theorem) Let A be an n × n Hermitian matrix. Then A = UDU∗ where U is
unitary and D is a real diagonal matrix.
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