Lecture 21:

Inner products Inner produce spaces Orthogonal projection Length and distance

Let
$$F = \mathbb{R}$$
 or \mathbb{C} .
Note $V = \mathbb{C}$ is a vector space over \mathbb{R}_{j}
With basis $B = \{l_{j}, i\}$: $\operatorname{Rep}_{B}(x+iy) = {x \choose j}$
Complex conjugation is a linear function!
 $\operatorname{Rep}_{B}^{B}(\overline{*}) = {l \choose 0}$ so B is an eigenbasis.
 $\overline{\alpha} = \alpha$ means $\alpha \in V_{j}(\overline{*}) = \mathbb{C}\{{l_{0}}\}$.

Inner products

Let V be a vector space over a field F where $F = \mathbb{R}$ or \mathbb{C} . Recall that the **complex conjugate** is

 $\mathbb{C} \to \mathbb{C}$ defined by $\overline{x + iy} = x - iy$,

for $x, y \in \mathbb{R}$. In particular, for $\alpha \in \mathbb{C}$,

 $\overline{\alpha} = \alpha$ if and only if $\alpha \in \mathbb{R}$.

An **inner product** on V is a function

$$egin{array}{cccc} , \ & & & \\ & & & \\ & & (\mathbf{u},\mathbf{v}) & \mapsto & \langle \mathbf{u},\mathbf{v} \rangle \end{array}$$

satisfying the following...

For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in F$,

- 1. linearity (in the first coordinate): $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ and $\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$;
- 2. conjugate symmetry: $\langle \mathbf{v}, \mathbf{u} \rangle = \overline{\langle \mathbf{u}, \mathbf{v} \rangle}$; and

<

3. positive-definiteness: $\langle \mathbf{u}, \mathbf{u} \rangle \in \mathbb{R}_{>0}$, and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Favorite examples:

1. The standard inner product on \mathbb{R}^n is dot product:

$$\langle (x_1,\ldots,x_n),(y_1,\ldots,y_n)\rangle := \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n x_i y_i = x_1 y_1 + \cdots + x_n y_n.$$

2. The standard inner product on \mathbb{C}^n is the conjugate dot product:

$$\langle (x_1,\ldots,x_n), (y_1,\ldots,y_n) \rangle := \mathbf{x} \cdot \overline{\mathbf{y}} = \sum_{i=1}^n x_i \overline{y_i} = x_1 \overline{y_1} + \cdots + x_n \overline{y_n}.$$

3. Let $V = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$ with $F = \mathbb{R}$. Then $\langle f,g \rangle = \int_0^1 f(t)g(t) \ dt$ is an inner product.

You try: Check that these are inner products (see next slide for details).

- 1. Let \langle , \rangle be dot product on \mathbb{R}^n .
 - (a) Briefly check that ⟨,⟩ is linear in the first coordinate and symmetric (conjugate symmetry is just symmetry in ℝ). [We've already done the necessary proofs]
 - (b) Use the geometric interpretation to briefly check that \langle,\rangle is positive definite.
- 2. Let \langle , \rangle be conjugate dot product on \mathbb{C}^n .
 - (a) Compute (i) $\langle (1+i, 2-3i), (5i, 2-3i) \rangle$, (ii) $\langle (1, 2), (3, -1) \rangle$, and (iii) $\langle (a+ib, c+id), (a+ib, c+id) \rangle$ (for any $a, b, c, d \in \mathbb{R}$).
 - (b) Briefly check that \langle , \rangle is linear in the first coordinate.
 - (c) Why is \langle,\rangle *conjugate* symmetric?
 - (d) Check algebraically that ⟨, ⟩ is positive definite.
 [*Hint.* See (a)(iii): for α = x + iy ∈ C, what can you say about αα?]
- 3. Time permitting: Consider example 3 above, with

$$V = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\} \text{ and } \langle f,g \rangle = \int_0^1 f(t)g(t) dt.$$

