Warmup.

Lecture 22: more geometry, orthogonalization

1. Recall that the standard inner product on $V = \mathbb{R}^n$ is dot product. Given two vectors $\mathbf{u}, \mathbf{v} \in V$, with $\mathbf{v} \neq 0$, the projection of \mathbf{u} onto \mathbf{v} is

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}.$$

(a) Let $\mathbf{u} = (1, 0, -2)$. For each of the following \mathbf{v} , compute $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$.

(i)
$$\mathbf{v} = (3, -1, 4);$$
 (ii) $\mathbf{v} = (1, 0, 0);$ (iii) $\mathbf{v} = (0, 1, 0);$
(iv) $\mathbf{v} = (1, 1, 1);$ and (v) $\mathbf{v} = (-2, 0, 4).$

- For (ii), (iii), and (v), can you make sense of your answers geometrically?
- (b) Under what circumstances is (i) $\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \mathbf{u}$? (ii) $\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$?
- (c) A particle is traveling along the line y = 2x in \mathbb{R}^2 such that its position at time t is $\mathbf{p}(t) = (t, 2t)$.
 - (a) At time t, what is the point on the x-axis that the particle is closest to? How far away is the particle from that point?
 - (b) At time t, what is the point on the line y = 5x that the particle is closest to? How far away is the particle from that point?

[Hint: project $\mathbf{p}(t)$ onto the line by taking *any* vector \mathbf{v} (besides 0) on the line, and computing $\operatorname{proj}_{\mathbf{v}}(\mathbf{p}(t))$.]

2. Time permitting: Define the standard inner product on $M_{k,\ell}(F)$ (where

 $F = \mathbb{R}$ or \mathbb{C}) by $\langle X, Y \rangle = \operatorname{tr}(\overline{Y}^t X)$, where \overline{Y} means take the complex conjugate of the entries of Y. Check that this *is* an inner product.

[See next slide for examples]

Examples for warmup 2.

In $M_{2,3}(F)$,

$$\left\langle \begin{pmatrix} 1 & 3 & 0 \\ i & 0 & 1+i \end{pmatrix}, \begin{pmatrix} 0 & 5+2i & 1 \\ 2-i & 6 & 4i \end{pmatrix} \right\rangle = \operatorname{tr} \left(\overline{\begin{pmatrix} 0 & 5+2i & 1 \\ 2-i & 6 & 4i \end{pmatrix}}^t \begin{pmatrix} 1 & 3 & 0 \\ i & 0 & 1+i \end{pmatrix} \right)$$

$$= \operatorname{tr} \left(\begin{pmatrix} \overline{0} & \overline{2-i} \\ \overline{1} & \overline{4i} \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ i & 0 & 1+i \end{pmatrix} \right)$$

$$= \operatorname{tr} \left(\begin{pmatrix} 0 & 2+i \\ 5-2i & 6 \\ 1 & -4i \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ i & 0 & 1+i \end{pmatrix} \right)$$

$$= \operatorname{tr} \left(\begin{pmatrix} -1+2i & 0 & 1+3i \\ 5+4i & 15-6i & 6+6i \\ 5 & 3 & 4-4i \end{pmatrix} \right)$$

$$= -1+2i+15-6i+4-4i = \overline{18-8i}.$$

Recall that $E_{i,j}$ denotes the matrix with a 1 in row *i* and column *j* (and 0's elsewhere). Since $\overline{1} = 1$ and $\overline{0} = 0$, we have $\overline{E_{i,j}} = E_{i,j}$. So for any $k \ge 1$ and $\ell \ge 3$ (i.e. $M_{k,\ell}(F)$ is big enough to hold $E_{1,2}$ and $E_{1,3}$), we have

$$\langle E_{1,2}, E_{1,3} \rangle = \operatorname{tr}(\overline{E_{1,3}}^t E_{1,2}) = \operatorname{tr}(E_{3,1}E_{1,2}) = \operatorname{tr}(E_{3,2}) = 0;$$
 and
 $\langle E_{1,3}, E_{1,3} \rangle = \operatorname{tr}(\overline{E_{1,3}}^t E_{1,3}) = \operatorname{tr}(E_{3,1}E_{1,3}) = \operatorname{tr}(E_{3,3}) = 1.$

