Math 201 lecture for Monday, Week 12

Gram-Schmidt

Let (V, \langle , \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

Definition. Let $S \subseteq V$. Then S is an *orthogonal* subset of V if $\langle u, v \rangle = 0$ for all $u, v \in S$ with $u \neq v$. If S is an orthogonal subset of V and ||u|| = 1 for all $u \in S$, then S is an *orthonormal* subset of V.

Examples.

- The standard basis e_1, \ldots, e_n for F^n is orthonormal with respect to the standard inner product on F^n .
- $\left\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\right\}$ is orthonormal with respect to the standard inner product on \mathbb{R}^2 .

Proposition. Let $S = \{v_1, \ldots, v_k\}$ be an orthogonal set of nonzero vectors in V, and let $y \in \text{Span } S$. Then

$$y = \sum_{j=1}^{k} \frac{\langle y, v_j \rangle}{\langle v_j, v_j \rangle} v_j = \sum_{j=1}^{k} \frac{\langle y, v_j \rangle}{\|v_j\|^2} v_j.$$

Note that the coefficients are the components of y along each v_j .

Proof. Say $y = \sum_{i=1}^{k} a_i v_i$. Then for $j = 1, \dots, k$,

$$\langle y, v_j \rangle = \langle \sum_{i=1}^k a_i v_i, v_j \rangle = \sum_{i=1}^k a_i \langle v_i, v_j \rangle = a_j \langle v_j, v_j \rangle,$$

since $\langle v_i, v_j \rangle = 0$ for $i \neq j$. Hence,

$$a_j = \frac{\langle y, v_j \rangle}{\langle v_j, v_j \rangle} = \frac{\langle y, v_j \rangle}{\|v_j\|^2},$$

the component of y along v_i .

Corollary 1. If $S = \{v_1, \ldots, v_k\}$ is orthonormal and $y \in \text{Span } S$, then

$$y = \sum_{i=1}^{k} \langle y, v_j \rangle v_i.$$

Corollary 2. Is $S = \{v_1, \ldots, v_k\}$ is an orthogonal set of nonzero vectors in V then S is linearly independent.

Proof. If $\sum_{i=1}^{k} a_i v_i = 0$, then for each $j = 1, \ldots, k$,

$$0 = \langle 0, v_j \rangle = \langle \sum_{i=1}^k a_i v_i, v_j \rangle = a_j \langle v_j, v_j \rangle.$$

Since $v_j \neq 0$ and \langle , \rangle is positive-definite, we have $\langle v_j, v_j \rangle \neq 0$. Hence, $a_j = 0$ for $j = 1, \ldots, k$. \Box

Example. Consider \mathbb{R}^2 with the standard inner product, and let

$$u = \frac{1}{\sqrt{2}}(1,1)$$
 and $v = \frac{1}{\sqrt{2}}(1,-1)$

Then $\beta = \{u, v\}$ gives an orthonormal ordered basis for \mathbb{R}^2 . What are the coordinates of y = (4, 1) with respect to that basis?

Answer:

$$y = \langle y, u \rangle u + \langle y, v \rangle v$$
$$= (4,1) \cdot \left(\frac{1}{\sqrt{2}}(1,1)\right) u + (4,1) \left(\frac{1}{\sqrt{2}}(1,-1)\right) v$$
$$= \frac{5}{\sqrt{2}} u + \frac{3}{\sqrt{2}} v.$$

Check:

$$\frac{5}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}(1,1)\right) + \frac{3}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}(1,-1)\right) = \frac{5}{2}(1,1) + \frac{3}{2}(1,-1) = (4,1).$$

Gram-Schmidt. Given vectors $w_1, w_2 \in V$, we'd like to compute orthogonal vectors v_1, v_2 such that

$$\text{Span}\{w_1, w_2\} = \text{Span}\{v_1, v_2\}.$$

To do that, let $v_1 = w_1$, then "straighten out" w_2 to create v_2 :

The number c is the component of w_2 along v_1 . Recall, c is determined by requiring v_2 and v_1 to be orthogonal:

$$0 = \langle v_2, v_1 \rangle = \langle w_2 - cv_1, v_1 \rangle = \langle w_2, v_2 \rangle - c \langle v_1, v_1 \rangle.$$

Therefore,

$$c = \frac{\langle w_2, v_1 \rangle}{\langle v_1, v_1 \rangle} = \frac{\langle w_2, v_1 \rangle}{\|v_1\|^2}.$$

(We've assumed $v_1 \neq 0$.)

