Warmup.

1. Recall that the standard inner product on $V=\mathbb{R}^{n}$ is dot product. Given two vectors $\mathbf{u}, \mathbf{v} \in V$, with $\mathbf{v} \neq 0$, the projection of \mathbf{u} onto \mathbf{v} is

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} .
$$

(a) Let $\mathbf{u}=(1,0,-2)$. For each of the following \mathbf{v}, compute $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$.

$$
\begin{gathered}
\text { (i) } \mathbf{v}=(3,-1,4) ; \quad \text { (ii) } \mathbf{v}=(1,0,0) ; \quad \text { (iii) } \mathbf{v}=(0,1,0) ; \\
\text { (iv) } \mathbf{v}=(1,1,1) ; \quad \text { and } \quad(\mathrm{v}) \mathbf{v}=(-2,0,4) .
\end{gathered}
$$

For (ii), (iii), and (v), can you make sense of your answers geometrically?
(b) Under what circumstances is (i) $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\mathbf{u}$? (ii) $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$?
(c) A particle is traveling along the line $y=2 x$ in \mathbb{R}^{2} such that its position at time t is $\mathbf{p}(t)=(t, 2 t)$.
(a) At time t, what is the point on the x-axis that the particle is closest to? How far away is the particle from that point?
(b) At time t, what is the point on the line $y=5 x$ that the particle is closest to? How far away is the particle from that point?
[Hint: project $\mathbf{p}(t)$ onto the line by taking any vector \mathbf{v} (besides $\mathbf{0}$) on the line, and computing $\operatorname{proj}_{\mathbf{v}}(\mathbf{p}(t))$.]
2. Time permitting: Define the standard inner product on $M_{k, \ell}(F)$ (where $F=\mathbb{R}$ or \mathbb{C}) by $\langle X, Y\rangle=\operatorname{tr}\left(\bar{Y}^{t} X\right)$, where \bar{Y} means take the complex conjugate of the entries of Y. Check that this is an inner product.
[See next slide for examples]

Examples for warmup 2.
In $M_{2,3}(F)$,

$$
\begin{aligned}
\left\langle\left(\begin{array}{ccc}
1 & 3 & 0 \\
i & 0 & 1+i
\end{array}\right),\left(\begin{array}{ccc}
0 & 5+2 i & 1 \\
2-i & 6 & 4 i
\end{array}\right)\right\rangle & =\operatorname{tr}\left(\overline{\left(\begin{array}{ccc}
0 & 5+2 i & 1 \\
2-i & 6 & 4 i
\end{array}\right)}{ }^{t}\left(\begin{array}{ccc}
1 & 3 & 0 \\
i & 0 & 1+i
\end{array}\right)\right) \\
& =\operatorname{tr}\left(\left(\begin{array}{cc}
\overline{0} & \overline{2-i} \\
\overline{5+2 i} & \overline{6} \\
\overline{1}
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & 0 \\
i & 0 & 1+i
\end{array}\right)\right) \\
& =\operatorname{tr}\left(\left(\begin{array}{cc}
0 & 2+i \\
5-2 i & 6 \\
1 & -4 i
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & 0 \\
i & 0 & 1+i
\end{array}\right)\right) \\
& =\operatorname{tr}\left(\left(\begin{array}{ccc}
-1+2 i & 0 & 1+3 i \\
5+4 i & 15-6 i & 6+6 i \\
5 & 3 & 4-4 i
\end{array}\right)\right. \\
& =-1+2 i+15-6 i+4-4 i=18-8 i
\end{aligned}
$$

Recall that $E_{i, j}$ denotes the matrix with a 1 in row i and column j (and 0 's elsewhere). Since $\overline{1}=1$ and $\overline{0}=0$, we have $\overline{E_{i, j}}=E_{i, j}$. So for any $k \geq 1$ and $\ell \geq 3$ (i.e. $M_{k, \ell}(F)$ is big enough to hold $E_{1,2}$ and $E_{1,3}$), we have

$$
\begin{aligned}
& \left\langle E_{1,2}, E_{1,3}\right\rangle=\operatorname{tr}\left({\overline{E_{1,3}}}^{t} E_{1,2}\right)=\operatorname{tr}\left(E_{3,1} E_{1,2}\right)=\operatorname{tr}\left(E_{3,2}\right)=0 ; \text { and } \\
& \left\langle E_{1,3}, E_{1,3}\right\rangle=\operatorname{tr}\left({\overline{E_{1,3}}}^{t} E_{1,3}\right)=\operatorname{tr}\left(E_{3,1} E_{1,3}\right)=\operatorname{tr}\left(E_{3,3}\right)=1 .
\end{aligned}
$$

