Orthogonal complements and projections

Definition. The direct sum of vector spaces U and W over a field F is the set

$$
U \oplus W=\{(u, w): u \in U \text { and } w \in W\}
$$

with scalar multiplication and vector addition defined by

$$
\lambda(u, w)=(\lambda u, \lambda w) \quad \text { and } \quad(u, w)+\left(u^{\prime}, w^{\prime}\right)=\left(u+u^{\prime}, w+w^{\prime}\right)
$$

for all $u, u^{\prime} \in U, w, w^{\prime} \in W$, and $\lambda \in F$.
Proposition. Let U and W be subspaces of a vector space V over F such that: (i) the union of U and W spans V, and (ii) $U \cap W=\{0\}$. Then there is an isomorphism

$$
\begin{aligned}
U \oplus W & \rightarrow V \\
(u, w) & \mapsto u+w .
\end{aligned}
$$

Thus, every element of V has a unique expression of the form $u+w$ with $u \in U$ and $w \in W$.

Proof. Easy exercise.
Remark. In the case of the Proposition, we says that V is the internal direct sum of U and W and abuse notation by simply writing $V=U \oplus W$. The direct sum as we first defined it is sometimes called the external direct sum of U and W.

For the rest of this lecture, let $(V,\langle\rangle$,$) be an inner product space over F=\mathbb{R}$ or \mathbb{C}.
Definition. Let $S \subseteq V$ be nonempty. The orthogonal complement of S is

$$
S^{\perp}=\{x \in V:\langle x, y\rangle=0 \text { for all } y \in S\}
$$

Exercise. Show that S^{\perp} is a subspace of V.
Example. Consider \mathbb{R}^{3} with the standard inner product, and let $S=\{(a, b, c)\}$. So S consists of the single vector $(a, b, c) \in \mathbb{R}^{3}$. Then

$$
S^{\perp}=\left\{(x, y, z) \in \mathbb{R}^{3}:(x, y, z) \cdot(a, b, c)=0\right\}=\left\{(x, y, z) \in \mathbb{R}^{3}: a x+b y+c z=0\right\}
$$

a plane in \mathbb{R}^{3} defined by the equation $a x+b y+c z=0$.
Proposition. Suppose $\operatorname{dim} V=n$ and $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthonormal subset of V.
(a) S can be extended to an orthonormal basis $\left\{v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right\}$ for V.
(b) If $W=\operatorname{Span} S$, then $S^{\prime}=\left\{v_{k+1}, \ldots, v_{n}\right\}$ is an orthonormal basis for W^{\perp}.
(c) If $W \subseteq V$ is any subspace, then

$$
\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V=n
$$

(d) If $W \subseteq V$ is any subspace, then $\left(W^{\perp}\right)^{\perp}=W$.

Proof. (a) To prove part (a), extend S to a basis $\left\{v_{1}, \ldots, v_{k}, w_{k+1}, \ldots, w_{n}\right\}$ for V, then apply GramSchmidt.
(b) The set $S^{\prime}=\left\{v_{k+1}, \ldots, v_{n}\right\}$ is linearly independent since it's a subset of a basis. Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal, and $W=\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}$, we have $S^{\prime} \subseteq W^{\perp}$. Therefore, Span $S^{\prime} \subseteq W^{\perp}$. For the opposite inclusion, take $x \in W^{\perp}$. Then since $\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal, we have

$$
x=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle v_{i}=\sum_{i=k+1}^{n}\left\langle x, v_{i}\right\rangle v_{i} \in \operatorname{Span} S^{\prime} .
$$

(c) If $W \subseteq V$ is any subspace, choose an orthonormal basis $\left\{v_{1}, \ldots, v_{k}\right\}$ for W. Then apply parts (a) and (b).
(d) It's clear that $W \subseteq\left(W^{\perp}\right)^{\perp}$ since

$$
\left(W^{\perp}\right)^{\perp}=\left\{x \in V:\langle x, y\rangle=0 \text { for all } y \in W^{\perp}\right\} .
$$

Then, by part (c),

$$
\operatorname{dim}\left(W^{\perp}\right)^{\perp}=n-\operatorname{dim} W^{\perp}=\operatorname{dim} W
$$

Hence, $W=\left(W^{\perp}\right)^{\perp}$.
Proposition. Let W be a finite-dimensional subspace of V. Then

$$
V=W \oplus W^{\perp}
$$

In other words, for each $y \in V$, there exist unique $u \in W$ and $z \in W^{\perp}$ such that

$$
y=u+z .
$$

We define u to be the orthogonal projection of y onto W.
If u_{1}, \ldots, u_{k} is an orthonormal basis for W, then

$$
u=\sum_{i=1}^{k}\left\langle y, u_{i}\right\rangle u_{i} .
$$

Proof. By Gram-Schmidt, there exists an orthonormal basis u_{1}, \ldots, u_{k} for W. Define $u=\sum_{i=1}^{k}\left\langle y, u_{i}\right\rangle u_{i}$ and $z=y-u$. Then $u \in W$ and $y=u+z$. Further, $z \in W^{\perp}$ since for each $j=1, \ldots, k$, we have

$$
\begin{aligned}
\left\langle z, u_{j}\right\rangle & =\left\langle y-u, u_{j}\right\rangle \\
& =\left\langle y, u_{j}\right\rangle-\left\langle\sum_{i=1}^{k}\left\langle y, u_{i}\right\rangle u_{i}, u_{j}\right\rangle \\
& =\left\langle y, u_{j}\right\rangle-\sum_{i=1}^{k}\left\langle y, u_{i}\right\rangle\left\langle u_{i}, u_{j}\right\rangle \\
& =\left\langle y, u_{j}\right\rangle-\left\langle y, u_{j}\right\rangle\left\langle u_{j}, u_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle y, u_{j}\right\rangle-\left\langle y, u_{j}\right\rangle \\
& =0
\end{aligned}
$$

