Lecture 23:

Orthogonal complement Orthogonal projection

Let $F = \mathbb{R}$ or \mathbb{C} , and let V be a vector space over F. Let $\langle, \rangle : V \times V \to F$ be an inner product (linear in the first coordinate, conjugate symmetric, and positive definite).

Review: We say a set $S \subseteq V$ is orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ for all $\mathbf{u} \neq \mathbf{v}$ in S. We say S is orthonormal if, additionally, $\langle \mathbf{u}, \mathbf{u} \rangle = 1$ for all $\mathbf{u} \in S$.

Prop. If $S = {\mathbf{v}_1, \dots, \mathbf{v}_k} \subset V$ is orthogonal and $\mathbf{y} \in FS$, then

$$\mathbf{y} = \sum_{i=1}^k rac{\langle \mathbf{y}, \mathbf{v}_i
angle}{\langle \mathbf{v}_i, \mathbf{v}_i
angle} \mathbf{v}_i$$

In particular, S is linearly independent.

Gram-Schmidt orthogonalization is an algorithm (using this proposition) for turning an independent set into an orthogonal set with the same span.

The direct sum of vector spaces U and W over a field F is the set $U \oplus W = \{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \in U \text{ and } \mathbf{w} \in W\}$

with scalar multiplication and vector addition defined by

 $\lambda(\mathbf{u}, \mathbf{w}) = (\lambda \mathbf{u}, \lambda \mathbf{w}) \quad \text{and} \quad (\mathbf{u}, \mathbf{w}) + (\mathbf{u}', \mathbf{w}') = (\mathbf{u} + \mathbf{u}', \mathbf{w} + \mathbf{w}'),$ for all $\mathbf{u}, \mathbf{u}' \in U$, $\mathbf{w}, \mathbf{w}' \in W$, and $\lambda \in F$.

[There is a *very subtle* difference between Cartesian product and direct sum, which will only come up once you get into *infinite* products/sums. But for now, qualitatively, this combination of vectors spaces acts more like addition than multiplication.]

Example: If $U = \mathbb{C}^3$ and $W = \mathbb{C}^5$, then

$$U \oplus W = \{ (\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \in U, \mathbf{w} \in W \}$$

= { ((a₁, a₂, a₃), (b₁, b₂, b₃, b₄, b₅)) | a_i \in \mathbb{C}, b_i \in \mathbb{C} \}.

The direct sum of vector spaces U and W over a field F is the set

 $U \oplus W = \{ (\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \in U \text{ and } \mathbf{w} \in W \}$

with scalar multiplication and vector addition defined by

 $\lambda(\mathbf{u}, \mathbf{w}) = (\lambda \mathbf{u}, \lambda \mathbf{w}) \quad \text{and} \quad (\mathbf{u}, \mathbf{w}) + (\mathbf{u}', \mathbf{w}') = (\mathbf{u} + \mathbf{u}', \mathbf{w} + \mathbf{w}'),$ for all $\mathbf{u}, \mathbf{u}' \in U$, $\mathbf{w}, \mathbf{w}' \in W$, and $\lambda \in F$.

Some facts:

• If \mathcal{A} is a basis of U and \mathcal{B} is a basis of W, then $\hat{\mathcal{A}} \sqcup \hat{\mathcal{B}}$ is a basis of $U \oplus W$,

where

 $\hat{\mathcal{A}} = \{(\mathbf{a}, \mathbf{0}) ~|~ \mathbf{a} \in \mathcal{A}\} \quad \text{ and } \quad \hat{\mathcal{B}} = \{(\mathbf{0}, \mathbf{b}) ~|~ \mathbf{b} \in \mathcal{B}\}.$

In particular, if $\dim(U) = k$ and $\dim(W) = \ell$, then $\dim(U \oplus W) = k + \ell$.

Let

$$\hat{U} = F\hat{\mathcal{A}} = \{(\mathbf{u}, \mathbf{0}) \mid \mathbf{u} \in U\} \text{ and } \hat{W} = F\hat{\mathcal{B}} = \{(\mathbf{0}, \mathbf{w}) \mid \mathbf{w} \in W\}.$$

Then

 $\begin{array}{ll} U \to \hat{U} & \\ \mathbf{u} \mapsto (\mathbf{u}, \mathbf{0}) & \text{and} & \begin{array}{l} W \to \hat{W} \\ \mathbf{w} \mapsto (\mathbf{0}, \mathbf{w}) \end{array}$

are isomorphisms.