Last time: Let V be a vector space over a field F where $F=\mathbb{R}$ or \mathbb{C}.
An inner product on V is a function

$$
\begin{array}{rlc}
\langle,\rangle: V \times V & \rightarrow & F \\
(\mathbf{u}, \mathbf{v}) & \mapsto & \langle\mathbf{u}, \mathbf{v}\rangle
\end{array}
$$

that is linear in the first coordinate, conjugate symmetric, and positive-definite. We can additionally prove that \langle,$\rangle is conjugate linear in the$ second coordinate, is non-degenerate, and has $\langle\mathbf{u}, 0\rangle=0$ for all \mathbf{u}. We call $(V,\langle\rangle$,$) an inner product space (IPS).$

Favorite examples: The standard inner product on...
$\ldots \mathbb{R}^{n}$ is dot product: $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}$;
$\ldots \mathbb{C}^{n}$ is conjugate dot product: $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \overline{\mathbf{v}}$;
$\ldots\{$ continuous functions $f:[0,1] \rightarrow \mathbb{R}\}$ is $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$.
We can use \langle,$\rangle to start building geometry on an inner product space.$
First, we define the norm of $\mathbf{u} \in V$ by $\|\mathbf{u}\|=\sqrt{\langle\mathbf{u}, \mathbf{u}\rangle}$. Then $\|\cdot\|$ is also positive-definite, homogeneous, and satisfies the Pythagorean Theorem (where we define $\mathbf{u} \perp \mathbf{v}$ by $\langle\mathbf{u}, \mathbf{v}\rangle=0$) and the triangle inequality.
Lemma. For any $\mathbf{v} \neq \mathbf{0}, \mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|} \stackrel{\text { def }}{=}\left(\frac{1}{\|\mathbf{v}\|}\right) \mathbf{v}$ is a unit vector (has length 1).

Distance and metric spaces Still: Let $(V,\langle\rangle$,$) be an IPS/F =\mathbb{R}$ or \mathbb{C}.
Remember!! We hold in our mind two notions about spaces like \mathbb{R}^{n} : an element is both a point and a vector pointing from $\mathbf{0}$ to that point.

Define the distance between points $\mathbf{x}, \mathbf{y} \in V$ as

$$
d(\mathrm{x}, \mathrm{y})=\|\mathrm{x}-\mathrm{y}\| .
$$

Proposition. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$,

1. Symmetry: $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$.
2. Positive-definiteness: $d(\mathbf{x}, \mathbf{y}) \geq 0$, and $d(\mathbf{x}, \mathbf{y})=0$ if and only if $\mathbf{x}=\mathbf{y}$.
3. Triangle inequality: $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y})$.

Namely, an inner product space is also a metric space.
Pf. (exercise)

Angles Let $(V,\langle\rangle$,$) be an inner product space over F=\mathbb{R}$
Let \mathbf{x}, \mathbf{y} be nonzero vectors in V. Define the angle θ between \mathbf{x} and \mathbf{y} is defined to by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\|\mathbf{x}\|\|\mathbf{y}\| \cos (\theta),
$$

i.e.

$$
\theta \stackrel{\text { def }}{=} \cos ^{-1}\left(\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}\right) .
$$

Wait! Is this well-defined? Is this a reasonable definition?
Cauchy-Schwarz (last time) says $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq\|\mathbf{x}\|\|\mathbf{y}\|$. So

$$
-\|\mathbf{x}\|\|\mathbf{y}\| \leq\langle\mathbf{x}, \mathbf{y}\rangle \leq\|\mathbf{x}\|\|\mathbf{y}\|,
$$

and hence $-1 \leq \frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|} \leq 1$
(i.e. $\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}$ is in cosine's range).

Remark:

$$
\cos (\theta)=\frac{\langle\mathbf{x}, \mathbf{y}\rangle}{\|\mathbf{x}\|\|\mathbf{y}\|}=\left\langle\frac{1}{\|\mathbf{x}\|} \mathbf{x}, \overline{\left(\frac{1}{\|\mathbf{y}\|}\right) \mathbf{y}}\right\rangle=\left\langle\frac{\mathbf{x}}{\|\mathbf{x}\|}, \frac{\mathbf{y}}{\|\mathbf{y}\|}\right\rangle,
$$

because $\|\mathbf{y}\| \in \mathbb{R}$.
In particular, θ is a statistic in terms of the unit vectors $\frac{x}{\|x\|}$ and $\frac{\mathrm{y}}{\|\mathrm{y}\|}$.

