Gram-Schmidt

Let $(V,\langle\rangle$,$) be an inner product space over F=\mathbb{R}$ or \mathbb{C}.
Definition. Let $S \subseteq V$. Then S is an orthogonal subset of V if $\langle u, v\rangle=0$ for all $u, v \in S$ with $u \neq v$. If S is an orthogonal subset of V and $\|u\|=1$ for all $u \in S$, then S is an orthonormal subset of V.

Examples.

- The standard basis e_{1}, \ldots, e_{n} for F^{n} is orthonormal with respect to the standard inner product on F^{n}.
- $\left\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\right\}$ is orthonormal with respect to the standard inner product on \mathbb{R}^{2}.

Proposition. Let $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be an orthogonal set of nonzero vectors in V, and let $y \in \operatorname{Span} S$. Then

$$
y=\sum_{j=1}^{k} \frac{\left\langle y, v_{j}\right\rangle}{\left\langle v_{j}, v_{j}\right\rangle} v_{j}=\sum_{j=1}^{k} \frac{\left\langle y, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j} .
$$

Note that the coefficients are the components of y along each v_{j}.
Proof. Say $y=\sum_{i=1}^{k} a_{i} v_{i}$. Then for $j=1, \ldots, k$,

$$
\left\langle y, v_{j}\right\rangle=\left\langle\sum_{i=1}^{k} a_{i} v_{i}, v_{j}\right\rangle=\sum_{i=1}^{k} a_{i}\left\langle v_{i}, v_{j}\right\rangle=a_{j}\left\langle v_{j}, v_{j}\right\rangle,
$$

since $\left\langle v_{i}, v_{j}\right\rangle=0$ for $i \neq j$. Hence,

$$
a_{j}=\frac{\left\langle y, v_{j}\right\rangle}{\left\langle v_{j}, v_{j}\right\rangle}=\frac{\left\langle y, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}
$$

the component of y along v_{j}.
Corollary 1. If $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is orthonormal and $y \in \operatorname{Span} S$, then

$$
y=\sum_{i=1}^{k}\left\langle y, v_{j}\right\rangle v_{i}
$$

Corollary 2. Is $S=\left\{v_{1}, \ldots, v_{k}\right\}$ is an orthogonal set of nonzero vectors in V then S is linearly independent.

Proof. If $\sum_{i=1}^{k} a_{i} v_{i}=0$, then for each $j=1, \ldots, k$,

$$
0=\left\langle 0, v_{j}\right\rangle=\left\langle\sum_{i=1}^{k} a_{i} v_{i}, v_{j}\right\rangle=a_{j}\left\langle v_{j}, v_{j}\right\rangle
$$

Since $v_{j} \neq 0$ and \langle,$\rangle is positive-definite, we have \left\langle v_{j}, v_{j}\right\rangle \neq 0$. Hence, $a_{j}=0$ for $j=1, \ldots, k$.

Example. Consider \mathbb{R}^{2} with the standard inner product, and let

$$
u=\frac{1}{\sqrt{2}}(1,1) \quad \text { and } \quad v=\frac{1}{\sqrt{2}}(1,-1) .
$$

Then $\beta=\{u, v\}$ gives an orthonormal ordered basis for \mathbb{R}^{2}. What are the coordinates of $y=(4,1)$ with respect to that basis?

Answer:

$$
\begin{aligned}
y & =\langle y, u\rangle u+\langle y, v\rangle v \\
& =(4,1) \cdot\left(\frac{1}{\sqrt{2}}(1,1)\right) u+(4,1)\left(\frac{1}{\sqrt{2}}(1,-1)\right) v \\
& =\frac{5}{\sqrt{2}} u+\frac{3}{\sqrt{2}} v .
\end{aligned}
$$

Check:

$$
\frac{5}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}(1,1)\right)+\frac{3}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}(1,-1)\right)=\frac{5}{2}(1,1)+\frac{3}{2}(1,-1)=(4,1)
$$

Gram-Schmidt. Given vectors $w_{1}, w_{2} \in V$, we'd like to compute orthogonal vectors v_{1}, v_{2} such that

$$
\operatorname{Span}\left\{w_{1}, w_{2}\right\}=\operatorname{Span}\left\{v_{1}, v_{2}\right\}
$$

To do that, let $v_{1}=w_{1}$, then "straighten out" w_{2} to create v_{2} :

The number c is the component of w_{2} along v_{1}. Recall, c is determined by requiring v_{2} and v_{1} to be orthogonal:

$$
0=\left\langle v_{2}, v_{1}\right\rangle=\left\langle w_{2}-c v_{1}, v_{1}\right\rangle=\left\langle w_{2}, v_{2}\right\rangle-c\left\langle v_{1}, v_{1}\right\rangle
$$

Therefore,

$$
c=\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle}=\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}}
$$