Internal versus external direct sums

Prop. Let U and W be subspaces of a vector space V over F such that

(i) the union of U and W spans V, and (ii) $U \cap W = \{0\}$.

Then there is an isomorphism

$$\begin{aligned} f: U \oplus W \to V \\ (\mathbf{u}, \mathbf{w}) \mapsto \mathbf{u} + \mathbf{w} \end{aligned}$$

Thus, every element of V has a unique expression of the form $\mathbf{u} + \mathbf{w}$ with $\mathbf{u} \in U$ and $\mathbf{w} \in W$.

Pf. First, f is linear: for
$$\mathbf{u}, \mathbf{u}' \in U$$
, $\mathbf{w}, \mathbf{w}' \in W$, and $\lambda \in F$, we have
 $(\mathbf{u}, \mathbf{w}) + \lambda(\mathbf{u}', \mathbf{w}') = (\mathbf{u} + \lambda \mathbf{u}', \mathbf{w} + \lambda \mathbf{w}')$
 $\stackrel{f}{\longmapsto} \mathbf{u} + \lambda \mathbf{u}' + \mathbf{w} + \lambda \mathbf{w}' = (\mathbf{u} + \mathbf{w}) + \lambda(\mathbf{u}' + \mathbf{w}').$

Next, f is surjective by definition. Finally, to see that f is injective, we compute its kernel:

if
$$\mathbf{u} + \mathbf{w} = 0$$
 then $\mathbf{u} = -\mathbf{w} \in W$

 \square

because W is closed under scaling. Hence $\mathbf{u}, \mathbf{w} \in U \cap W = 0$.

We call $U \oplus W$ an external direct sum (two unrelated-ish separate spaces make a new space). If $U, W \subseteq V$ satisfy the above conditions, we call U + W an internal direct sum (they're subspaces internal to a common space).

Example. Let $Y \in M_5(\mathbb{C})$ be a matrix with characteristic equation $p_Y(x) = (x-1)^2(x+4)^3.$

Then

$$\begin{split} \dim(V^1(Y)) &= 2 \qquad \dim(V^{-4}(Y)) = 3 \qquad \text{and} \qquad V^1(Y) \cap V^{-4}(Y) = 0. \\ (\text{Recall } V^\lambda(Y) \text{ is the generalized eigenspace of eigenvalue } \lambda.) \\ \text{Therefore} \end{split}$$

$$V^{1}(Y) + V^{-4}(Y) \cong V^{1}(Y) \oplus V^{-4}(Y).$$

Moreover, since

 $\dim(V^{1}(Y) \oplus V^{-4}(Y)) = \dim(V^{1}(Y)) + \dim(V^{-4}(Y)) = 2 + 3 = 5 = \dim(V),$ we have $V^{1}(Y) + V^{-4}(Y) = V$, and hence $V \cong \dim(V^{1}(Y) \oplus V^{-4}(Y)).$

Orthogonal complement

Let $S \subseteq V$ be nonempty. The orthogonal complement of S is $S^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{y} \in S \}.$

Example. Let $V = \mathbb{R}^3$ and \langle, \rangle dot product. Let $S = \{(1, 2, 0)\}$. Then $0 = (a, b, c) \cdot (1, 2, 0) = a + 2b$.

So

$$S^{\perp} = \{(a, b, c) \in \mathbb{R}^3 \mid (a, b, c) \cdot (1, 2, 0) = 0\}$$

= $\{(-2b, b, c) \mid b, c \in \mathbb{R}\}$

Note: If S' = FS, then $(S')^{\perp} = S^{\perp}$.

Orthogonal projection

 $(V, \langle, \rangle) \text{ and } \mathsf{IPS}/F = \mathbb{R} \text{ or } \mathbb{C}$ $S^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{y} \in S \}.$

Prop. S^{\perp} is a subspace of V.

Pf. Use the subspace criterion...