Orthogonal sets

 Still: $(V,\langle\rangle$,$) an IPS / F=\mathbb{R}$ or \mathbb{C}.A subset $S \subseteq V$ is orthogonal if its elements are pairwise orthogonal: if $\langle\mathbf{u}, \mathbf{v}\rangle=0$ for all $\mathbf{u}, \mathbf{v} \in S$ with $\mathbf{u} \neq \mathbf{v}$.

If S is an orthogonal subset of V and $\|\mathbf{u}\|=1$ for all $u \in S$, we say S is an orthonormal subset of V. Note that orthonormal means

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\delta_{\mathbf{u}, \mathbf{v}} \quad \text { for all } \mathbf{u}, \mathbf{v} \in S
$$

Examples.

- The standard basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ of F^{n} is orthonormal with respect to the standard inner product.
- $S=\left\{\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\right\}$ is orthonormal with respect to the standard inner product on \mathbb{R}^{2}.
- $S=\{\cos (2 \pi x), \sin (2 \pi x)\}$ is orthogonal in the space of continuous functions $\mathcal{C}(\mathbb{R})$ with respect to the inner product

$$
\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t
$$

but is not orthonormal since $\int_{0}^{1} \cos ^{2}(2 \pi t) d t=1 / 2 \neq 1$.

Computing coordinates

Question. Given an orthonormal basis \mathcal{B} of V, write the expansion of $\mathbf{v} \in V$ in terms of \mathcal{B}; i.e. what is $\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})$?
NOTATION: Today, I'm going to use $\langle\langle\rangle$,$\rangle for ordered bases to emphasize the$ difference between this notation and inner-product notation.
Example. Let $\mathcal{B}=\langle\langle\mathbf{u}, \mathbf{v}\rangle\rangle$, where $\mathbf{u}=(1 / 2,1)$ and $\mathbf{v}=(2,-1)$.
What is $\operatorname{Rep}_{\mathcal{B}}((4,1))$?

Goal:

 solve for α and βNotice!
$\alpha \mathbf{u}=\operatorname{proj}_{\mathbf{u}}((4,1))=\frac{\langle(4,1), \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u} \quad$ and $\quad \beta \mathbf{v}=\operatorname{proj}_{\mathbf{v}}((4,1))=\frac{\langle(4,1), \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v}$.

Computing coordinates

Proposition. Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be an orthogonal set of nonzero vectors in V, and let $\mathrm{y} \in F S$. Then

$$
\mathbf{y}=\sum_{j=1}^{k} \frac{\left\langle\mathbf{y}, \mathbf{v}_{j}\right\rangle}{\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle} \mathbf{v}_{j}=\sum_{j=1}^{k} \frac{\left\langle\mathbf{y}, \mathbf{v}_{j}\right\rangle}{\left\|\mathbf{v}_{j}\right\|^{2}} \mathbf{v}_{j}
$$

Conceptually: each term is just the projection of \mathbf{y} onto \mathbf{v}_{j}.
Computationally: Since $\mathrm{y} \in F S$, there are c_{1}, \ldots, c_{k} such that

$$
\mathbf{y}=\sum_{i=1}^{k} c_{i} \mathbf{v}_{i} .
$$

Plug this into $\left\langle\mathbf{y}, \mathbf{v}_{j}\right\rangle$ and see what happens!
Corollary 1. If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is orthonormal and $\mathrm{y} \in F S$, then

$$
\mathrm{y}=\sum_{j=1}^{k}\left\langle\mathrm{y}, \mathbf{v}_{j}\right\rangle \mathbf{v}_{i} .
$$

$$
\operatorname{Pf.}\left\langle\mathbf{v}_{j}, \mathbf{v}_{j}\right\rangle=1 \text { for all } j .
$$

Corollary 2. If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal set of nonzero vectors in V then S is linearly independent.

Pf. Apply the Prop. to $\mathrm{y}=\mathbf{v}_{i}$ and $S^{\prime}=S-\left\{\mathbf{v}_{i}\right\}$ to see $\mathbf{v}_{i} \notin F S^{\prime}$.

Gram-Schmidt orthognalization

Goal. Build an orthonormal subset or basis from a previously existing linearly independent set. (Recall that we learned how to recursively build a linearly independent subset of any set earlier this semester-Lectures 5 \& 6 or so.)

Algorithm.