Last time: Let V be a vector space over a field F where $F = \mathbb{R}$ or \mathbb{C} . An inner product on V is a function

$$\langle \ , \ \rangle \colon V \times V \quad \to \quad F \ (\mathbf{u}, \mathbf{v}) \quad \mapsto \quad \langle \mathbf{u}, \mathbf{v} \rangle$$

that is linear in the first coordinate, conjugate symmetric, and positive-definite. We can additionally prove that \langle , \rangle is conjugate linear in the second coordinate, is non-degenerate, and has $\langle \mathbf{u}, 0 \rangle = 0$ for all \mathbf{u} . We call (V, \langle , \rangle) an inner product space (IPS).

Favorite examples: The standard inner product on...

 $\ldots \mathbb{R}^n$ is dot product: $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v};$

- $\ldots \mathbb{C}^n$ is conjugate dot product: $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \overline{\mathbf{v}};$
- ... { continuous functions $f : [0,1] \to \mathbb{R}$ } is $\langle f,g \rangle = \int_0^1 f(t)g(t) dt$.

We can use \langle,\rangle to start building geometry on an inner product space.

First, we define the **norm** of $\mathbf{u} \in V$ by $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$. Then $\|\cdot\|$ is also positive-definite, homogeneous, and satisfies the Pythagorean Theorem (where we define $\mathbf{u} \perp \mathbf{v}$ by $\langle \mathbf{u}, \mathbf{v} \rangle = 0$) and the triangle inequality.

Lemma. For any
$$\mathbf{v} \neq \mathbf{0}$$
, $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} \stackrel{\text{def}}{=} \left(\frac{1}{\|\mathbf{v}\|}\right) \mathbf{v}$ is a **unit vector** (has length 1).

Distance and metric spaces Still: Let (V, \langle, \rangle) be an IPS/ $F = \mathbb{R}$ or \mathbb{C} .

Remember!! We hold in our mind two notions about spaces like \mathbb{R}^n : an element is both a **point** and a **vector** pointing from **0** to that point.

Define the distance between points $\mathbf{x}, \mathbf{y} \in V$ as $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$

Proposition. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$,

- 1. Symmetry: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
- 2. Positive-definiteness: $d(\mathbf{x}, \mathbf{y}) \ge 0$, and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.
- 3. Triangle inequality: $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$.

Namely, an inner product space is also a metric space.

Pf. (exercise)

Angles Let (V, \langle, \rangle) be an inner product space over $F = \mathbb{R}$

Let \mathbf{x}, \mathbf{y} be nonzero vectors in V. Define the **angle** θ between \mathbf{x} and \mathbf{y} is defined to by

i.e.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta),$$

$$\theta \stackrel{\mathsf{def}}{=} \cos^{-1} \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \right).$$

Wait! Is this well-defined? Is this a reasonable definition? Cauchy-Schwarz (last time) says $|\langle \mathbf{x}, \mathbf{y} \rangle| \leq ||\mathbf{x}|| ||\mathbf{y}||$. So

$$-\|\mathbf{x}\|\|\mathbf{y}\| \leq \langle \mathbf{x}, \mathbf{y} \rangle \leq \|\mathbf{x}\|\|\mathbf{y}\|,$$

and hence $-1 \leq \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} \leq 1$ (i.e. $\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}$ is in cosine's range).

Remark:

$$\cos(\theta) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|} = \left\langle \frac{1}{\|\mathbf{x}\|} \mathbf{x}, \overline{\left(\frac{1}{\|\mathbf{y}\|}\right)} \mathbf{y} \right\rangle = \left\langle \frac{\mathbf{x}}{\|\mathbf{x}\|}, \frac{\mathbf{y}}{\|\mathbf{y}\|} \right\rangle,$$

because $\|\mathbf{y}\| \in \mathbb{R}$.

In particular, θ is a statistic in terms of the unit vectors $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and $\frac{\mathbf{y}}{\|\mathbf{y}\|}$.

Orthogonal sets

Still: (V, \langle , \rangle) an $\mathsf{IPS}/F = \mathbb{R}$ or \mathbb{C} .

