
Lecture 24:
Spectral Theorem

Let F = R or C, and let V be a vector space over F . Let
h, i : V ⇥ V ! F be the standard inner product (dot
product/conjugate dot product).

Today’s BIG theorem:

Spectral theorem.

Let A 2 Mn(R) be a symmetric matrix. Then A is diagonalizable over R, and
there exists an orthonormal basis for Rn

(with respect to the standard inner

product) consisting of eigenvectors for A.

Non-examples. Let

X =
✓
3 1
0 3

◆
and Y =

✓
2 �9
0 �7

◆
.

Both are square matrices over R, but neither are symmetric.

Since X is already in Jordan canonical form, we know it is not diagonalizable.

The eigenspaces of Y are

V2 =

⇢✓
a
0

◆ ���� a 2 R
�

and V�7 =

⇢✓
b
b

◆ ���� b 2 R
�
.

So Y is diagonalizable, but the eigenspaces aren’t orthogonal:

(a, 0) · (b, b) = ab,

and ab = 0 only if a = 0 or b = 0
(either way, one of those two vectors must be 0).



Spectral theorem. Let A 2 Mn(R) be a symmetric matrix. Then A is diago-
nalizable over R, and there exists an orthonormal basis for Rn (with respect to the
standard inner product) consisting of eigenvectors for A.

Example. Let

A =

0

@
�1 �1 �2
�1 �1 2
�2 2 2

1

A.

The characteristic polynomial of A is pA(x) = (4� x)(�2� x)2, and the

eigenspaces are

V4 =

8
>><

>>:
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a

a
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��������
a 2 R
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>>=

>>;
and V�2 =

(0

@
b+ 2c

b
c

1

A

����� b, c 2 R
)

Note that

(� 1
2a,

1
2a, a) · (b+ 2c, b, c) = � 1

2a(b+ 2c) + 1
2ab+ ac = 0,

for all a, b, c 2 R. Hence V4 ? V�2. In particular,

B4 =

(
1p
6

0

@
�1
1
2

1

A

)
and B�2 =

(
1p
2

0

@
1
1
0

1

A,
1p
3

0

@
1
�1
1

1

A

)

are othonormal bases of V4 and V�2, respectively, and B = B4 t B�2 is an

orthonormal basis of V .
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are othonormal bases of V4 and V�2, respectively, and B = B4 t B�2 is an

orthonormal basis of V . So

A = RepEB(id)Rep
B
B(A)RepBE
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More: Since B is orthonormal, if P = RepEB(id) =

0

@
| | |
v1 v2 v3

| | |

1

A, then

P tP =

0

@
v1 · v1 v1 · v2 v1 · v3

v2 · v1 v2 · v2 v2 · v3

v3 · v1 v3 · v2 v3 · v3

1

A =

0

@
1 0 0
0 1 0
0 0 1

1

A. So P�1 = P t
.



A matrix P 2 Mn⇥n(R) is orthogonal if its columns form an orthonormal set

in Rn
.

Lemma. P 2 Mn⇥n(R) is orthogonal if and only if P�1 = P t
.

Pf. The (i, j)-entry of P tP is vi · vj = �i,j .

Spectral theorem. If A 2 Mn(R) is symmetric, then A is diagonalizable over

R. Namely, there exists a real diagonal matrix D and an orthogonal matrix P
such that A = PDP t

.

Claim 1. The characteristic polynomial of A splits over R (and, thus, the

eigenvalues of A are all real).

Proof. By the fundamental theorem of algebra, the characteristic polynomial

splits over C:

pA(x) =
nY

k=1

(�k � x)

with �k 2 C. We must show each �k 2 R.
Fix � = �k for some k and take nonzero v 2 Cn

such that Av = �v.

Aside: For a,b 2 Cn
, the standard inner product is

a · b = atb =
�
a1 · · · an

�
0

B@
b1
...
bn

1

CA.

So for X 2 Mn(C),

hXa,bi = (Xa)tb = atXtb = at
⇣
X

t
b
⌘
= ha, Xt

bi.