INPUT: $S=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$, a linearly independent subset of V.
Start with

$$
\mathbf{v}_{1}:=\mathbf{w}_{1}
$$

For $k=2,3, \ldots, n$, define \mathbf{v}_{k} by starting with \mathbf{w}_{k}, then subtracting off the components of \mathbf{w}_{k} along the previously found \mathbf{v}_{i} :

$$
\mathbf{v}_{k}:=\mathbf{w}_{k}-\sum_{i=1}^{k-1} \frac{\left\langle\mathbf{w}_{k}, \mathbf{v}_{i}\right\rangle}{\left\|\mathbf{v}_{i}\right\|^{2}} \mathbf{v}_{i}
$$

[Check: Is $\left\langle\mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle=0$ for all $i \leq k$?]
OUTPUT: $S^{\prime}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ an orthogonal set with $F S^{\prime}=F S$.
or
output: $S^{\prime \prime}=\left\{\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}, \ldots, \frac{\mathbf{v}_{n}}{\left\|\mathbf{v}_{n}\right\|}\right\}$ an orthonormal set with $F S^{\prime \prime}=F S$.

Example

$V=\mathcal{P}_{1}(\mathbb{R})$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Apply Gram-Schmidt to the basis $\langle\langle 1, x\rangle\rangle$ to get an orthonormal basis. Start with $\mathbf{v}_{1}=1$, then let

$$
\begin{aligned}
\mathbf{v}_{2} & =x-\frac{\left\langle x, \mathbf{v}_{1}\right\rangle}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}=x-\frac{\langle x, 1\rangle}{\|1\|^{2}} \cdot 1 \\
& =x-\frac{\int_{0}^{1} t d t}{\int_{0}^{1} d t} \cdot 1=x-\frac{1}{2}
\end{aligned}
$$

Check orthogonality:

$$
\langle 1, x-1 / 2\rangle=\int_{0}^{1}(t-1 / 2) d t=0
$$

Orthogonal basis: $\left\langle\left\langle 1, x-\frac{1}{2}\right\rangle\right\rangle$. Scale to get an orthonormal basis:

$$
\begin{aligned}
\left\|\mathbf{v}_{1}\right\|^{2} & =\int_{0}^{1} d t=1 \\
\left\|\mathbf{v}_{2}\right\|^{2} & =\langle x-1 / 2, x-1 / 2\rangle \\
& =\int_{0}^{1}(t-1 / 2)^{2} d t \\
& =\left.\frac{(t-1 / 2)^{3}}{3}\right|_{t=0} ^{1}=\frac{1 / 8}{3}-\frac{-1 / 8}{3}=\frac{1}{12} .
\end{aligned}
$$

Orthonormal basis: $\langle\langle 1, \sqrt{12}(x-1 / 2)\rangle$

You try.

1. Consider the standard basis $\mathcal{B}=\left\langle\left\langle 1, x, x^{2}\right\rangle\right\rangle$ of $\mathcal{P}_{2}(\mathbb{R})$.
(a) Check (for yourself) that the first two steps of Gram-Schidt go the same as in the example we just did. Then finish the algorithm to get an orthonormal basis $\mathcal{B}^{\prime}=\left\langle\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle\right\rangle$ of $\mathcal{P}_{3}(\mathbb{R})$.
(b) Check your answer by computing $\left\langle\mathbf{v}_{3}, \mathbf{v}_{1}\right\rangle$ and $\left\langle\mathbf{v}_{3}, \mathbf{v}_{2}\right\rangle$. (You should get 0.)
(c) Compute the associated orthonormal basis $\mathcal{B}^{\prime \prime}$ of $\mathcal{P}_{3}(\mathbb{R})$. (Since \mathbf{v}_{1} and \mathbf{v}_{2} are the same as in the example above, you only need to compute $\left\|\mathbf{v}_{3}\right\|$.)
2. For $\mathcal{P}_{n}(\mathbb{R})$, we're finding that the standard basis is not orthonormal with respect to the standard inner product. What about our other favorite examples? For each of the following, either verify that the standard ordered basis is orthonormal (with respect to the standard inner product), or apply Gram-Schmidt orthogonalization to the standard ordered basis to get an orthonormal basis.
(a) $V=\mathbb{R}^{3}$ (with $F=\mathbb{R}$ and \langle,$\rangle being dot product);$
(b) $V=\mathbb{C}^{3}$ (with $F=\mathbb{R}$ and \langle,$\rangle being conjugate dot product);$
(c) $V=M_{2,3}(\mathbb{R})$ (with $F=\mathbb{R}$ and \langle,$\rangle the inner product in the warmup);$
(d) $V=M_{2,3}(\mathbb{C})$ (with $F=\mathbb{C}$ and \langle,$\rangle the inner product in the warmup).$