- (a) Compute $\langle f, g \rangle$ when (i) $f(x) = x^2$ and g(x) = 3x + 2, (ii) $f(x) = (x + 2)e^x$ and $g(x) = \frac{3}{x+2}$, and (iii) f(x) is any continuous function and g(x) = 0. (b) Check that (i) $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle = 0$.
- (b) Check that (i) $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$, (ii) $\langle cf, g \rangle = c \langle f, g \rangle$, and (iii) $\langle f, g \rangle = \langle g, f \rangle$ for all $f, g, h \in V$ and $c \in \mathbb{R}$.
- (c) Check that if ζ is the zero function, then $\langle \zeta, \zeta \rangle = 0$.
- (d) Show that if $f \neq \zeta$, then $\langle f, f \rangle \in \mathbb{R}_{>0}$. [*Hint.* Note that $(f(t))^2 \ge 0$ for all $t \in [0,1]$; and $(f(t))^2 > 0$ whenever $f(t) \neq 0$. And if $f \neq \zeta$, then $f \neq 0$ for some open interval $(a,b) \subseteq [0,1]$ (f is continuous).]

An inner product is a function $\langle , \rangle : V \times V \to F$ that is linear (in the first coordinate), conjugate symmetric, and positive definite.

A vector space V together with an inner product \langle, \rangle is called an **inner** product space (IPS).

Proposition 1. Let (V, \langle, \rangle) be an inner product space (IPS) over $F = \mathbb{R}$ or \mathbb{C} . Then for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in F$, we have the following.

- (a) **conjugate linear** in the second coordinate: $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ and $\langle \mathbf{u}, c\mathbf{v} \rangle = \overline{c} \langle \mathbf{u}, \mathbf{v} \rangle$;
- (b) $\langle \mathbf{u}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{v} \rangle = 0$; and
- (c) nondegenerate: if $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle$ for all $\mathbf{u} \in V$, then $\mathbf{v} = \mathbf{w}$.

To prove these, recall that complex conjugation is

▶ a field homomorphism (meaning it preserves field structure of \mathbb{C}): $\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$ and $\overline{\alpha\beta} = \overline{\alpha}\overline{\beta}$: and

$$\alpha + \beta = \alpha + \beta$$
 and $\alpha \beta = \alpha \beta$; and

► an involution (meaning that it is its own inverse): $\overline{(\overline{\alpha})} = \alpha.$ solution the standard norm on C itself is given by

Recall that the standard norm on \mathbb{C} itself is given by $|x + iy|^2 = (x + iy)\overline{(x + iy)} = x^2 + y^2$

Note: When $F = \mathbb{R}$,

- "conjugate symmetric" is just symmetric;
- "conjugate linear" is just linear: in this case we say \langle , \rangle is **bilinear**.

Another name for an inner product on a real vector space is a symmetric, bilinear, positive definite form.

An inner product on a complex vector space is also called a Hermitian form.

"form" loosly means a function

$$V \times \dots \times V \longrightarrow F$$

K

We can use \langle , \rangle to define some geometric notions on V as follows.

The induced **norm** or **length** of $\mathbf{v} \in V$ is

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} \in \mathbb{R}_{\geq 0}.$$

(*Must check:* positive when $\mathbf{v} \neq \mathbf{0}$, homogeneous ($||c\mathbf{v}|| = |c| ||\mathbf{v}||$), and satisfies the triangle inequality ($||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$.)

Examples: For $V = \mathbb{R}^n$ and $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v}$, we have

$$\|\mathbf{v}\| = \sqrt{v_1^2 + \dots + v_n^2}.$$

For $V = \mathbb{C}^n$ and $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \overline{\mathbf{v}}$, then

$$\|\mathbf{v}\| = \sqrt{v_1 \overline{v_1} + \dots + v_n \overline{v_n}} = \sqrt{|v_1|^2 + \dots + |v_n|^2}.$$

[*Note:* this is just the standard norm on \mathbb{C} with n = 1!]

We say $\mathbf{u} \in V$ is a **unit vector** if $||\mathbf{u}|| = 1$; equivalently, if $\langle \mathbf{u}, \mathbf{u} \rangle = 1$.

