
Warmup. Lecture 22: more geometry, orthogonalization

1. Recall that the standard inner product on V = Rn
is dot product. Given

two vectors u,v 2 V , with v 6= 0, the projection of u onto v is

projv(u) =
hu,vi
hv,viv.

(a) Let u = (1, 0,�2). For each of the following v, compute projv(u).

(i) v = (3,�1, 4); (ii) v = (1, 0, 0); (iii) v = (0, 1, 0);

(iv) v = (1, 1, 1); and (v) v = (�2, 0, 4).

For (ii), (iii), and (v), can you make sense of your answers geometrically?

(b) Under what circumstances is (i) projv(u) = u? (ii) projv(u) = proju(v)?
(c) A particle is traveling along the line y = 2x in R2

such that its position at

time t is p(t) = (t, 2t).
(a) At time t, what is the point on the x-axis that the particle is closest to?

How far away is the particle from that point?

(b) At time t, what is the point on the line y = 5x that the particle is closest

to? How far away is the particle from that point?

[Hint: project p(t) onto the line by taking any vector v (besides 0) on the

line, and computing projv(p(t)).]

2. Time permitting: Define the standard inner product on Mk,`(F ) (where

F = R or C) by hX,Y i = tr(Y
t
X), where Y means take the complex

conjugate of the entries of Y . Check that this is an inner product.

[See next slide for examples]



Examples for warmup 2.

In M2,3(F ),
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Recall that Ei,j denotes the matrix with a 1 in row i and column j (and 0’s

elsewhere). Since 1 = 1 and 0 = 0, we have Ei,j = Ei,j . So for any k � 1 and

` � 3 (i.e. Mk,`(F ) is big enough to hold E1,2 and E1,3), we have

hE1,2, E1,3i = tr(E1,3
t
E1,2) = tr(E3,1E1,2) = tr(E3,2) = 0 ; and

hE1,3, E1,3i = tr(E1,3
t
E1,3) = tr(E3,1E1,3) = tr(E3,3) = 1 .

Last time: Let V be a vector space over a field F where F = R or C.
An inner product on V is a function

h , i : V ⇥ V ! F
(u,v) 7! hu,vi

that is linear in the first coordinate, conjugate symmetric, and

positive-definite. We can additionally prove that h, i is conjugate linear in the

second coordinate, is non-degenerate, and has hu, 0i = 0 for all u. We call

(V, h, i) an inner product space (IPS).

Favorite examples: The standard inner product on. . .

. . .Rn
is dot product: hu,vi = u · v;

. . .Cn
is conjugate dot product: hu,vi = u · v;

. . . { continuous functions f : [0, 1] ! R } is hf, gi =
R 1
0 f(t)g(t) dt.

We can use h, i to start building geometry on an inner product space.

First, we define the norm of u 2 V by kuk =
p

hu,ui. Then k · k is also

positive-definite, homogeneous, and satisfies the Pythagorean Theorem (where

we define u ? v by hu,vi = 0) and the triangle inequality.

Lemma. For any v 6= 0, u = v
kvk

def
=
⇣

1
kvk

⌘
v is a unit vector (has length 1).



Distance and metric spaces Still: Let (V, h, i) be an IPS/F = R or C.

Remember!! We hold in our mind two notions about spaces like Rn
:

an element is both a point and a vector pointing from 0 to that point.

Define the distance between points x,y 2 V as

d(x,y) = kx� yk.

d(x,y)

x

y

0

x� y

Proposition. For all x,y, z 2 V ,

1. Symmetry: d(x,y) = d(y,x).

2. Positive-definiteness: d(x,y) � 0, and d(x,y) = 0 if and only if x = y.

3. Triangle inequality: d(x,y)  d(x, z) + d(z,y).

Namely, an inner product space is also a metric space.

Pf. (exercise)

Angles Let (V, h, i) be an inner product space over F = R

Let x,y be nonzero vectors in V . Define the angle ✓ between x and y is

defined to by

hx,yi = kxkkyk cos(✓),
i.e.

✓
def
= cos�1

✓
hx,yi
kxkkyk

◆
.

Wait! Is this well-defined? Is this a reasonable definition?

Cauchy-Schwarz (last time) says |hx,yi|  kxkkyk. So

�kxkkyk  hx,yi  kxkkyk,

and hence �1  hx,yi
kxkkyk  1 (i.e.

hx,yi
kxkkyk is in cosine’s range).

Remark:

cos(✓) =
hx,yi
kxkkyk =

*
1

kxkx,
✓

1

kyk

◆
y

+
=
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x
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�
,

because kyk 2 R.
In particular, ✓ is a statistic in terms of the unit vectors

x
kxk and

y
kyk .



Orthogonal sets Still: (V, h , i) an IPS/F = R or C.

A subset S ✓ V is orthogonal if its elements are pairwise orthogonal: if

hu,vi = 0 for all u,v 2 S with u 6= v.

If S is an orthogonal subset of V and kuk = 1 for all u 2 S, we say S is an

orthonormal subset of V . Note that orthonormal means

hu,vi = �u,v for all u,v 2 S.

Examples.

