Lecture 24:
Spectral Theorem

Let $F=\mathbb{R}$ or \mathbb{C}, and let V be a vector space over F. Let $\langle\rangle:, V \times V \rightarrow F$ be the standard inner product (dot product/conjugate dot product).

Today's BIG theorem:

Spectral theorem.

Let $A \in M_{n}(\mathbb{R})$ be a symmetric matrix. Then A is diagonalizable over \mathbb{R}, and there exists an orthonormal basis for \mathbb{R}^{n} (with respect to the standard inner product) consisting of eigenvectors for A.

Non-examples. Let

$$
X=\left(\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{ll}
2 & -9 \\
0 & -7
\end{array}\right) .
$$

Both are square matrices over \mathbb{R}, but neither are symmetric.
Since X is already in Jordan canonical form, we know it is not diagonalizable.
The eigenspaces of Y are

$$
V_{2}=\left\{\left.\binom{a}{0} \right\rvert\, a \in \mathbb{R}\right\} \quad \text { and } \quad V_{-7}=\left\{\left.\binom{b}{b} \right\rvert\, b \in \mathbb{R}\right\} .
$$

So Y is diagonalizable, but the eigenspaces aren't orthogonal:

$$
(a, 0) \cdot(b, b)=a b
$$

and $a b=0$ only if $a=0$ or $b=0$
(either way, one of those two vectors must be 0).

Spectral theorem. Let $A \in M_{n}(\mathbb{R})$ be a symmetric matrix. Then A is diagonalizable over \mathbb{R}, and there exists an orthonormal basis for \mathbb{R}^{n} (with respect to the standard inner product) consisting of eigenvectors for A.

Example. Let

$$
A=\left(\begin{array}{ccc}
-1 & -1 & -2 \\
-1 & -1 & 2 \\
-2 & 2 & 2
\end{array}\right)
$$

The characteristic polynomial of A is $p_{A}(x)=(4-x)(-2-x)^{2}$, and the eigenspaces are

$$
V_{4}=\left\{\left.\left(\begin{array}{c}
-\frac{1}{2} a \\
\frac{1}{2} a \\
a
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\} \quad \text { and } \quad V_{-2}=\left\{\left.\left(\begin{array}{c}
b+2 c \\
b \\
c
\end{array}\right) \right\rvert\, b, c \in \mathbb{R}\right\}
$$

Note that

$$
\left(-\frac{1}{2} a, \frac{1}{2} a, a\right) \cdot(b+2 c, b, c)=-\frac{1}{2} a(b+2 c)+\frac{1}{2} a b+a c=0
$$

for all $a, b, c \in \mathbb{R}$. Hence $V_{4} \perp V_{-2}$.
... In particular,

$$
\mathcal{B}_{4}=\left\{\frac{1}{\sqrt{6}}\left(\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right)=\mathbf{v}_{1}\right\} \quad \text { and } \quad \mathcal{B}_{-2}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\mathbf{v}_{2}, \frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\mathbf{v}_{3}\right\}
$$

are othonormal bases of V_{4} and V_{-2}, respectively, and $\mathcal{B}=\mathcal{B}_{4} \sqcup \mathcal{B}_{-2}$ is an orthonormal basis of V. So

$$
\begin{aligned}
A & =\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\operatorname{id}) \operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(A) \operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}} \\
\left(\begin{array}{ccc}
-1 & -1 & -2 \\
-1 & -1 & 2 \\
-2 & 2 & 2
\end{array}\right) & =\left(\begin{array}{ccc}
-1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & 1 / \sqrt{3}
\end{array}\right)\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{ccc}
-1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & 1 / \sqrt{3}
\end{array}\right)^{-1}
\end{aligned}
$$

More: Since \mathcal{B} is orthonormal, if $P=\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id})=\left(\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathrm{v}_{3} \\ \mid & \mid & \mid\end{array}\right)$, then

$$
P^{t} P=\left(\begin{array}{ccc}
\mathbf{v}_{1} \cdot \mathbf{v}_{1} & \mathbf{v}_{1} \cdot \mathbf{v}_{2} & \mathbf{v}_{1} \cdot \mathbf{v}_{3} \\
\mathbf{v}_{2} \cdot \mathbf{v}_{1} & \mathbf{v}_{2} \cdot \mathbf{v}_{2} & \mathbf{v}_{2} \cdot \mathbf{v}_{3} \\
\mathbf{v}_{3} \cdot \mathbf{v}_{1} & \mathbf{v}_{3} \cdot \mathbf{v}_{2} & \mathbf{v}_{3} \cdot \mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) . \quad \text { So } P^{-1}=P^{t}
$$

A matrix $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if its columns form an orthonormal set in \mathbb{R}^{n}.