A subset $S \subseteq V$ is **orthogonal** if its elements are pairwise orthogonal: if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ for all $\mathbf{u}, \mathbf{v} \in S$ with $\mathbf{u} \neq \mathbf{v}$.

If S is an orthogonal subset of V and $||\mathbf{u}|| = 1$ for all $u \in S$, we say S is an orthonormal subset of V. Note that orthonormal means

$$\langle \mathbf{u}, \mathbf{v} \rangle = \delta_{\mathbf{u}, \mathbf{v}}$$
 for all $\mathbf{u}, \mathbf{v} \in S$.

Examples.

- The standard basis {e₁,...,e_n} of Fⁿ is orthonormal with respect to the standard inner product.
- $S = \left\{ \frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1) \right\}$ is orthonormal with respect to the standard inner product on \mathbb{R}^2 .
- $S = {\cos(2\pi x), \sin(2\pi x)}$ is orthogonal in the space of continuous functions $C(\mathbb{R})$ with respect to the inner product

$$\langle f,g\rangle := \int_0^1 f(t)g(t)\,dt,$$

but is not ortho*normal* since $\int_0^1 \cos^2(2\pi t) dt = 1/2 \neq 1$.

Computing coordinates

Notice!

Question. Given an orthonormal basis \mathcal{B} of V, write the expansion of $\mathbf{v} \in V$ in terms of \mathcal{B} ; i.e. what is $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})$?

NOTATION: Today, I'm going to use $\langle\!\langle, \rangle\!\rangle$ for ordered bases to emphasize the difference between this notation and inner-product notation.

Example. Let $\mathcal{B} = \langle\!\langle \mathbf{u}, \mathbf{v} \rangle\!\rangle$, where $\mathbf{u} = (1/2, 1)$ and $\mathbf{v} = (2, -1)$. What is $\operatorname{Rep}_{\mathcal{B}}((4, 1))$?

 $\alpha \mathbf{u} = \operatorname{proj}_{\mathbf{u}}((4,1)) = \frac{\langle (4,1), \mathbf{u} \rangle}{\langle \mathbf{u}, \mathbf{u} \rangle} \mathbf{u} \quad \text{and} \quad \beta \mathbf{v} = \operatorname{proj}_{\mathbf{v}}((4,1)) = \frac{\langle (4,1), \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}.$

Computing coordinates

Proposition. Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ be an orthogonal set of nonzero vectors in V, and let $\mathbf{y} \in FS$. Then

$$\mathbf{y} = \sum_{j=1}^{k} \frac{\langle \mathbf{y}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle} \, \mathbf{v}_j = \sum_{j=1}^{k} \frac{\langle \mathbf{y}, \mathbf{v}_j \rangle}{\|\mathbf{v}_j\|^2} \, \mathbf{v}_j.$$

Conceptually: each term is just the projection of \mathbf{y} onto \mathbf{v}_j . Computationally: Since $\mathbf{y} \in FS$, there are c_1, \ldots, c_k such that

$$\mathbf{y} = \sum_{i=1}^{k} c_i \mathbf{v}_i.$$

Plug this into $\langle \mathbf{y}, \mathbf{v}_j \rangle$ and see what happens!

Corollary 1. If $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ is orthonormal and $\mathbf{y} \in FS$, then

$$\mathbf{y} = \sum_{j=1}^k \langle \mathbf{y}, \mathbf{v}_j \rangle \mathbf{v}_i.$$

Pf. $\langle \mathbf{v}_j, \mathbf{v}_j \rangle = 1$ for all j.

Corollary 2. If $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ is an orthogonal set of nonzero vectors in V then S is linearly independent.

Pf. Apply the Prop. to $\mathbf{y} = \mathbf{v}_i$ and $S' = S - \{\mathbf{v}_i\}$ to see $\mathbf{v}_i \notin FS'$.

Gram-Schmidt orthognalization

Goal. Build an orthonormal subset or basis from a previously existing linearly independent set. (Recall that we learned how to recursively build a linearly independent subset of any set earlier this semester—Lectures 5 & 6 or so.)

Algorithm.