- 1. $S^{\perp} \neq \emptyset$:
- 2. For $\mathbf{x}, \mathbf{x}' \in S^{\perp}$ and $\lambda \in F$, $\lambda \mathbf{x} + \mathbf{x}' \in S^{\perp}$:

Theorem. Let W be a **finite-dimensional** subspace of V. Then

$$V \cong W \oplus W^{\perp}.$$

Thus, for each $\mathbf{y} \in V$, there exist unique $\mathbf{u} \in W$ and $\mathbf{z} \in W^{\perp}$ such that

$$\begin{split} \mathbf{y} &= \mathbf{u} + \mathbf{z}. \\ \textit{Idea: If } \mathbf{v} \in W \cap W^{\perp} \text{, then } \langle \mathbf{v}, \mathbf{v} \rangle = 0. \text{ So } \mathbf{v} = \mathbf{0}. \\ & \text{It remains to show that } W + W^{\perp} = V. \end{split}$$

The vector $\mathbf{u} \in W$ is $\operatorname{proj}_{W}(\mathbf{y})$, the **orthogonal projection** of \mathbf{y} onto W (we'll see below how to compute \mathbf{u}).

Fact: $\operatorname{proj}_W(\mathbf{y})$ is the unique closest vector to \mathbf{y} that is in W.

(Think about the case when $\dim(W) = 1$. Pf in a moment.)

Proposition. Suppose $\dim(V) = n$ and $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ is an orthonormal subset of V (orthogonal and all norm 1).

- (a) S can be extended to an orthonormal basis
 \$\mathcal{B} = {\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_n} for V.
 Pf. S can be extended to an (ordered) basis \$\mathcal{A}\$. Then perform
 Gram-Schmidt orthogonalization on \$\mathcal{A}\$ (to get \$\mathcal{B}\$). If you process \$S\$ first, this process will preserve \$S\$.
- (b) If W = FS, then $S' = {\mathbf{v}_{k+1}, \dots, \mathbf{v}_n}$ is an orthonormal basis for W^{\perp} . *Pf.* By Gram-Schmidt, $S' \subseteq W^{\perp}$ so that $FS' \subseteq W^{\perp}$. Let $\mathbf{x} \in W^{\perp}$. Since \mathcal{B} is an orthonormal basis of V,

$$\mathbf{x} = \sum_{i=1}^{n} \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i = \mathbf{0} + \sum_{i=k+1}^{n} \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i \in FS'.$$

Thus $W^{\perp} = FS'$. So since S' is independent, it's a basis.

- (c) If $W \subseteq V$ is any subspace, then $\dim W + \dim W^{\perp} = \dim V = n.$
- (d) If $W \subseteq V$ is any subspace, then $(W^{\perp})^{\perp} = W$. *Pf.* Use conjugate symmetry.

Orthogonal projection

Back to our theorem:

Theorem. Let W be a **finite-dimensional** subspace of V. Then

$$V \cong W \oplus W^{\perp}.$$

Thus, for each $\mathbf{y} \in V$, there exist unique $\mathbf{u} \in W$ and $\mathbf{z} \in W^{\perp}$ such that

$$\mathbf{y} = \mathbf{u} + \mathbf{z}$$

We call $\mathbf{u} = \operatorname{proj}_{W}(\mathbf{y})$ the orthogonal projection of \mathbf{y} onto W.

Pf. If $\mathcal{A} = {\mathbf{u}_1, \dots, \mathbf{u}_k}$ is an orthonm. basis for W, let $\mathcal{B} = {\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_1, \dots, \mathbf{v}_{n-k}}$ be an orthonm. basis extending \mathcal{A} . We saw $\mathcal{A}' = \mathcal{B} - \mathcal{A} = {\mathbf{v}_1, \dots, \mathbf{v}_{n-k}}$ is an orthonm. basis of W^{\perp} . In particular, $W + W^{\perp} = F\mathcal{A} + F\mathcal{A}' = V$, so since $W \cap W^{\perp} = 0$, we have $V \cong W \oplus W^{\perp}$.

