Lecture 24:
Spectral Theorem

Let =R or C, and let V' be a vector space over F'. Let
(,): V xV — F be the standard inner product (dot
product/conjugate dot product).

Today's BIG theorem:

Spectral theorem.
Let A € M,,(R) be a symmetric matrix. Then A is diagonalizable over R, and
there exists an orthonormal basis for R™ (with respect to the standard inner

product) consisting of eigenvectors for A.
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Both are square matrices over R, but neither are symmetric.

Non-examples. Let

Since X is already in Jordan canonical form, we know it is not diagonalizable.

The eigenspaces of Y are
aE]R} and V_7:{(Z> beR}.
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So Y is diagonalizable, but the eigenspaces aren't orthogonal:
(a,0) - (b,b) = ab,

and ab=0onlyifa=00rb=0
(either way, one of those two vectors must be 0).




Spectral theorem. Let A € M,(R) be a symmetric matrix. Then A is diago-
nalizable over R, and there exists an orthonormal basis for R™ (with respect to the
standard inner product) consisting of eigenvectors for A.
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The characteristic polynomial of A is pa(z) = (4 — z)(—2 — x)?, and the
eigenspaces are
1
_5(1 b+ 2¢
Vy = la a€R and V_o = b b,ceR
C
Note that
(—%a, %a, a)- (b+2c¢b,c) = —%a(b +2¢) + %ab +ac =0,

for all a,b,c € R. Hence Vy L V_5.

Example. Let

a

... In particular,
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are othonormal bases of V; and V_,, respectively, and B = B, L B_5 is an
orthonormal basis of V. So

A = Repk(id)Reph (A)RepZ
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More: Since B is orthonormal, if P = Repg(id) = (vi  v2  wvs |, then

| | |
Vi-V1 Vi-Vo Vi-V3 1
PtP: V2 V1 V2 Vo V2 V3 = 0
0

V3-Vi V3-:-Va2 V3:-V3

O = O

0
0]. So P71 = pt,
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A matrix P € M,,«,,(R) is orthogonal if its columns form an orthonormal set
in R™,

Lemma. P € M,,»,(R) is orthogonal if and only if P~1 = P!,
Pf. The (i, j)-entry of P*P is v, -v; = §; ;.

Spectral theorem. If A € M, (R) is symmetric, then A is diagonalizable over
R. Namely, there exists a real diagonal matrix D and an orthogonal matrix P
such that A = PDP?.

Claim 1. The characteristic polynomial of A splits over R (and, thus, the
eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic polynomial

splits over C:
mn

pa(x) =[] — )
k=1
with A\, € C. We must show each )\, € R.
Fix A = A\, for some k£ and take nonzero v € C™ such that Av = A\v.

Aside: For a,b € C", the standard inner product is

b1
a-b=a'b=(a1 - a)| :
b

So for X € M,,(C),
(Xa,b) = (Xa)'b = a'X'b = a! (th) = (a, X'b).

Now, specifically A is both real and symmetric. So A' = A. So for any
a,b € R", we have (Aa,b) = (a, Ab). In particular, for the eigenvector v
above, we have -
AMv,v) = (Av,v) = (Av,v) = (v, Av) = (v, Av) = \(v, V).
So since (v,v) # 0, we have A = \, and therefore )\ € R. [



Claim 2. There exists P orthogonal such that A = PDP?

(where D = diag(Aq1,...,Ax) from Claim 1).
Pf. 1f n =1, any 1 x 1 matrix is diagonal already.
Now induct on n: let n > 1, and take an eigenvalue-eigenvector pair A; € R
and vy € R™; without loss of generality, take v; to be a unit vector (V) is a
vector space, so we can scale). Since {v;} is orthonormal, it extends to an
(ordered) orthonormal basis for R™, ((vq,...,v,)). Let Q be the orthogonal
matrix with columns vq,...,v,, and define

A=Q 'AQ = Q'AQ.
Consider the structure of Z and use induction:
1. A= Q'AQ is symmetric.  (Compute (Q'AQ)" and see what happens.)
2. A has the form

A= for some B € M,,_1(R).
B

Since A is real and symmetric, so is B. Induct!

By induction,
1|0... 0 )\1|0... 0 1|0... 0
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for some orthonormal T" and real diagonal £ € M,,_1(R).

We have A = Q'AQ = SDS' with Q and S orthogonal and D a real diagonal
matrix.

Define P = @S. Then

1. P is orthogonal (compute P'P and see what happens),
and

2. A= PDPt:
PDP! = (QS)D(QS)" = QSDS'Q! = QAQ! = A.



You try: The matrix

10 2 -2 0 0
2 7 =1 0 0
A=1-2 -1 7 0 0
0 0 0 9 -3

0 0 0 -3 9

€ M5(R)

has eigenvalues 6 and 12; the corresponding eigenspaces in V = R® are

Vo = {(a1 — a2,2a2,2a1,a3,a3)" | a; € R} and

Vig = {(2b1,b1, —b1,ba, —bo)" | b; € R}

1. Verify that for all u € Vi and v € V35, we have u-v = 0. Why do we

care?

2. Pick a basis S of V. Perform Gram-Schmidt on S to get an orthogonal
basis of Vg; then normalize to get an orthonormal basis Bg of V.

3. Pick a basis S’ of Vi5. Perform Gram-Schmidt on S’ to get an orthogonal
basis of V15; then normalize to get an orthonormal basis B12 of Vis.

4. Verify that B = Bg LI B13 is an orthonormal basis of V.
(How can you do this without row-reducing a matrix?)

5. Give an orthogonal P and diagonal D such that A = PDP~!.

Spectral theorem for complex matrices

A matrix A € M, (C) is Hermitian if A=A

A matrix U € M,,«,,(C) is unitary if its columns are orthonormal, or

equivalently, if U is invertible with U1 = U

Theorem. (Spectral theorem) Let A € M,,(C) be a Hermitian matrix. Then
A=UDU" where U is unitary and D is a real diagonal matrix.

Proof follow similarly as in the real case.



