Lecture 23:
Orthogonal complement Orthogonal projection

Let $F=\mathbb{R}$ or \mathbb{C}, and let V be a vector space over F. Let $\langle\rangle:, V \times V \rightarrow F$ be an inner product (linear in the first coordinate, conjugate symmetric, and positive definite).

Review: We say a set $S \subseteq V$ is orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$ for all $\mathbf{u} \neq \mathbf{v}$ in S. We say S is orthonormal if, additionally, $\langle\mathbf{u}, \mathbf{u}\rangle=1$ for all $\mathbf{u} \in S$.
Prop. If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\} \subset V$ is orthogonal and $\mathbf{y} \in F S$, then

$$
\mathbf{y}=\sum_{i=1}^{k} \frac{\left\langle\mathbf{y}, \mathbf{v}_{i}\right\rangle}{\left\langle\mathbf{v}_{i}, \mathbf{v}_{i}\right\rangle} \mathbf{v}_{i} .
$$

In particular, S is linearly independent.
Gram-Schmidt orthogonalization is an algorithm (using this proposition) for turning an independent set into an orthogonal set with the same span.

The direct sum of vector spaces U and W over a field F is the set

$$
U \oplus W=\{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \in U \text { and } \mathbf{w} \in W\}
$$

with scalar multiplication and vector addition defined by

$$
\lambda(\mathbf{u}, \mathbf{w})=(\lambda \mathbf{u}, \lambda \mathbf{w}) \quad \text { and } \quad(\mathbf{u}, \mathbf{w})+\left(\mathbf{u}^{\prime}, \mathbf{w}^{\prime}\right)=\left(\mathbf{u}+\mathbf{u}^{\prime}, \mathbf{w}+\mathbf{w}^{\prime}\right)
$$

for all $\mathbf{u}, \mathbf{u}^{\prime} \in U, \mathbf{w}, \mathbf{w}^{\prime} \in W$, and $\lambda \in F$.
[There is a very subtle difference between Cartesian product and direct sum, which will only come up once you get into infinite products/sums. But for now, qualitatively, this combination of vectors spaces acts more like addition than multiplication.]
Example: If $U=\mathbb{C}^{3}$ and $W=\mathbb{C}^{5}$, then

$$
\begin{aligned}
U \oplus W & =\{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \in U, \mathbf{w} \in W\} \\
& =\left\{\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)\right) \mid a_{i} \in \mathbb{C}, b_{i} \in \mathbb{C}\right\} .
\end{aligned}
$$

The direct sum of vector spaces U and W over a field F is the set

$$
U \oplus W=\{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \in U \text { and } \mathbf{w} \in W\}
$$

with scalar multiplication and vector addition defined by

$$
\lambda(\mathbf{u}, \mathbf{w})=(\lambda \mathbf{u}, \lambda \mathbf{w}) \quad \text { and } \quad(\mathbf{u}, \mathbf{w})+\left(\mathbf{u}^{\prime}, \mathbf{w}^{\prime}\right)=\left(\mathbf{u}+\mathbf{u}^{\prime}, \mathbf{w}+\mathbf{w}^{\prime}\right)
$$

for all $\mathbf{u}, \mathbf{u}^{\prime} \in U, \mathbf{w}, \mathbf{w}^{\prime} \in W$, and $\lambda \in F$.

Some facts:

- If \mathcal{A} is a basis of U and \mathcal{B} is a basis of W, then $\hat{\mathcal{A}} \sqcup \hat{\mathcal{B}}$ is a basis of $U \oplus W$,
where

$$
\hat{\mathcal{A}}=\{(\mathbf{a}, \mathbf{0}) \mid \mathbf{a} \in \mathcal{A}\} \quad \text { and } \quad \hat{\mathcal{B}}=\{(\mathbf{0}, \mathbf{b}) \mid \mathbf{b} \in \mathcal{B}\} .
$$

In particular, if $\operatorname{dim}(U)=k$ and $\operatorname{dim}(W)=\ell$, then $\operatorname{dim}(U \oplus W)=k+\ell$.

- Let
$\hat{U}=F \hat{\mathcal{A}}=\{(\mathbf{u}, \mathbf{0}) \mid \mathbf{u} \in U\} \quad$ and $\quad \hat{W}=F \hat{\mathcal{B}}=\{(\mathbf{0}, \mathbf{w}) \mid \mathbf{w} \in W\}$.
Then

$$
\begin{aligned}
U & \rightarrow \hat{U} \\
\mathbf{u} & \mapsto(\mathbf{u}, \mathbf{0})
\end{aligned} \quad \text { and } \quad W \rightarrow \hat{W}, \quad \mathbf{w} \mapsto(\mathbf{0}, \mathbf{w})
$$

are isomorphisms.