Now, specifically A is both real and symmetric. So A
t
= A. So for any

a,b 2 Rn
, we have hAa,bi = ha, Abi. In particular, for the eigenvector v

above, we have

�hv,vi = h�v,vi = hAv,vi = hv, Avi = hv,�vi = �hv,vi.
So since hv,vi 6= 0, we have � = �, and therefore � 2 R.



Spectral theorem. If A 2 Mn(R) is symmetric, then A is diagonalizable over R.
Namely, there’s a real diagonal matrix D and an orthogonal P such that A = PDP t.

Claim 2. There exists P orthogonal such that A = PDP t

(where D = diag(�1, . . . ,�k) from Claim 1).

Pf. If n = 1, any 1⇥ 1 matrix is diagonal already.

Now induct on n: let n > 1, and take an eigenvalue-eigenvector pair �1 2 R
and v1 2 Rn

; without loss of generality, take v1 to be a unit vector (V�1 is a

vector space, so we can scale). Since {v1} is orthonormal, it extends to an

(ordered) orthonormal basis for Rn
, hhv1, . . . ,vnii. Let Q be the orthogonal

matrix with columns v1, . . . ,vn, and define

eA = Q�1AQ = QtAQ.

Consider the structure of eA, and use induction:

1. eA = QtAQ is symmetric. (Compute (QtAQ)t and see what happens.)

2. eA has the form

eA =

0

BBB@

�1 0 · · · 0
0
... B
0

1

CCCA
for some B 2 Mn�1(R).

Since eA is real and symmetric, so is B. Induct!

eA =

0

BBB@

�1 0 · · · 0
0
... B
0

1

CCCA
for some B 2 Mn�1(R).

Since eA is real and symmetric, so is B. Induct!

By induction,

eA =

0

BBB@

1 0 · · · 0
0
.
.
. T
0

1

CCCA

| {z }
S

0

BBB@

�1 0 · · · 0
0
.
.
. E
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D
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1 0 · · · 0
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. T t
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| {z }
St

for some orthonormal T and real diagonal E 2 Mn�1(R).

We have eA = QtAQ = SDSt
with Q and S orthogonal and D a real diagonal

matrix.

Define P = QS. Then

1. P is orthogonal (compute P tP and see what happens),

and

2. A = PDP t
:

PDP t = (QS)D(QS)t = QSDStQt = Q eAQt = A.



You try: The matrix

A =

0

BBBB@

10 2 �2 0 0
2 7 �1 0 0
�2 �1 7 0 0
0 0 0 9 �3
0 0 0 �3 9

1

CCCCA
2 M5(R)

has eigenvalues 6 and 12; the corresponding eigenspaces in V = R5
are

V6 = {(a1 � a2, 2a2, 2a1, a3, a3)
t | ai 2 R} and

V12 = {(2b1, b1,�b1, b2,�b2)
t | bi 2 R}

1. Verify that for all u 2 V6 and v 2 V12, we have u · v = 0. Why do we

care?

2. Pick a basis S of V6. Perform Gram-Schmidt on S to get an orthogonal

basis of V6; then normalize to get an orthonormal basis B6 of V6.

3. Pick a basis S0
of V12. Perform Gram-Schmidt on S0

to get an orthogonal

basis of V12; then normalize to get an orthonormal basis B12 of V12.

4. Verify that B = B6 t B12 is an orthonormal basis of V .

(How can you do this without row-reducing a matrix?)

5. Give an orthogonal P and diagonal D such that A = PDP�1
.

Spectral theorem for complex matrices

A matrix A 2 Mn(C) is Hermitian if A
t
= A.

A matrix U 2 Mn⇥n(C) is unitary if its columns are orthonormal, or

equivalently, if U is invertible with U�1 = U
t
.

Theorem. (Spectral theorem) Let A 2 Mn(C) be a Hermitian matrix. Then

A = UDU
t
where U is unitary and D is a real diagonal matrix.

Proof follow similarly as in the real case.