The following algorithm generalizes this idea:

Algorithm. (Gram-Schmidt orthogonalization)

INPUT: $S = \{w_1, \dots, w_n\}$, a linearly independent subset of V. Let

$$v_1 := w_1$$

For k = 2, 3, ..., n, define v_k by starting with w_k , then subtracting off the components of w_k along the previously found v_i :

$$v_k := w_k - \sum_{i=1}^{k-1} \frac{\langle w_k, v_i \rangle}{\|v_i\|^2} v_i.$$

OUTPUT: $S' = \{v_1, \ldots, v_n\}$ an orthogonal set with Span S' = Span S.

or

OUTPUT:
$$S'' = \left\{ \frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|} \right\}$$
 an orthonormal set with $\operatorname{Span} S' = \operatorname{Span} S$.

Proof of validity of the algorithm. We prove this by induction on n. The case n = 1 is clear. Suppose the algorithm works for some $n \ge 1$, and let $S = \{w_1, \ldots, w_{n+1}\}$ be a linearly independent set. By induction, running the algorithm on the first n vectors in S produces orthogonal v_1, \ldots, v_n with

$$\operatorname{Span} \{v_1, \ldots, v_n\} = \operatorname{Span} \{w_1, \ldots, w_n\}.$$

Running the algorithm further produces

$$v_{n+1} = w_{n+1} - \sum_{i=1}^{n} \frac{\langle w_{n+1}, v_i \rangle}{\|v_i\|^2} v_i$$

It cannot be that $v_{n+1} = 0$, since otherwise, the above equation we would say

$$w_{n+1} \in \operatorname{Span} \{v_1, \ldots, v_n\} = \operatorname{Span} \{w_1, \ldots, w_n\},\$$

contradicting the assumption of the linear independence of the w_i . So $v_{n+1} \neq 0$. We now check that v_{n+1} is orthogonal to the previous v_i . For $j = 1, \ldots, n$, we have

$$\langle v_{n+1}, v_j \rangle = \left\langle w_{n+1} - \sum_{i=1}^n \frac{\langle w_{n+1}, v_i \rangle}{\|v_i\|^2} v_i, v_j \right\rangle$$
$$= \left\langle w_{n+1}, v_j \right\rangle - \sum_{i=1}^n \frac{\langle w_{n+1}, v_i \rangle}{\|v_i\|^2} \left\langle v_i, v_j \right\rangle$$

$$= \langle w_{n+1}, v_j \rangle - \frac{\langle w_{n+1}, v_j \rangle}{\|v_j\|^2} \langle v_j, v_j \rangle$$
$$= \langle w_{n+1}, v_j \rangle - \langle w_{n+1}, v_j \rangle$$
$$= 0.$$

We have shown $\{v_1, \ldots, v_{n+1}\}$ is an orthogonal set of vectors, and we would now like to show that its span is the span of $\{w_1, \ldots, w_{n+1}\}$. First, since $\{v_1, \ldots, v_{n+1}\}$ is orthogonal, it's linearly independent. Next, we have

$$\operatorname{Span} \{v_1, \dots, v_{n+1}\} \subseteq \operatorname{Span} \{v_1, \dots, v_n, w_{n+1}\} \subseteq \operatorname{Span} \{w_1, \dots, w_n, w_{n+1}\}.$$

Since Span $\{v_1, \ldots, v_{n+1}\}$ is an (n + 1)-dimensional subspace of the (n + 1)-dimensional space Span $\{w_1, \ldots, w_n, w_{n+1}\}$, these spaces must be equal.

Corollary. Every nonzero finite-dimensional inner product space has an orthonormal basis.

Example. Let $V = \mathbb{R}_{\leq 1}[x]$, the space of polynomials of degree at most 1 with real coefficients and with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t)\,dt.$$

Apply Gram-Schmidt to the basis $\{1, x\}$ to get an orthonormal basis. Note that 1 and x are not orthogonal:

$$\langle 1, x \rangle = \int_0^1 t \, dt = \frac{1}{2} \neq 0.$$

Gram-Schmidt: Start with $v_1 = 1$, then let

$$v_2 = x - \frac{\langle x, v_1 \rangle}{\|v_1\|^2} v_1$$
$$= x - \frac{\langle x, 1 \rangle}{\|1\|^2} \cdot 1$$
$$= x - \frac{\int_0^1 t \, dt}{\int_0^1 dt} \cdot 1$$
$$= x - \frac{1}{2}.$$

Check orthogonality:

$$\langle 1, x - 1/2 \rangle = \int_0^1 (t - 1/2) dt = 0.$$

Now scale $v_1 = 1$ and $v_2 = x - 1/2$ to create an orthonormal basis:

$$||v_1|| = \sqrt{\int_0^1 dt} = 1$$

$$\|v_2\| = \sqrt{\langle x - 1/2, x - 1/2 \rangle}$$

= $\sqrt{\int_0^1 (t - 1/2)^2 dt}$
= $\sqrt{\int_0^1 (t^2 - t + 1/4) dt}$
= $\sqrt{1/12}.$

So an orthonormal basis for \boldsymbol{V} is

$$\left\{1, \sqrt{12}(x-1/2)\right\}.$$