Math 201 lecture for Wednesday, Week 12

Orthogonal complements and projections

Definition. The direct sum of vector spaces U and W over a field F is the set
UaoW ={(u,w) :ueU and w e W}
with scalar multiplication and vector addition defined by
AMu,w) = Au, w)  and  (u,w) + (v, w') = (u+ v, w+w'),
for all u,v’ € U, w,w’ € W, and A € F.

Proposition. Let U and W be subspaces of a vector space V over F' such that: (i) the union of U
and W spans V, and (ii) UNW = {0}. Then there is an isomorphism

UasW =V
(u,w) = u+ w.

Thus, every element of V' has a unique expression of the form u 4+ w with u € U and w € W.
Proof. Easy exercise. O

Remark. In the case of the Proposition, we says that V' is the internal direct sum of U and W and
abuse notation by simply writing V' = U @& W. The direct sum as we first defined it is sometimes
called the external direct sum of U and W.

For the rest of this lecture, let (V,(, }) be an inner product space over F' =R or C.
Definition. Let S C V be nonempty. The orthogonal complement of S is

St={zxeV:(r,y)=0foralyecsS}.

Exercise. Show that S+ is a subspace of V.

Example. Consider R? with the standard inner product, and let S = {(a,b,c)}. So S consists of
the single vector (a,b,c) € R®. Then

St ={(x,y,2) €R®: (z,y,2) - (a,b,¢) = 0} = {(x,y,2) € R® : aw + by + ¢z = 0},
a plane in R? defined by the equation az + by + cz = 0.

Proposition. Suppose dimV =n and S = {vy,...,vx} is an orthonormal subset of V.

(a) S can be extended to an orthonormal basis {v1,..., vk, Vgt1,...,v,} for V.

(b) If W = Span S, then S’ = {vg41,...,0,} is an orthonormal basis for W+,



(¢) f W C V is any subspace, then
dim W + dim W+ = dimV = n.
(d) If W C V is any subspace, then (W)Lt = W.

Proof. (a) To prove part (a), extend S to a basis {vy, ..., Uk, Wkt1, ..., w,} for V, then apply Gram-
Schmidt.

(b) The set S” = {vg41,.-.,v,} is linearly independent since it’s a subset of a basis. Since {vy,...,v,}
is orthonormal, and W = Span {vy, ..., v}, we have S’ C W+. Therefore, Span S’ C W+. For the
opposite inclusion, take z € W+. Then since {vy,...,v,} is orthonormal, we have
n n
T = Z@%W) v; = Z (w,v;)v; € Span S".
i=1 i=k+1

(c) If W C V is any subspace, choose an orthonormal basis {vy, ..., v} for W. Then apply parts (a)
and (b).
(d) Tt’s clear that W C (W+)+ since

Wht={zeV:(z,y)=0forallye W+}.

Then, by part (c¢),
dim(W1)+ =n — dim W+ = dim W.

Hence, W = (W+)+. O
Proposition. Let W be a finite-dimensional subspace of V. Then
V=Waow
In other words, for each y € V, there exist unique v € W and z € W+ such that
y=u+z.

We define u to be the orthogonal projection of y onto W.

If uy,...,ur is an orthonormal basis for W, then
k
U= Z<y7 uZ> Us -
i=1
Proof. By Gram-Schmidt, there exists an orthonormal basis u1, . .., u; for W. Define u = Zle (y,u;) u;

and z =y —u. Then u € W and y = u + 2. Further, z € W since for each j = 1,...,k, we have

<Z7uj> =



~ (yuy) ~ (v )

For uniqueness, suppose there exist v/ € W and 2z’ € W+ such that
y=u+z=u +2.

Then u —u' =2’ — 2 € WNW=+ = {0}. Thus, u = v’ and z = 2’. (The reason W N W= = {0} is as
follows: if z € W, then we saw last time that z = Zi;l(:r, ui) u;. If it is also the case that © € W,
then (z,u;) =0 fori=1,...,k since each u; is in W. Hence, z = 0.) O

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:
ly —ull < lly —wl
for all w € W with equality if and only if w = u.

Proof. Write y = u+ 2z withu € W and z € W+, andlet w € W. Then u—w € W and y —u € W+,
So u — w and z = y — u are perpendicular. By the Pythagorean theorem,

ly = wif* = |(u + 2) — w|®
= [I(u — w) + 2|
= [l(u = w)[I* + 2]
> |||
= lly —ul*.
Equality occurs above if and only if |[u — w||? = 0, i.e., if and only if u = w. O

Example. Let V = R3 with the standard inner product, and let’s consider orthogonal projection
onto the zy-plane. An orthonormal basis for the zy-plane is {e1, es}. The projection of a point u =
(7,y,2) € R? is given by

u=((z,y,2) er)er + ((z,y,2) - e2)e2a = wer +yea = (z,y,0).
The distance of (z,y, z) to the zy-plane is
(@, y,2) — ull = (0,0, 2)[| = [2].
Application. Consider the vector space V of integrable functions f: [0, 2] — R with inner product

1 27
(fr9) == i f()g(t)dt.

™

Thus, the distance between f,g € V is

2m
If gl = \/ = [ —gwpra

which will be small if f(¢) ~ g(¢) for ¢ € [0, 27].




One may check that S,, := {%, cos(x), sin(x), cos(2x), sin(2z), . . ., cos(nx), sin(nx)} is an orthonor-
mal subset. Given any integrable f € V, the orthogonal projection of f to the subspace spanned
by S, gives the best approximation of the function using sines and cosines of frequencies -

for j =0,...,n. Write the projection of f to Span(S,,) as

1 n n
PLOjspancs,) (f)(z) = a 7 + ) Bicos(iz) + Y i sin(iz),
=1 =1

Since S, is orthonormal, we may find the coefficients by taking inner products:

),

a=(f1/V2)= 2

2m

Bi = {f,cos(ix)) = % ; f(t) cos(iz) dt
vi = (f,sin(iz)) = % 0 " f(t) siniz) dt.

For instance, consider the function f(z) =z for x € [0, 27]. We find

1/%tdt\@
a=— — .
T Jo V2

Integrating by parts, we find

1 [ 1 [tsin(it it) |2
B; = f/ teos(it) dt = = < st ) T Cos_gl ] I—

T Jo T 1 1 o

and ) )
1 [ 1/ tcos(it) sin(it 2
Ny = 7/ tsin(it) dt = = (_ cos(it) bm.gl I
T Jo m i i 0 1

Thus,

; 2 — sin )
Projspan(s,) (/) () = \[ Z — sin(iz) - Z

See the next page to compare the graph of f with the graphs of these projections for various n.



The plot of Projgpan(s,)(f) versus the plot of f(x) =z for n = 1,2, and 10.
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