For uniqueness, suppose there exist $u^{\prime} \in W$ and $z^{\prime} \in W^{\perp}$ such that

$$
y=u+z=u^{\prime}+z^{\prime} .
$$

Then $u-u^{\prime}=z^{\prime}-z \in W \cap W^{\perp}=\{0\}$. Thus, $u=u^{\prime}$ and $z=z^{\prime}$. (The reason $W \cap W^{\perp}=\{0\}$ is as follows: if $x \in W$, then we saw last time that $x=\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}$. If it is also the case that $x \in W^{\perp}$, then $\left\langle x, u_{i}\right\rangle=0$ for $i=1, \ldots, k$ since each u_{i} is in W. Hence, $x=0$.)

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y :

$$
\|y-u\| \leq\|y-w\|
$$

for all $w \in W$ with equality if and only if $w=u$.
Proof. Write $y=u+z$ with $u \in W$ and $z \in W^{\perp}$, and let $w \in W$. Then $u-w \in W$ and $y-u \in W^{\perp}$. So $u-w$ and $z=y-u$ are perpendicular. By the Pythagorean theorem,

$$
\begin{aligned}
\|y-w\|^{2} & =\|(u+z)-w\|^{2} \\
& =\|(u-w)+z\|^{2} \\
& =\|(u-w)\|^{2}+\|z\|^{2} \\
& \geq\|z\|^{2} \\
& =\|y-u\|^{2} .
\end{aligned}
$$

Equality occurs above if and only if $\|u-w\|^{2}=0$, i.e., if and only if $u=w$.
Example. Let $V=\mathbb{R}^{3}$ with the standard inner product, and let's consider orthogonal projection onto the $x y$-plane. An orthonormal basis for the $x y$-plane is $\left\{e_{1}, e_{2}\right\}$. The projection of a point $u=$ $(x, y, z) \in \mathbb{R}^{3}$ is given by

$$
u=\left((x, y, z) \cdot e_{1}\right) e_{1}+\left((x, y, z) \cdot e_{2}\right) e_{2}=x e_{1}+y e_{2}=(x, y, 0)
$$

The distance of (x, y, z) to the $x y$-plane is

$$
\|(x, y, z)-u\|=\|(0,0, z)\|=|z|
$$

Application. Consider the vector space V of integrable functions $f:[0,2 \pi] \rightarrow \mathbb{R}$ with inner product

$$
\langle f, g\rangle:=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) g(t) d t
$$

Thus, the distance between $f, g \in V$ is

$$
\|f-g\|=\sqrt{\frac{1}{\pi} \int_{0}^{2 \pi}(f(t)-g(t))^{2} d t}
$$

which will be small if $f(t) \approx g(t)$ for $t \in[0,2 \pi]$.

One may check that $S_{n}:=\left\{\frac{1}{\sqrt{2}}, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \ldots, \cos (n x), \sin (n x)\right\}$ is an orthonormal subset. Given any integrable $f \in V$, the orthogonal projection of f to the subspace spanned by S_{n} gives the best approximation of the function using sines and cosines of frequencies $\frac{j}{2 \pi}$ for $j=0, \ldots, n$. Write the projection of f to $\operatorname{Span}\left(S_{n}\right)$ as

$$
\operatorname{proj}_{S p a n\left(S_{n}\right)}(f)(x)=\alpha \cdot \frac{1}{\sqrt{2}}+\sum_{i=1}^{n} \beta_{i} \cos (i x)+\sum_{i=1}^{n} \gamma_{i} \sin (i x)
$$

Since S_{n} is orthonormal, we may find the coefficients by taking inner products:

$$
\begin{aligned}
& \alpha=\langle f, 1 / \sqrt{2}\rangle=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{f(t)}{\sqrt{2}} d t \\
& \beta_{i}=\langle f, \cos (i x)\rangle=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \cos (i x) d t \\
& \gamma_{i}=\langle f, \sin (i x)\rangle=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) \sin (i x) d t
\end{aligned}
$$

For instance, consider the function $f(x)=x$ for $x \in[0,2 \pi]$. We find

$$
\alpha=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{t}{\sqrt{2}} d t=\sqrt{2} \pi
$$

Integrating by parts, we find

$$
\beta_{i}=\frac{1}{\pi} \int_{0}^{2 \pi} t \cos (i t) d t=\frac{1}{\pi}\left(\frac{t \sin (i t)}{i}+\left.\frac{\cos (i t)}{i^{2}}\right|_{0} ^{2 \pi}=0\right.
$$

and

$$
\gamma_{i}=\frac{1}{\pi} \int_{0}^{2 \pi} t \sin (i t) d t=\frac{1}{\pi}\left(-\frac{t \cos (i t)}{i}+\left.\frac{\sin (i t)}{i^{2}}\right|_{0} ^{2 \pi}=-\frac{2}{i}\right.
$$

Thus,

$$
\operatorname{proj}_{S p a n\left(S_{n}\right)}(f)(x)=\sqrt{2} \pi \cdot \frac{1}{\sqrt{2}}-\sum_{i=1}^{n} \frac{2}{i \pi} \sin (i x)=\pi-\frac{2}{\pi} \sum_{i=1}^{n} \frac{\sin (i x)}{i} .
$$

See the next page to compare the graph of f with the graphs of these projections for various n.

The plot of $\operatorname{proj}_{\operatorname{Span}\left(S_{n}\right)}(f)$ versus the plot of $f(x)=x$ for $n=1,2$, and 10 .