(We've assumed $v_{1} \neq 0$.)
The following algorithm generalizes this idea:
Algorithm. (Gram-Schmidt orthogonalization)
InPUT: $S=\left\{w_{1}, \ldots, w_{n}\right\}$, a linearly independent subset of V.
Let

$$
v_{1}:=w_{1}
$$

For $k=2,3, \ldots, n$, define v_{k} by starting with w_{k}, then subtracting off the components of w_{k} along the previously found v_{i} :

$$
v_{k}:=w_{k}-\sum_{i=1}^{k-1} \frac{\left\langle w_{k}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

output: $S^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}$ an orthogonal set with $\operatorname{Span} S^{\prime}=\operatorname{Span} S$.
or
output: $S^{\prime \prime}=\left\{\frac{v_{1}}{\left\|v_{1}\right\|}, \ldots, \frac{v_{n}}{\left\|v_{n}\right\|}\right\}$ an orthonormal set with $\operatorname{Span} S^{\prime}=\operatorname{Span} S$.
Proof of validity of the algorithm. We prove this by induction on n. The case $n=1$ is clear. Suppose the algorithm works for some $n \geq 1$, and let $S=\left\{w_{1}, \ldots, w_{n+1}\right\}$ be a linearly independent set. By induction, running the algorithm on the first n vectors in S produces orthogonal v_{1}, \ldots, v_{n} with

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}=\operatorname{Span}\left\{w_{1}, \ldots, w_{n}\right\}
$$

Running the algorithm further produces

$$
v_{n+1}=w_{n+1}-\sum_{i=1}^{n} \frac{\left\langle w_{n+1}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

It cannot be that $v_{n+1}=0$, since otherwise, the above equation we would say

$$
w_{n+1} \in \operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}=\operatorname{Span}\left\{w_{1}, \ldots, w_{n}\right\}
$$

contradicting the assumption of the linear independence of the w_{i}. So $v_{n+1} \neq 0$.
We now check that v_{n+1} is orthogonal to the previous v_{i}. For $j=1, \ldots, n$, we have

$$
\begin{aligned}
\left\langle v_{n+1}, v_{j}\right\rangle & =\left\langle w_{n+1}-\sum_{i=1}^{n} \frac{\left\langle w_{n+1}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}, v_{j}\right\rangle \\
& =\left\langle w_{n+1}, v_{j}\right\rangle-\sum_{i=1}^{n} \frac{\left\langle w_{n+1}, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}}\left\langle v_{i}, v_{j}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle w_{n+1}, v_{j}\right\rangle-\frac{\left\langle w_{n+1}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}}\left\langle v_{j}, v_{j}\right\rangle \\
& =\left\langle w_{n+1}, v_{j}\right\rangle-\left\langle w_{n+1}, v_{j}\right\rangle \\
& =0 .
\end{aligned}
$$

We have shown $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is an orthogonal set of vectors, and we would now like to show that its span is the span of $\left\{w_{1}, \ldots, w_{n+1}\right\}$. First, since $\left\{v_{1}, \ldots, v_{n+1}\right\}$ is orthogonal, it's linearly independent. Next, we have

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{n+1}\right\} \subseteq \operatorname{Span}\left\{v_{1}, \ldots, v_{n}, w_{n+1}\right\} \subseteq \operatorname{Span}\left\{w_{1}, \ldots, w_{n}, w_{n+1}\right\}
$$

Since $\operatorname{Span}\left\{v_{1}, \ldots, v_{n+1}\right\}$ is an $(n+1)$-dimensional subspace of the $(n+1)$-dimensional space Span $\left\{w_{1}, \ldots, w_{n}, w_{n+1}\right\}$, these spaces must be equal.

Corollary. Every nonzero finite-dimensional inner product space has an orthonormal basis.
Example. Let $V=\mathbb{R}_{\leq 1}[x]$, the space of polynomials of degree at most 1 with real coefficients and with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Apply Gram-Schmidt to the basis $\{1, x\}$ to get an orthonormal basis. Note that 1 and x are not orthogonal:

$$
\langle 1, x\rangle=\int_{0}^{1} t d t=\frac{1}{2} \neq 0
$$

Gram-Schmidt: Start with $v_{1}=1$, then let

$$
\begin{aligned}
v_{2} & =x-\frac{\left\langle x, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}} v_{1} \\
& =x-\frac{\langle x, 1\rangle}{\|1\|^{2}} \cdot 1 \\
& =x-\frac{\int_{0}^{1} t d t}{\int_{0}^{1} d t} \cdot 1 \\
& =x-\frac{1}{2}
\end{aligned}
$$

Check orthogonality:

$$
\langle 1, x-1 / 2\rangle=\int_{0}^{1}(t-1 / 2) d t=0
$$

Now scale $v_{1}=1$ and $v_{2}=x-1 / 2$ to create an orthonormal basis:

$$
\left\|v_{1}\right\|=\sqrt{\int_{0}^{1} d t}=1
$$

$$
\begin{aligned}
\left\|v_{2}\right\| & =\sqrt{\langle x-1 / 2, x-1 / 2\rangle} \\
& =\sqrt{\int_{0}^{1}(t-1 / 2)^{2} d t} \\
& =\sqrt{\int_{0}^{1}\left(t^{2}-t+1 / 4\right) d t} \\
& =\sqrt{1 / 12} .
\end{aligned}
$$

So an orthonormal basis for V is

$$
\{1, \sqrt{12}(x-1 / 2)\} .
$$