Internal versus external direct sums

Prop. Let U and W be subspaces of a vector space V over F such that (i) the union of U and W spans V, and (ii) $U \cap W=\{0\}$.

Then there is an isomorphism

$$
\begin{aligned}
f: U \oplus W & \rightarrow V \\
(\mathbf{u}, \mathbf{w}) & \mapsto \mathbf{u}+\mathbf{w}
\end{aligned}
$$

Thus, every element of V has a unique expression of the form $\mathbf{u}+\mathbf{w}$ with $\mathbf{u} \in U$ and $\mathbf{w} \in W$.

Pf. First, f is linear: for $\mathbf{u}, \mathbf{u}^{\prime} \in U, \mathbf{w}, \mathbf{w}^{\prime} \in W$, and $\lambda \in F$, we have

$$
\begin{aligned}
(\mathbf{u}, \mathbf{w})+\lambda\left(\mathbf{u}^{\prime}, \mathbf{w}^{\prime}\right) & =\left(\mathbf{u}+\lambda \mathbf{u}^{\prime}, \mathbf{w}+\lambda \mathbf{w}^{\prime}\right) \\
& \stackrel{f}{\longmapsto} \mathbf{u}+\lambda \mathbf{u}^{\prime}+\mathbf{w}+\lambda \mathbf{w}^{\prime}=(\mathbf{u}+\mathbf{w})+\lambda\left(\mathbf{u}^{\prime}+\mathbf{w}^{\prime}\right) .
\end{aligned}
$$

Next, f is surjective by definition. Finally, to see that f is injective, we compute its kernel:

$$
\text { if } \mathbf{u}+\mathbf{w}=0 \quad \text { then } \quad \mathbf{u}=-\mathbf{w} \in W
$$

because W is closed under scaling. Hence $\mathbf{u}, \mathbf{w} \in U \cap W=0$.
We call $U \oplus W$ an external direct sum (two unrelated-ish separate spaces make a new space). If $U, W \subseteq V$ satisfy the above conditions, we call $U+W$ an internal direct sum (they're subspaces internal to a common space).

Example. Let $Y \in M_{5}(\mathbb{C})$ be a matrix with characteristic equation

$$
p_{Y}(x)=(x-1)^{2}(x+4)^{3} .
$$

Then

$$
\operatorname{dim}\left(V^{1}(Y)\right)=2 \quad \operatorname{dim}\left(V^{-4}(Y)\right)=3 \quad \text { and } \quad V^{1}(Y) \cap V^{-4}(Y)=0
$$

(Recall $V^{\lambda}(Y)$ is the generalized eigenspace of eigenvalue λ.)
Therefore

$$
V^{1}(Y)+V^{-4}(Y) \cong V^{1}(Y) \oplus V^{-4}(Y)
$$

Moreover, since
$\operatorname{dim}\left(V^{1}(Y) \oplus V^{-4}(Y)\right)=\operatorname{dim}\left(V^{1}(Y)\right)+\operatorname{dim}\left(V^{-4}(Y)\right)=2+3=5=\operatorname{dim}(V)$, we have $V^{1}(Y)+V^{-4}(Y)=V$, and hence $V \cong \operatorname{dim}\left(V^{1}(Y) \oplus V^{-4}(Y)\right)$.

Orthogonal complement

Let $S \subseteq V$ be nonempty. The orthogonal complement of S is

$$
S^{\perp}=\{\mathbf{x} \in V \mid\langle\mathbf{x}, \mathbf{y}\rangle=0 \text { for all } \mathbf{y} \in S\}
$$

Example. Let $V=\mathbb{R}^{3}$ and \langle,$\rangle dot product. Let S=\{(1,2,0)\}$. Then

$$
0=(a, b, c) \cdot(1,2,0)=a+2 b .
$$

So

$$
\begin{aligned}
S^{\perp} & =\left\{(a, b, c) \in \mathbb{R}^{3} \mid(a, b, c) \cdot(1,2,0)=0\right\} \\
& =\{(-2 b, b, c) \mid b, c \in \mathbb{R}\}
\end{aligned}
$$

Note: If $S^{\prime}=F S$, then $\left(S^{\prime}\right)^{\perp}=S^{\perp}$.

Orthogonal projection

$(V,\langle\rangle$,$) and \mathrm{PPS} / F=\mathbb{R}$ or \mathbb{C}
$S^{\perp}=\{\mathbf{x} \in V \mid\langle\mathbf{x}, \mathbf{y}\rangle=0$ for all $\mathbf{y} \in S\}$.

