
Lecture 23:

Orthogonal complement

Orthogonal projection

Let F = R or C, and let V be a vector space over F . Let

h, i : V ⇥ V ! F be an inner product (linear in the first

coordinate, conjugate symmetric, and positive definite).



Review: We say a set S ✓ V is orthogonal if hu,vi = 0 for all u 6= v in S. We say
S is orthonormal if, additionally, hu,ui = 1 for all u 2 S.

Prop. If S = {v1, . . . ,vk} ⇢ V is orthogonal and y 2 FS, then

y =
kX

i=1

hy,vii
hvi,vii

vi.

In particular, S is linearly independent.
Gram-Schmidt orthogonalization is an algorithm (using this proposition) for turning
an independent set into an orthogonal set with the same span.

The direct sum of vector spaces U and W over a field F is the set

U �W = {(u,w) | u 2 U and w 2 W}
with scalar multiplication and vector addition defined by

�(u,w) = (�u,�w) and (u,w) + (u0,w0) = (u+ u0,w +w0),

for all u,u0 2 U , w,w0 2 W , and � 2 F .
[There is a very subtle di↵erence between Cartesian product and direct sum, which will only

come up once you get into infinite products/sums. But for now, qualitatively, this

combination of vectors spaces acts more like addition than multiplication.]

Example: If U = C3 and W = C5, then

U �W = {(u,w) | u 2 U,w 2 W}
= {

�
(a1, a2, a3), (b1, b2, b3, b4, b5)

�
| ai 2 C, bi 2 C}.

The direct sum of vector spaces U and W over a field F is the set

U �W = {(u,w) | u 2 U and w 2 W}
with scalar multiplication and vector addition defined by

�(u,w) = (�u,�w) and (u,w) + (u0,w0) = (u+ u0,w +w0),

for all u,u0 2 U , w,w0 2 W , and � 2 F .

Some facts:

• If A is a basis of U and B is a basis of W , then

Â t B̂ is a basis of U �W ,

where

Â = {(a,0) | a 2 A} and B̂ = {(0,b) | b 2 B}.
In particular, if dim(U) = k and dim(W ) = `, then dim(U �W ) = k+ `.

• Let

Û = F Â = {(u,0) | u 2 U} and Ŵ = F B̂ = {(0,w) | w 2 W}.
Then

U ! Û
u 7! (u,0)

and
W ! Ŵ
w 7! (0,w)

are isomorphisms.



Internal versus external direct sums

Prop. Let U and W be subspaces of a vector space V over F such that

(i) the union of U and W spans V , and (ii) U \W = {0}.
Then there is an isomorphism

f : U �W ! V
(u,w) 7! u+w.

Thus, every element of V has a unique expression of the form u+w with
u 2 U and w 2 W .

Pf. First, f is linear: for u,u0 2 U , w,w0 2 W , and � 2 F , we have

(u,w) + �(u0,w0) = (u+ �u0,w + �w0)
f7��! u+ �u0 +w + �w0 = (u+w) + �(u0 +w0).

Next, f is surjective by definition. Finally, to see that f is injective, we
compute its kernel:

if u+w = 0 then u = �w 2 W

because W is closed under scaling. Hence u,w 2 U \W = 0.

We call U �W an external direct sum (two unrelated-ish separate spaces
make a new space). If U,W ✓ V satisfy the above conditions, we call U +W
an internal direct sum (they’re subspaces internal to a common space).Prop. Let U and W be subspaces of a vector space V over F such that

(i) the union of U and W spans V , and (ii) U \W = {0}.
Then there is an isomorphism

f : U �W ! V
(u,w) 7! u+w.

Thus, every element of V has a unique expression of the form u+w with
u 2 U and w 2 W .

Example. Let Y 2 M5(C) be a matrix with characteristic equation

pY (x) = (x� 1)2(x+ 4)3.

Then

dim(V 1(Y )) = 2 dim(V �4(Y )) = 3 and V 1(Y ) \ V �4(Y ) = 0.

(Recall V �(Y ) is the generalized eigenspace of eigenvalue �.)

Therefore

V 1(Y ) + V �4(Y ) ⇠= V 1(Y )� V �4(Y ).

Moreover, since

dim(V 1(Y )� V �4(Y )) = dim(V 1(Y )) + dim(V �4(Y )) = 2 + 3 = 5 = dim(V ),

we have V 1(Y ) + V �4(Y ) = V , and hence V ⇠= dim(V 1(Y )� V �4(Y )).



Orthogonal complement (V, h, i) and IPS/F = R or C

Let S ✓ V be nonempty. The orthogonal complement of S is

S? = {x 2 V | hx,yi = 0 for all y 2 S} .

Example. Let V = R3 and h, i dot product. Let S = {(1, 2, 0)}. Then
0 = (a, b, c) · (1, 2, 0) = a+ 2b.

So
S? = {(a, b, c) 2 R3 | (a, b, c) · (1, 2, 0) = 0}

= {(�2b, b, c) | b, c 2 R}

Note: If S0 = FS, then (S0)? = S?.

Orthogonal projection (V, h, i) and IPS/F = R or C
S? = {x 2 V | hx,yi = 0 for all y 2 S} .

