
Math 201 lecture for Wednesday, Week 12

Orthogonal complements and projections

Definition. The direct sum of vector spaces U and W over a field F is the set

U ⊕W = {(u,w) : u ∈ U and w ∈W}

with scalar multiplication and vector addition defined by

λ(u,w) = (λu, λw) and (u,w) + (u′, w′) = (u+ u′, w + w′),

for all u, u′ ∈ U , w,w′ ∈W , and λ ∈ F .

Proposition. Let U and W be subspaces of a vector space V over F such that: (i) the union of U
and W spans V , and (ii) U ∩W = {0}. Then there is an isomorphism

U ⊕W → V

(u,w) 7→ u+ w.

Thus, every element of V has a unique expression of the form u+ w with u ∈ U and w ∈W .

Proof. Easy exercise.

Remark. In the case of the Proposition, we says that V is the internal direct sum of U and W and
abuse notation by simply writing V = U ⊕W . The direct sum as we first defined it is sometimes
called the external direct sum of U and W .

For the rest of this lecture, let (V, 〈 , 〉) be an inner product space over F = R or C.

Definition. Let S ⊆ V be nonempty. The orthogonal complement of S is

S⊥ = {x ∈ V : 〈x, y〉 = 0 for all y ∈ S} .

Exercise. Show that S⊥ is a subspace of V .

Example. Consider R3 with the standard inner product, and let S = {(a, b, c)}. So S consists of
the single vector (a, b, c) ∈ R3. Then

S⊥ = {(x, y, z) ∈ R3 : (x, y, z) · (a, b, c) = 0} = {(x, y, z) ∈ R3 : ax+ by + cz = 0},

a plane in R3 defined by the equation ax+ by + cz = 0.

Proposition. Suppose dimV = n and S = {v1, . . . , vk} is an orthonormal subset of V .

(a) S can be extended to an orthonormal basis {v1, . . . , vk, vk+1, . . . , vn} for V .

(b) If W = SpanS, then S′ = {vk+1, . . . , vn} is an orthonormal basis for W⊥.
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(c) If W ⊆ V is any subspace, then

dimW + dimW⊥ = dimV = n.

(d) If W ⊆ V is any subspace, then (W⊥)⊥ = W .

Proof. (a) To prove part (a), extend S to a basis {v1, . . . , vk, wk+1, . . . , wn} for V , then apply Gram-
Schmidt.

(b) The set S′ = {vk+1, . . . , vn} is linearly independent since it’s a subset of a basis. Since {v1, . . . , vn}
is orthonormal, and W = Span {v1, . . . , vk}, we have S′ ⊆ W⊥. Therefore, SpanS′ ⊆ W⊥. For the
opposite inclusion, take x ∈W⊥. Then since {v1, . . . , vn} is orthonormal, we have

x =

n∑
i=1

〈x, vi〉 vi =

n∑
i=k+1

〈x, vi〉 vi ∈ SpanS′.

(c) If W ⊆ V is any subspace, choose an orthonormal basis {v1, . . . , vk} for W . Then apply parts (a)
and (b).

(d) It’s clear that W ⊆ (W⊥)⊥ since

(W⊥)⊥ =
{
x ∈ V : 〈x, y〉 = 0 for all y ∈W⊥} .

Then, by part (c),
dim(W⊥)⊥ = n− dimW⊥ = dimW.

Hence, W = (W⊥)⊥.

Proposition. Let W be a finite-dimensional subspace of V . Then

V = W ⊕W⊥.

In other words, for each y ∈ V , there exist unique u ∈W and z ∈W⊥ such that

y = u+ z.

We define u to be the orthogonal projection of y onto W .

If u1, . . . , uk is an orthonormal basis for W , then

u =

k∑
i=1

〈y, ui〉ui.

Proof. By Gram-Schmidt, there exists an orthonormal basis u1, . . . , uk forW . Define u =
∑k
i=1〈y, ui〉ui

and z = y − u. Then u ∈W and y = u+ z. Further, z ∈W⊥ since for each j = 1, . . . , k, we have

〈z, uj〉 = 〈y − u, uj〉

= 〈y, uj〉 − 〈
∑k
i=1〈y, ui〉ui, uj〉

= 〈y, uj〉 −
∑k
i=1〈y, ui〉 〈ui, uj〉

= 〈y, uj〉 − 〈y, uj〉 〈uj , uj〉
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= 〈y, uj〉 − 〈y, uj〉
= 0.