Prop. S^{\perp} is a subspace of V.
Pf. Use the subspace criterion...

1. $S^{\perp} \neq \emptyset$:
2. For $\mathbf{x}, \mathbf{x}^{\prime} \in S^{\perp}$ and $\lambda \in F, \lambda \mathbf{x}+\mathbf{x}^{\prime} \in S^{\perp}$:

Theorem. Let W be a finite-dimensional subspace of V. Then

$$
V \cong W \oplus W^{\perp}
$$

Thus, for each $\mathbf{y} \in V$, there exist unique $\mathbf{u} \in W$ and $\mathbf{z} \in W^{\perp}$ such that

$$
\mathbf{y}=\mathbf{u}+\mathbf{z}
$$

Idea: If $\mathbf{v} \in W \cap W^{\perp}$, then $\langle\mathbf{v}, \mathbf{v}\rangle=0$. So $\mathbf{v}=\mathbf{0}$.
It remains to show that $W+W^{\perp}=V$.
The vector $\mathbf{u} \in W$ is $\operatorname{proj}_{W}(\mathbf{y})$, the orthogonal projection of \mathbf{y} onto W (we'll see below how to compute \mathbf{u}).
Fact: $\operatorname{proj}_{W}(\mathbf{y})$ is the unique closest vector to \mathbf{y} that is in W.
(Think about the case when $\operatorname{dim}(W)=1$. Pf in a moment.)

Proposition. Suppose $\operatorname{dim}(V)=n$ and $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthonormal subset of V (orthogonal and all norm 1).
(a) S can be extended to an orthonormal basis
$\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ for V.
Pf. S can be extended to an (ordered) basis \mathcal{A}. Then perform
Gram-Schmidt orthogonalization on \mathcal{A} (to get \mathcal{B}). If you process S first, this process will preserve S.
(b) If $W=F S$, then $S^{\prime}=\left\{\mathbf{v}_{k+1}, \ldots, \mathbf{v}_{n}\right\}$ is an orthonormal basis for W^{\perp}. Pf. By Gram-Schmidt, $S^{\prime} \subseteq W^{\perp}$ so that $F S^{\prime} \subseteq W^{\perp}$. Let $\mathbf{x} \in W^{\perp}$. Since \mathcal{B} is an orthonormal basis of V,

$$
\mathbf{x}=\sum_{i=1}^{n}\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i}=\mathbf{0}+\sum_{i=k+1}^{n}\left\langle\mathbf{x}, \mathbf{v}_{i}\right\rangle \mathbf{v}_{i} \in F S^{\prime}
$$

Thus $W^{\perp}=F S^{\prime}$. So since S^{\prime} is independent, it's a basis.
(c) If $W \subseteq V$ is any subspace, then

$$
\operatorname{dim} W+\operatorname{dim} W^{\perp}=\operatorname{dim} V=n
$$

(d) If $W \subseteq V$ is any subspace, then $\left(W^{\perp}\right)^{\perp}=W$.

Pf. Use conjugate symmetry.

Orthogonal projection

Back to our theorem:
Theorem. Let W be a finite-dimensional subspace of V. Then

$$
V \cong W \oplus W^{\perp}
$$

Thus, for each $\mathbf{y} \in V$, there exist unique $\mathbf{u} \in W$ and $\mathbf{z} \in W^{\perp}$ such that

$$
\mathbf{y}=\mathbf{u}+\mathbf{z}
$$

We call $\mathbf{u}=\operatorname{proj}_{W}(\mathbf{y})$ the orthogonal projection of \mathbf{y} onto W.
Pf. If $\mathcal{A}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthonm. basis for W, let
$\mathcal{B}=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n-k}\right\}$ be an orthonm. basis extending \mathcal{A}. We saw $\mathcal{A}^{\prime}=\mathcal{B}-\mathcal{A}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n-k}\right\}$ is an orthonm. basis of W^{\perp}. In particular, $W+W^{\perp}=F \mathcal{A}+F \mathcal{A}^{\prime}=V$, so since $W \cap W^{\perp}=0$, we have $V \cong W \oplus W^{\perp}$.
Then to compute $\mathbf{u}=\operatorname{proj}_{W}(\mathbf{y})$: we have

$$
\mathbf{y}=\sum_{\mathbf{b} \in \mathcal{B}}\langle\mathbf{y}, \mathbf{b}\rangle \mathbf{b}=\underbrace{\sum_{i=1}^{k}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{u}_{i}}_{\mathbf{u} \in W}+\underbrace{\sum_{j=1}^{n-k}\left\langle\mathbf{y}, \mathbf{v}_{j}\right\rangle \mathbf{v}_{j}}_{\mathbf{z} \in W^{\perp}}
$$