Then to compute $\mathbf{u} = \operatorname{proj}_W(\mathbf{y})$: we have

$$\mathbf{y} = \sum_{\mathbf{b}\in\mathcal{B}} \langle \mathbf{y}, \mathbf{b} \rangle \mathbf{b} = \underbrace{\sum_{i=1}^{k} \langle \mathbf{y}, \mathbf{u}_i \rangle \mathbf{u}_i}_{\mathbf{u}\in W} + \underbrace{\sum_{j=1}^{n-k} \langle \mathbf{y}, \mathbf{v}_j \rangle \mathbf{v}_j}_{\mathbf{z}\in W^{\perp}}.$$

So

$$\operatorname{proj}_W(\mathbf{y}) = \sum_{i=1}^k \langle \mathbf{y}, \mathbf{u}_i \rangle \mathbf{u}_i.$$

Corollary. The orthogonal projection $\operatorname{proj}_W(\mathbf{y})$ of \mathbf{y} onto W is the closest vector in W to \mathbf{y} :

$$\|\mathbf{y} - \operatorname{proj}_W(\mathbf{y})\| \le \|\mathbf{y} - \mathbf{w}\|$$

for all $\mathbf{w} \in W$, with equality if and only if $\mathbf{w} = \operatorname{proj}_W(\mathbf{y})$.

Pf. Write $\mathbf{y} = \mathbf{u} + \mathbf{z}$ with $\mathbf{u} \in W$ and $\mathbf{z} \in W^{\perp}$ (so that $\mathbf{u} = \operatorname{proj}_{W}(\mathbf{y})$), and let $\mathbf{w} \in W$. So

$$\mathbf{u} - \mathbf{w} \in W$$
 and $\mathbf{y} - \mathbf{u} \in W^{\perp}$

Thus $\mathbf{u}-\mathbf{w}$ and $\mathbf{z}=\mathbf{y}-\mathbf{u}$ are perpendicular!

The result now follows from the Pythagorean theorem:

 $\|\mathbf{y} - \mathbf{w}\|^2 = \|(\mathbf{u} + \mathbf{z}) - \mathbf{w}\|^2 =$

Applications (presentations!)

Application 1 (kind of). 3D graphics (project a 3-dimensional object onto a plane as cameral angles change).

Application 2: Fourier Series (presentations next week)

Let V be the vector space of integrable functions $[0,2\pi]\to\mathbb{R}$ with inner product

$$\langle f,g\rangle := \frac{1}{\pi} \int_0^{2\pi} f(t)g(t) \, dt.$$

The distance between $f, g \in V$ is

$$||f - g|| := \frac{1}{\pi} \int_0^{2\pi} (f(t) - g(t))^2 dt.$$

One orthonomal set with respect to this product is

$$S_n := \left\{ \frac{1}{\sqrt{2}}, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(nx), \sin(nx) \right\}.$$

Problem: Approximate $f \in V$ with an element in $F(S_n)$.

You try: Let $V = \mathbb{C}^4$ and let \langle, \rangle be the conjugate dot product $(\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \overline{\mathbf{v}})$. Let

$$Y = \begin{pmatrix} 6 & 6 & 1 & 0 \\ -1 & -1 & -1 & 0 \\ -5 & -4 & 0 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix} \in M_4(\mathbb{C}).$$

- (a) We have $p_Y(x) = (x+i)(x-i)(x-5)^2$. Compute $W = V_5(Y)$ (the $\lambda = 5$ eigenspace of Y), and give a basis of W.
- (b) Use Gram-Schmidt to compute an orthogonal basis \mathcal{A} of W. Check your answer (compute the inner products).
- (c) Normalize the basis \mathcal{A} in the previous part to get an orthonormal basis \mathcal{A}' of W.
- (d) Use the previous part to project each of the standard basis vectors $\mathbf{e}_1, \ldots, \mathbf{e}_4$ onto W. [Reality check: Verify that each of your 4 answers $\mathbf{u}_i = \operatorname{proj}_W(\mathbf{e}_i)$ are, indeed, eigenvectors of Y by computing $Y\mathbf{u}_i$.]
- (e) Extend your basis \mathcal{A}' to a basis \mathcal{B} of V (try adding in \mathbf{e}_i 's, one at a time, that aren't already in the span). Use Gram-Schmidt to compute an orthogonal basis \mathcal{B}' of V that contains \mathcal{A}' .
- (f) Are the remaining vectors ($\mathbf{v} \in \mathcal{B}' \mathcal{A}'$) eigenvectors? (Is there any good reason to expect that they are?)