For uniqueness, suppose there exist u′ ∈W and z′ ∈W⊥ such that

y = u+ z = u′ + z′.

Then u− u′ = z′ − z ∈W ∩W⊥ = {0}. Thus, u = u′ and z = z′. (The reason W ∩W⊥ = {0} is as

follows: if x ∈W , then we saw last time that x =
∑k
i=1〈x, ui〉ui. If it is also the case that x ∈W⊥,

then 〈x, ui〉 = 0 for i = 1, . . . , k since each ui is in W . Hence, x = 0.)

Corollary. The orthogonal projection u of y onto W is the closest vector in W to y:

‖y − u‖ ≤ ‖y − w‖

for all w ∈W with equality if and only if w = u.

Proof. Write y = u+z with u ∈W and z ∈W⊥, and let w ∈W . Then u−w ∈W and y−u ∈W⊥.
So u− w and z = y − u are perpendicular. By the Pythagorean theorem,

‖y − w‖2 = ‖(u+ z)− w‖2

= ‖(u− w) + z‖2

= ‖(u− w)‖2 + ‖z‖2

≥ ‖z‖2

= ‖y − u‖2.

Equality occurs above if and only if ‖u− w‖2 = 0, i.e., if and only if u = w.

Example. Let V = R3 with the standard inner product, and let’s consider orthogonal projection
onto the xy-plane. An orthonormal basis for the xy-plane is {e1, e2}. The projection of a point u =
(x, y, z) ∈ R3 is given by

u = ((x, y, z) · e1)e1 + ((x, y, z) · e2)e2 = x e1 + y e2 = (x, y, 0).

The distance of (x, y, z) to the xy-plane is

‖(x, y, z)− u‖ = ‖(0, 0, z)‖ = |z|.

Application. Consider the vector space V of integrable functions f : [0, 2π]→ R with inner product

〈f, g〉 :=
1

π

∫ 2π

0

f(t)g(t) dt.

Thus, the distance between f, g ∈ V is

‖f − g‖ =

√
1

π

∫ 2π

0

(f(t)− g(t))2 dt,

which will be small if f(t) ≈ g(t) for t ∈ [0, 2π].
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One may check that Sn :=
{

1√
2
, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx)

}
is an orthonor-

mal subset. Given any integrable f ∈ V , the orthogonal projection of f to the subspace spanned
by Sn gives the best approximation of the function using sines and cosines of frequencies j

2π
for j = 0, . . . , n. Write the projection of f to Span(Sn) as

projSpan(Sn)(f)(x) = α · 1√
2

+

n∑
i=1

βi cos(ix) +

n∑
i=1

γi sin(ix),

Since Sn is orthonormal, we may find the coefficients by taking inner products:

α = 〈f, 1/
√

2〉 =
1

π

∫ 2π

0

f(t)√
2
dt

βi = 〈f, cos(ix)〉 =
1

π

∫ 2π

0

f(t) cos(ix) dt

γi = 〈f, sin(ix)〉 =
1

π

∫ 2π

0

f(t) sin(ix) dt.

For instance, consider the function f(x) = x for x ∈ [0, 2π]. We find

α =
1

π

∫ 2π

0

t√
2
dt =

√
2π.

Integrating by parts, we find

βi =
1

π

∫ 2π

0

t cos(it) dt =
1

π

(
t sin(it)

i
+

cos(it)

i2

∣∣∣∣2π
0

= 0

and

γi =
1

π

∫ 2π

0

t sin(it) dt =
1

π

(
− t cos(it)

i
+

sin(it)

i2

∣∣∣∣2π
0

= −2

i
.

Thus,

projSpan(Sn)(f)(x) =
√

2π · 1√
2
−

n∑
i=1

2

iπ
sin(ix) = π − 2

π

n∑
i=1

sin(ix)

i
.

See the next page to compare the graph of f with the graphs of these projections for various n.
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The plot of projSpan(Sn)(f) versus the plot of f(x) = x for n = 1, 2, and 10.
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