Prop. S? is a subspace of V .

Pf. Use the subspace criterion. . .

1. S? 6= ;:
2. For x,x0 2 S? and � 2 F , �x+ x0 2 S? :

Theorem. Let W be a finite-dimensional subspace of V . Then

V ⇠= W �W?.

Thus, for each y 2 V , there exist unique u 2 W and z 2 W? such that

y = u+ z.

Idea: If v 2 W \W?, then hv,vi = 0. So v = 0.
It remains to show that W +W? = V .

The vector u 2 W is projW (y), the orthogonal projection of y onto W
(we’ll see below how to compute u).

Fact: projW (y) is the unique closest vector to y that is in W .
(Think about the case when dim(W ) = 1. Pf in a moment.)



Proposition. Suppose dim(V ) = n and S = {v1, . . . ,vk} is an orthonormal
subset of V (orthogonal and all norm 1).

(a) S can be extended to an orthonormal basis
B = {v1, . . . ,vk,vk+1, . . . ,vn} for V .

Pf. S can be extended to an (ordered) basis A. Then perform
Gram-Schmidt orthogonalization on A (to get B). If you process S first,
this process will preserve S.

(b) If W = FS, then S0 = {vk+1, . . . ,vn} is an orthonormal basis for W?.

Pf. By Gram-Schmidt, S0 ✓ W? so that FS0 ✓ W?. Let x 2 W?.
Since B is an orthonormal basis of V ,

x =
nX

i=1

hx,viivi = 0+
nX

i=k+1

hx,viivi 2 FS0.

Thus W? = FS0. So since S0 is independent, it’s a basis.

(c) If W ✓ V is any subspace, then

dimW + dimW? = dimV = n.

(d) If W ✓ V is any subspace, then (W?)? = W .

Pf. Use conjugate symmetry.

Orthogonal projection

Back to our theorem:
Theorem. Let W be a finite-dimensional subspace of V . Then

V ⇠= W �W?.

Thus, for each y 2 V , there exist unique u 2 W and z 2 W? such that

y = u+ z.

We call u = projW (y) the orthogonal projection of y onto W .

Pf. If A = {u1, . . . ,uk} is an orthonm. basis for W , let
B = {u1, . . . ,uk,v1, . . . ,vn�k} be an orthonm. basis extending A. We saw
A0 = B �A = {v1, . . . ,vn�k} is an orthonm. basis of W?. In particular,
W +W? = FA+ FA0 = V , so since W \W? = 0, we have V ⇠= W �W?.

Then to compute u = projW (y): we have

y =
X

b2B
hy,bib =

kX

i=1

hy,uiiui

| {z }
u2W

+
n�kX

j=1

hy,vjivj

| {z }
z2W?

.

So

projW (y) =
kX

i=1

hy,uiiui.



Corollary. The orthogonal projection projW (y) of y onto W is the closest
vector in W to y:

ky � projW (y)k  ky �wk
for all w 2 W , with equality if and only if w = projW (y).

Pf. Write y = u+ z with u 2 W and z 2 W? (so that u = projW (y)), and
let w 2 W . So

u�w 2 W and y � u 2 W?

Thus u�w and z = y � u are perpendicular!

The result now follows from the Pythagorean theorem:

ky �wk2 = k(u+ z)�wk2 =

Applications (presentations!)

Application 1 (kind of). 3D graphics (project a 3-dimensional object onto a
plane as cameral angles change).

Application 2: Fourier Series (presentations next week)
Let V be the vector space of integrable functions [0, 2⇡] ! R with inner
product

hf, gi := 1

⇡

Z 2⇡

0
f(t)g(t) dt.

The distance between f, g 2 V is

kf � gk :=
1

⇡

Z 2⇡

0
(f(t)� g(t))2 dt.

One orthonomal set with respect to this product is

Sn :=

⇢
1p
2
, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx)

�
.

Problem: Approximate f 2 V with an element in F (Sn).



You try: Let V = C4 and let h, i be the conjugate dot product
(hu,vi = u · v). Let

Y =

0

BB@

6 6 1 0
�1 �1 �1 0
�5 �4 0 0
0 0 0 5

1

CCA 2 M4(C).

(a) We have pY (x) = (x+ i)(x� i)(x� 5)2. Compute W = V5(Y ) (the
� = 5 eigenspace of Y ), and give a basis of W .

(b) Use Gram-Schmidt to compute an orthogonal basis A of W . Check your
answer (compute the inner products).

(c) Normalize the basis A in the previous part to get an orthonormal basis A0

of W .

(d) Use the previous part to project each of the standard basis vectors
e1, . . . , e4 onto W . [Reality check: Verify that each of your 4 answers
ui = projW (ei) are, indeed, eigenvectors of Y by computing Y ui.]

(e) Extend your basis A0 to a basis B of V (try adding in ei’s, one at a time,
that aren’t already in the span). Use Gram-Schmidt to compute an
orthogonal basis B0 of V that contains A0.

(f) Are the remaining vectors (v 2 B0 �A0) eigenvectors?
(Is there any good reason to expect that they are?)