So

$$
\operatorname{proj}_{W}(\mathbf{y})=\sum_{i=1}^{k}\left\langle\mathbf{y}, \mathbf{u}_{i}\right\rangle \mathbf{u}_{i}
$$

Corollary. The orthogonal projection $\operatorname{proj}_{W}(\mathbf{y})$ of \mathbf{y} onto W is the closest vector in W to \mathbf{y} :

$$
\left\|\mathbf{y}-\operatorname{proj}_{W}(\mathbf{y})\right\| \leq\|\mathbf{y}-\mathbf{w}\|
$$

for all $\mathbf{w} \in W$, with equality if and only if $\mathbf{w}=\operatorname{proj}_{W}(\mathbf{y})$.
Pf. Write $\mathbf{y}=\mathbf{u}+\mathbf{z}$ with $\mathbf{u} \in W$ and $\mathbf{z} \in W^{\perp}$ (so that $\mathbf{u}=\operatorname{proj}_{W}(\mathbf{y})$), and let $\mathbf{w} \in W$. So

$$
\mathbf{u}-\mathbf{w} \in W \quad \text { and } \quad \mathbf{y}-\mathbf{u} \in W^{\perp}
$$

Thus $\mathbf{u}-\mathbf{w}$ and $\mathbf{z}=\mathbf{y}-\mathbf{u}$ are perpendicular!
The result now follows from the Pythagorean theorem:

$$
\|\mathbf{y}-\mathbf{w}\|^{2}=\|(\mathbf{u}+\mathbf{z})-\mathbf{w}\|^{2}=
$$

Applications (presentations!)

Application 1 (kind of). 3D graphics (project a 3-dimensional object onto a plane as cameral angles change).

Application 2: Fourier Series (presentations next week)

Let V be the vector space of integrable functions $[0,2 \pi] \rightarrow \mathbb{R}$ with inner product

$$
\langle f, g\rangle:=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) g(t) d t .
$$

The distance between $f, g \in V$ is

$$
\|f-g\|:=\frac{1}{\pi} \int_{0}^{2 \pi}(f(t)-g(t))^{2} d t
$$

One orthonomal set with respect to this product is

$$
S_{n}:=\left\{\frac{1}{\sqrt{2}}, \cos (x), \sin (x), \cos (2 x), \sin (2 x), \ldots, \cos (n x), \sin (n x)\right\} .
$$

Problem: Approximate $f \in V$ with an element in $F\left(S_{n}\right)$.

You try: Let $V=\mathbb{C}^{4}$ and let \langle,$\rangle be the conjugate dot product$
$(\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \overline{\mathbf{v}})$. Let

$$
Y=\left(\begin{array}{cccc}
6 & 6 & 1 & 0 \\
-1 & -1 & -1 & 0 \\
-5 & -4 & 0 & 0 \\
0 & 0 & 0 & 5
\end{array}\right) \in M_{4}(\mathbb{C})
$$

(a) We have $p_{Y}(x)=(x+i)(x-i)(x-5)^{2}$. Compute $W=V_{5}(Y)$ (the $\lambda=5$ eigenspace of Y), and give a basis of W.
(b) Use Gram-Schmidt to compute an orthogonal basis \mathcal{A} of W. Check your answer (compute the inner products).
(c) Normalize the basis \mathcal{A} in the previous part to get an orthonormal basis \mathcal{A}^{\prime} of W.
(d) Use the previous part to project each of the standard basis vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{4}$ onto W. [Reality check: Verify that each of your 4 answers $\mathbf{u}_{i}=\operatorname{proj}_{W}\left(\mathbf{e}_{i}\right)$ are, indeed, eigenvectors of Y by computing $Y \mathbf{u}_{i}$.]
(e) Extend your basis \mathcal{A}^{\prime} to a basis \mathcal{B} of V (try adding in \mathbf{e}_{i} 's, one at a time, that aren't already in the span). Use Gram-Schmidt to compute an orthogonal basis \mathcal{B}^{\prime} of V that contains \mathcal{A}^{\prime}.
(f) Are the remaining vectors $\left(\mathbf{v} \in \mathcal{B}^{\prime}-\mathcal{A}^{\prime}\right)$ eigenvectors?
(Is there any good reason to expect that they are?)