INPUT: $S = {\mathbf{w}_1, \dots, \mathbf{w}_n}$, a linearly independent subset of V. Start with

$$\mathbf{v}_1 := \mathbf{w}_1$$

For k = 2, 3, ..., n, define \mathbf{v}_k by starting with \mathbf{w}_k , then subtracting off the components of \mathbf{w}_k along the previously found \mathbf{v}_i :

$$\mathbf{v}_k := \mathbf{w}_k - \sum_{i=1}^{k-1} \frac{\langle \mathbf{w}_k, \mathbf{v}_i \rangle}{\|\mathbf{v}_i\|^2} \mathbf{v}_i.$$

[Check: Is $\langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0$ for all

 $i \leq k?$]

OUTPUT: $S' = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ an orthogonal set with FS' = FS.

OUTPUT: $S'' = \left\{ \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \dots, \frac{\mathbf{v}_n}{\|\mathbf{v}_n\|} \right\}$ an orthonormal set with FS'' = FS.

Example

 $V = \mathcal{P}_1(\mathbb{R})$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t)\,dt.$$

Apply Gram-Schmidt to the basis $\langle\!\langle 1,x\rangle\!\rangle$ to get an orthonormal basis. Start with ${\bf v}_1=1,$ then let

$$\mathbf{v}_2 = x - \frac{\langle x, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 = x - \frac{\langle x, 1 \rangle}{\|1\|^2} \cdot 1$$
$$= x - \frac{\int_0^1 t \, dt}{\int_0^1 dt} \cdot 1 = x - \frac{1}{2}.$$

Check orthogonality:

$$\langle 1, x - 1/2 \rangle = \int_0^1 (t - 1/2) \, dt = 0.$$

Orthogonal basis: $\langle\!\langle 1, x - \frac{1}{2} \rangle\!\rangle$. Scale to get an orthonormal basis:

$$\begin{aligned} \|\mathbf{v}_1\|^2 &= \int_0^1 dt = 1\\ \|\mathbf{v}_2\|^2 &= \langle x - 1/2, x - 1/2 \rangle\\ &= \int_0^1 (t - 1/2)^2 dt\\ &= \frac{(t - 1/2)^3}{3} \Big|_{t=0}^1 = \frac{1/8}{3} - \frac{-1/8}{3} = \frac{1}{12}. \end{aligned}$$

Orthonormal basis: $\langle\!\!\langle 1,\sqrt{12}(x-1/2)\rangle\!\!\rangle$

You try.

- 1. Consider the standard basis $\mathcal{B} = \langle\!\langle 1, x, x^2 \rangle\!\rangle$ of $\mathcal{P}_2(\mathbb{R})$.
 - (a) Check (for yourself) that the first two steps of Gram-Schidt go the same as in the example we just did. Then finish the algorithm to get an orthonormal basis $\mathcal{B}' = \langle\!\langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle\!\rangle$ of $\mathcal{P}_3(\mathbb{R})$.
 - (b) Check your answer by computing $\langle v_3, v_1 \rangle$ and $\langle v_3, v_2 \rangle$. (You should get 0.)
 - (c) Compute the associated orthonormal basis B" of P₃(R).
 (Since v₁ and v₂ are the same as in the example above, you only need to compute ||v₃||.)
- 2. For $\mathcal{P}_n(\mathbb{R})$, we're finding that the standard basis is *not* orthonormal with respect to the standard inner product. What about our other favorite examples? For each of the following, either verify that the standard ordered basis *is* orthonormal (with respect to the standard inner product), or apply Gram-Schmidt orthogonalization to the standard ordered basis to get an orthonormal basis.
 - (a) $V = \mathbb{R}^3$ (with $F = \mathbb{R}$ and \langle, \rangle being dot product);
 - (b) $V = \mathbb{C}^3$ (with $F = \mathbb{R}$ and \langle, \rangle being conjugate dot product);
 - (c) $V = M_{2,3}(\mathbb{R})$ (with $F = \mathbb{R}$ and \langle, \rangle the inner product in the warmup);
 - (d) $V = M_{2,3}(\mathbb{C})$ (with $F = \mathbb{C}$ and \langle, \rangle the inner product in the warmup).