
Math 201 lecture for Monday, Week 12

Gram-Schmidt

Let (V, 〈 , 〉) be an inner product space over F = R or C.

Definition. Let S ⊆ V . Then S is an orthogonal subset of V if 〈u, v〉 = 0 for all u, v ∈ S with u 6= v.
If S is an orthogonal subset of V and ‖u‖ = 1 for all u ∈ S, then S is an orthonormal subset of V .

Examples.

• The standard basis e1, . . . , en for Fn is orthonormal with respect to the standard inner product
on Fn.

•
{

1√
2
(1, 1), 1√

2
(1,−1)

}
is orthonormal with respect to the standard inner product on R2.

Proposition. Let S = {v1, . . . , vk} be an orthogonal set of nonzero vectors in V , and let y ∈ SpanS.
Then

y =

k∑
j=1

〈y, vj〉
〈vj , vj〉

vj =

k∑
j=1

〈y, vj〉
‖vj‖2

vj .

Note that the coefficients are the components of y along each vj .

Proof. Say y =
∑k

i=1 aivi. Then for j = 1, . . . , k,

〈y, vj〉 = 〈
∑k

i=1 aivi, vj〉 =
∑k

i=1 ai〈vi, vj〉 = aj〈vj , vj〉,

since 〈vi, vj〉 = 0 for i 6= j. Hence,

aj =
〈y, vj〉
〈vj , vj〉

=
〈y, vj〉
‖vj‖2

,

the component of y along vj .

Corollary 1. If S = {v1, . . . , vk} is orthonormal and y ∈ SpanS, then

y =

k∑
i=1

〈y, vj〉vi.

Corollary 2. Is S = {v1, . . . , vk} is an orthogonal set of nonzero vectors in V then S is linearly
independent.

Proof. If
∑k

i=1 aivi = 0, then for each j = 1, . . . , k,

0 = 〈0, vj〉 = 〈
∑k

i=1 aivi, vj〉 = aj〈vj , vj〉.

Since vj 6= 0 and 〈 , 〉 is positive-definite, we have 〈vj , vj〉 6= 0. Hence, aj = 0 for j = 1, . . . , k.
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Example. Consider R2 with the standard inner product, and let

u =
1√
2

(1, 1) and v =
1√
2

(1,−1).

Then β = {u, v} gives an orthonormal ordered basis for R2. What are the coordinates of y = (4, 1)
with respect to that basis?

u

v

(4, 1)

5√
2
u

3√
2
v

Answer:

y = 〈y, u〉u+ 〈y, v〉v

= (4, 1) ·
(

1√
2

(1, 1)

)
u+ (4, 1)

(
1√
2

(1,−1)

)
v

=
5√
2
u+

3√
2
v.

Check:
5√
2

(
1√
2

(1, 1)

)
+

3√
2

(
1√
2

(1,−1)

)
=

5

2
(1, 1) +

3

2
(1,−1) = (4, 1).

Gram-Schmidt. Given vectors w1, w2 ∈ V , we’d like to compute orthogonal vectors v1, v2 such
that

Span {w1, w2} = Span {v1, v2} .

To do that, let v1 = w1, then “straighten out” w2 to create v2:

w1 = v1

w2

cv1~0

v2 = w2 − cv1
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The number c is the component of w2 along v1. Recall, c is determined by requiring v2 and v1 to
be orthogonal:

0 = 〈v2, v1〉 = 〈w2 − cv1, v1〉 = 〈w2, v2〉 − c〈v1, v1〉.
Therefore,

c =
〈w2, v1〉
〈v1, v1〉

=
〈w2, v1〉
‖v1‖2

.

(We’ve assumed v1 6= 0.)

The following algorithm generalizes this idea:

Algorithm. (Gram-Schmidt orthogonalization)

input: S = {w1, . . . , wn}, a linearly independent subset of V .

Let
v1 := w1.

For k = 2, 3, . . . , n, define vk by starting with wk, then subtracting off the components of wk along
the previously found vi :

vk := wk −
k−1∑
i=1

〈wk, vi〉
‖vi‖2

vi.

output: S′ = {v1, . . . , vn} an orthogonal set with SpanS′ = SpanS.

or

output: S′′ =

{
v1
‖v1‖

, . . . ,
vn
‖vn‖

}
an orthonormal set with SpanS′ = SpanS.

Proof of validity of the algorithm. We prove this by induction on n. The case n = 1 is clear. Suppose
the algorithm works for some n ≥ 1, and let S = {w1, . . . , wn+1} be a linearly independent set. By
induction, running the algorithm on the first n vectors in S produces orthogonal v1, . . . , vn with

Span {v1, . . . , vn} = Span {w1, . . . , wn} .

Running the algorithm further produces

vn+1 = wn+1 −
n∑

i=1

〈wn+1, vi〉
‖vi‖2

vi.

It cannot be that vn+1 = 0, since otherwise, the above equation we would say

wn+1 ∈ Span {v1, . . . , vn} = Span {w1, . . . , wn} ,

contradicting the assumption of the linear independence of the wi. So vn+1 6= 0.

We now check that vn+1 is orthogonal to the previous vi. For j = 1, . . . , n, we have

〈vn+1, vj〉 =

〈
wn+1 −

n∑
i=1

〈wn+1, vi〉
‖vi‖2

vi, vj

〉

= 〈wn+1, vj〉 −
n∑

i=1

〈wn+1, vi〉
‖vi‖2

〈vi, vj〉
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= 〈wn+1, vj〉 −
〈wn+1, vj〉
‖vj‖2

〈vj , vj〉

= 〈wn+1, vj〉 − 〈wn+1, vj〉

= 0.

We have shown {v1, . . . , vn+1} is an orthogonal set of vectors, and we would now like to show
that its span is the span of {w1, . . . , wn+1}. First, since {v1, . . . , vn+1} is orthogonal, it’s linearly
independent. Next, we have

Span {v1, . . . , vn+1} ⊆ Span {v1, . . . , vn, wn+1} ⊆ Span {w1, . . . , wn, wn+1} .

Since Span {v1, . . . , vn+1} is an (n + 1)-dimensional subspace of the (n + 1)-dimensional space
Span {w1, . . . , wn, wn+1}, these spaces must be equal.

Corollary. Every nonzero finite-dimensional inner product space has an orthonormal basis.

Example. Let V = R≤1[x], the space of polynomials of degree at most 1 with real coefficients and
with inner product

〈f, g〉 =

∫ 1

0

f(t)g(t) dt.

Apply Gram-Schmidt to the basis {1, x} to get an orthonormal basis. Note that 1 and x are not
orthogonal:

〈1, x〉 =

∫ 1

0

t dt =
1

2
6= 0.

Gram-Schmidt: Start with v1 = 1, then let

v2 = x− 〈x, v1〉
‖v1‖2

v1

= x− 〈x, 1〉
‖1‖2

· 1

= x−
∫ 1

0
t dt∫ 1

0
dt
· 1

= x− 1

2
.

Check orthogonality:

〈1, x− 1/2〉 =

∫ 1

0

(t− 1/2) dt = 0.

Now scale v1 = 1 and v2 = x− 1/2 to create an orthonormal basis:

‖v1‖ =

√∫ 1

0

dt = 1
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‖v2‖ =
√
〈x− 1/2, x− 1/2〉

=

√∫ 1

0

(t− 1/2)2 dt

=

√∫ 1

0

(t2 − t+ 1/4) dt

=
√

1/12.

So an orthonormal basis for V is {
1,
√

12(x− 1/2)
}
.
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