Lemma. $P \in M_{n \times n}(\mathbb{R})$ is orthogonal if and only if $P^{-1}=P^{t}$. Pf. The (i, j)-entry of $P^{t} P$ is $\mathbf{v}_{i} \cdot \mathbf{v}_{j}=\delta_{i, j}$.

Spectral theorem. If $A \in M_{n}(\mathbb{R})$ is symmetric, then A is diagonalizable over \mathbb{R}. Namely, there exists a real diagonal matrix D and an orthogonal matrix P such that $A=P D P^{t}$.

Claim 1. The characteristic polynomial of A splits over \mathbb{R} (and, thus, the eigenvalues of A are all real).
Proof. By the fundamental theorem of algebra, the characteristic polynomial splits over \mathbb{C} :

$$
p_{A}(x)=\prod_{k=1}^{n}\left(\lambda_{k}-x\right)
$$

with $\lambda_{k} \in \mathbb{C}$. We must show each $\lambda_{k} \in \mathbb{R}$.
Fix $\lambda=\lambda_{k}$ for some k and take nonzero $\mathbf{v} \in \mathbb{C}^{n}$ such that $A \mathbf{v}=\lambda \mathbf{v}$.
Aside: For $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{n}$, the standard inner product is

$$
\mathbf{a} \cdot \overline{\mathbf{b}}=\mathbf{a}^{t} \overline{\mathbf{b}}=\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
\overline{b_{1}} \\
\vdots \\
\overline{b_{n}}
\end{array}\right) .
$$

So for $X \in M_{n}(\mathbb{C})$,

$$
\langle X \mathbf{a}, \mathbf{b}\rangle=(X \mathbf{a})^{t} \overline{\mathbf{b}}=\mathbf{a}^{t} X^{t} \overline{\mathbf{b}}=\mathbf{a}^{t} \overline{\left(\bar{X}^{t} \mathbf{b}\right)}=\left\langle\mathbf{a}, \bar{X}^{t} \mathbf{b}\right\rangle .
$$

Now, specifically A is both real and symmetric. So $\bar{A}^{t}=A$. So for any $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, we have $\langle A \mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{a}, A \mathbf{b}\rangle$. In particular, for the eigenvector \mathbf{v} above, we have

$$
\lambda\langle\mathbf{v}, \mathbf{v}\rangle=\langle\lambda \mathbf{v}, \mathbf{v}\rangle=\langle A \mathbf{v}, \mathbf{v}\rangle=\langle\mathbf{v}, A \mathbf{v}\rangle=\langle\mathbf{v}, \lambda \mathbf{v}\rangle=\bar{\lambda}\langle\mathbf{v}, \mathbf{v}\rangle .
$$

So since $\langle\mathbf{v}, \mathbf{v}\rangle \neq 0$, we have $\lambda=\bar{\lambda}$, and therefore $\lambda \in \mathbb{R}$.

Claim 2. There exists P orthogonal such that $A=P D P^{t}$
(where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ from Claim 1).
Pf. If $n=1$, any 1×1 matrix is diagonal already.
Now induct on n : let $n>1$, and take an eigenvalue-eigenvector pair $\lambda_{1} \in \mathbb{R}$ and $\mathbf{v}_{1} \in \mathbb{R}^{n}$; without loss of generality, take \mathbf{v}_{1} to be a unit vector ($V_{\lambda_{1}}$ is a vector space, so we can scale). Since $\left\{\mathbf{v}_{1}\right\}$ is orthonormal, it extends to an (ordered) orthonormal basis for $\mathbb{R}^{n},\left\langle\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right\rangle$. Let Q be the orthogonal matrix with columns $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, and define

$$
\widetilde{A}=Q^{-1} A Q=Q^{t} A Q
$$

Consider the structure of \widetilde{A}, and use induction:

1. $\widetilde{A}=Q^{t} A Q$ is symmetric. (Compute $\left(Q^{t} A Q\right)^{t}$ and see what happens.)
2. \widetilde{A} has the form

$$
\widetilde{A}=\left(\begin{array}{c|ccc}
\lambda_{1} & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & B & \\
0 & & &
\end{array}\right) \text { for some } B \in M_{n-1}(\mathbb{R}) .
$$

Since \widetilde{A} is real and symmetric, so is B. Induct!

By induction,

$$
\widetilde{A}=\underbrace{\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & T & \\
0 & & &
\end{array}\right)}_{S} \underbrace{\left(\begin{array}{c|ccc}
\lambda_{1} & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & E & \\
0 & & &
\end{array}\right)}_{D} \underbrace{\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & T^{t} & \\
0 & & &
\end{array}\right)}_{S^{t}}
$$

for some orthonormal T and real diagonal $E \in M_{n-1}(\mathbb{R})$.
We have $\widetilde{A}=Q^{t} A Q=S D S^{t}$ with Q and S orthogonal and D a real diagonal matrix.

Define $P=Q S$. Then

1. P is orthogonal (compute $P^{t} P$ and see what happens), and
2. $A=P D P^{t}$:

$$
P D P^{t}=(Q S) D(Q S)^{t}=Q S D S^{t} Q^{t}=Q \widetilde{A} Q^{t}=A .
$$

You try: The matrix

$$
A=\left(\begin{array}{ccccc}
10 & 2 & -2 & 0 & 0 \\
2 & 7 & -1 & 0 & 0 \\
-2 & -1 & 7 & 0 & 0 \\
0 & 0 & 0 & 9 & -3 \\
0 & 0 & 0 & -3 & 9
\end{array}\right) \in M_{5}(\mathbb{R})
$$

has eigenvalues 6 and 12; the corresponding eigenspaces in $V=\mathbb{R}^{5}$ are

$$
\begin{aligned}
V_{6} & =\left\{\left(a_{1}-a_{2}, 2 a_{2}, 2 a_{1}, a_{3}, a_{3}\right)^{t} \mid a_{i} \in \mathbb{R}\right\} \quad \text { and } \\
V_{12} & =\left\{\left(2 b_{1}, b_{1},-b_{1}, b_{2},-b_{2}\right)^{t} \mid b_{i} \in \mathbb{R}\right\}
\end{aligned}
$$

1. Verify that for all $\mathbf{u} \in V_{6}$ and $\mathbf{v} \in V_{12}$, we have $\mathbf{u} \cdot \mathbf{v}=0$. Why do we care?
2. Pick a basis S of V_{6}. Perform Gram-Schmidt on S to get an orthogonal basis of V_{6}; then normalize to get an orthonormal basis \mathcal{B}_{6} of V_{6}.
3. Pick a basis S^{\prime} of V_{12}. Perform Gram-Schmidt on S^{\prime} to get an orthogonal basis of V_{12}; then normalize to get an orthonormal basis \mathcal{B}_{12} of V_{12}.
4. Verify that $\mathcal{B}=\mathcal{B}_{6} \sqcup \mathcal{B}_{12}$ is an orthonormal basis of V. (How can you do this without row-reducing a matrix?)
5. Give an orthogonal P and diagonal D such that $A=P D P^{-1}$.

Spectral theorem for complex matrices

A matrix $A \in M_{n}(\mathbb{C})$ is Hermitian if $\bar{A}^{t}=A$.
A matrix $U \in M_{n \times n}(\mathbb{C})$ is unitary if its columns are orthonormal, or equivalently, if U is invertible with $U^{-1}=\bar{U}^{t}$.

Theorem. (Spectral theorem) Let $A \in M_{n}(\mathbb{C})$ be a Hermitian matrix. Then $A=U D \bar{U}^{t}$ where U is unitary and D is a real diagonal matrix.

Proof follow similarly as in the real case.