• The standard basis {e1, . . . , en} of Fn
is orthonormal with respect to the

standard inner product.

• S =
n

1p
2
(1, 1), 1p

2
(1,�1)

o
is orthonormal with respect to the standard

inner product on R2
.

• S = {cos(2⇡x), sin(2⇡x)} is orthogonal in the space of continuous

functions C(R) with respect to the inner product

hf, gi :=
Z 1

0
f(t)g(t) dt,

but is not orthonormal since
R 1
0 cos2(2⇡t) dt = 1/2 6= 1.

Computing coordinates

Question. Given an orthonormal basis B of V , write the expansion of v 2 V
in terms of B; i.e. what is RepB(v)?
NOTATION: Today, I’m going to use hh, ii for ordered bases to emphasize the

di↵erence between this notation and inner-product notation.

Example. Let B = hhu,vii, where u = (1/2, 1) and v = (2,�1).
What is RepB((4, 1))?

u

v

(4, 1)

↵
u

�v

↵
u

�v

Goal:

solve for ↵ and �

Notice!

↵u = proju((4, 1)) =
h(4, 1),ui
hu,ui u and �v = projv((4, 1)) =

h(4, 1),vi
hv,vi v.



Computing coordinates

Proposition. Let S = {v1, . . . ,vk} be an orthogonal set of nonzero vectors

in V , and let y 2 FS. Then

y =
kX

j=1

hy,vji
hvj ,vji

vj =
kX

j=1

hy,vji
kvjk2

vj .

Conceptually: each term is just the projection of y onto vj .

Computationally: Since y 2 FS, there are c1, . . . , ck such that

y =
kX

i=1

civi.

Plug this into hy,vji and see what happens!

Corollary 1. If S = {v1, . . . ,vk} is orthonormal and y 2 FS, then

y =
kX

j=1

hy,vjivi.

Pf. hvj ,vji = 1 for all j.

Corollary 2. If S = {v1, . . . ,vk} is an orthogonal set of nonzero vectors in V
then S is linearly independent.

Pf. Apply the Prop. to y = vi and S0 = S � {vi} to see vi /2 FS0
.



Gram-Schmidt orthognalization

Goal. Build an orthonormal subset or basis from a previously existing linearly

independent set. (Recall that we learned how to recursively build a linearly

independent subset of any set earlier this semester—Lectures 5 & 6 or so.)

Algorithm.

input: S = {w1, . . . ,wn}, a linearly independent subset of V .

Start with

v1 := w1.

For k = 2, 3, . . . , n, define vk by starting with wk, then subtracting o↵ the

components of wk along the previously found vi :

vk := wk �
k�1X

i=1

hwk,vii
kvik2

vi.

[Check: Is hvk,vii = 0 for all i  k?]

output: S0 = {v1, . . . ,vn} an orthogonal set with FS0 = FS.

or

output: S00 =
n

v1
kv1k , . . . ,

vn
kvnk

o
an orthonormal set with FS00 = FS.



Example

V = P1(R) with inner product

hf, gi =
Z 1

0
f(t)g(t) dt.

Apply Gram-Schmidt to the basis hh1, xii to get an orthonormal basis.

Start with v1 = 1, then let

v2 = x� hx,v1i
kv1k2

v1 = x� hx, 1i
k1k2 · 1

= x�
R 1
0 t dt
R 1
0 dt

· 1 = x� 1

2
.

Check orthogonality:

h1, x� 1/2i =
Z 1

0
(t� 1/2) dt = 0.

Example

V = P1(R) with inner product

hf, gi =
Z 1

0
f(t)g(t) dt.

Orthogonal basis: hh1, x� 1
2 ii. Scale to get an orthonormal basis:

kv1k2 =

Z 1

0
dt = 1

kv2k2 = hx� 1/2, x� 1/2i

=

Z 1

0
(t� 1/2)2 dt

=
(t� 1/2)3

3

����
1

t=0

=
1/8

3
� �1/8

3
=

1

12
.

Orthonormal basis:
⌦⌦
1,
p
12(x� 1/2)

↵↵



You try.

1. Consider the standard basis B = hh1, x, x2ii of P2(R).
(a) Check (for yourself) that the first two steps of Gram-Schidt go the same

as in the example we just did. Then finish the algorithm to get an

orthonormal basis B0 = hhv1,v2,v3ii of P3(R).
(b) Check your answer by computing hv3,v1i and hv3,v2i.

(You should get 0.)

(c) Compute the associated orthonormal basis B00
of P3(R).

(Since v1 and v2 are the same as in the example above, you only need to

compute kv3k.)
2. For Pn(R), we’re finding that the standard basis is not orthonormal with

respect to the standard inner product. What about our other favorite

examples? For each of the following, either verify that the standard

ordered basis is orthonormal (with respect to the standard inner product),

or apply Gram-Schmidt orthogonalization to the standard ordered basis to

get an orthonormal basis.

(a) V = R3
(with F = R and h, i being dot product);

(b) V = C3
(with F = R and h, i being conjugate dot product);

(c) V = M2,3(R) (with F = R and h, i the inner product in the warmup);

(d) V = M2,3(C) (with F = C and h, i the inner product in the warmup).