Triangle inequality:

$$\begin{split} \|\mathbf{u} + \mathbf{v}\|^2 &= \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle & \text{by definition} \\ &= \langle \mathbf{u}, \mathbf{u} + \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle \\ &= \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle & \text{using linear/conj linear.} \end{split}$$

Piece-by-piece, we have

$$\begin{split} \langle \mathbf{u}, \mathbf{u} \rangle &= \|\mathbf{u}\|^2 \\ \langle \mathbf{v}, \mathbf{v} \rangle &= \|\mathbf{v}\|^2, \quad \text{and} \\ \langle \mathbf{u}, \mathbf{v} \rangle &+ \langle \mathbf{v}, \mathbf{u} \rangle = \underbrace{\langle \mathbf{u}, \mathbf{v} \rangle}_{\in \mathbb{C}} + \underbrace{\overline{\langle \mathbf{u}, \mathbf{v} \rangle}}_{\in \mathbb{C}} \qquad [(x + iy) + (x - iy) = 2x] \\ &= 2 \operatorname{Re}(\langle \mathbf{u}, \mathbf{v} \rangle). \end{split}$$

Let
$$|x + iy| = \sqrt{x^2 + y^2}$$
 (the usual norm on \mathbb{C}). So
 $\operatorname{Re}(x + iy) = x \le \sqrt{x^2 + y^2} = |x + iy|.$

Therefore

$$\begin{aligned} \|\mathbf{u} + \mathbf{v}\|^2 &\leq \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2|\langle \mathbf{u}, \mathbf{v} \rangle| \end{aligned}$$

Goal: understand $|\langle \mathbf{u}, \mathbf{v} \rangle|.$

We say $\mathbf{u}, \mathbf{v} \in V$ are orthogonal or perpendicular if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. Shorthand: $\mathbf{u} \perp \mathbf{v}$.

Example: For $V = \mathbb{R}^n$ and $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v}$, we saw

$$\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta), \quad \text{where } \theta = \mathbf{u} \angle \mathbf{v}.$$

So $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ exactly when $\theta = \pm \pi/2$, or one of \mathbf{u} or \mathbf{v} is $\mathbf{0}$.

Example: As a vector space over \mathbb{R} , \mathbb{C}^n is isomorphic to \mathbb{R}^{2n} via

$$f: (x_1+iy_1,\ldots,x_n+iy_n) \to (x_1,y_1,\ldots,x_n,y_n)$$

This isomorphism preserves norms: the norm of $\mathbf{v} \in \mathbb{C}^n$ using the conjugate dot product is the norm of $f(\mathbf{v})$ using the regular dot product.

Proposition 2. (Pythagorean theorem) Let (V, \langle, \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} . If $\mathbf{u}, \mathbf{v} \in V$ are **perpendicular**, then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$$

Pf. $|\langle \mathbf{u}, \mathbf{v} \rangle| = 0$ above.

Components and projections Still: Let (V, \langle, \rangle) be an IPS/ $F = \mathbb{R}$ or \mathbb{C} . Let $\mathbf{u}, \mathbf{v} \in V$ with $\mathbf{v} \neq \mathbf{0}$.

Goal: Find $\mathbf{x}, \mathbf{y} \in V$ such that

 \mathbf{v} is parallel to \mathbf{x} and perp. to \mathbf{y} and $\mathbf{x} + \mathbf{y} = \mathbf{u}$:

Idea: The vector \mathbf{x} is the "shadow" of \mathbf{u} along the line generated by \mathbf{v} . Our answer shouldn't depend on *which* representative vector we picked along ℓ ! We call \mathbf{x} the **orthogonal projection** of \mathbf{u} to \mathbf{v} , denoted

$$\mathbf{x} = \operatorname{proj}_{\mathbf{v}}(\mathbf{u}).$$

To compute: Note that $\mathbf{x} = c\mathbf{v}$ for some $c \in F$ and $\mathbf{y} = \mathbf{u} - \mathbf{x} = \mathbf{u} - c\mathbf{v}$. So $0 = \langle \mathbf{y}, \mathbf{v} \rangle = \langle \mathbf{u} - c\mathbf{v}, \mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - c \langle \mathbf{v}, \mathbf{v} \rangle$. So $c = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}$.

The **component** of \mathbf{u} along \mathbf{v} is the scalar

$$c_{\mathbf{u},\mathbf{v}} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{v}\|^2}.$$

The orthogonal projection of \mathbf{u} to \mathbf{v} is the vector $\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = c_{\mathbf{u},\mathbf{v}}\mathbf{v}$.

Let (V, \langle, \rangle) be an inner product space over $F = \mathbb{R}$ or \mathbb{C} .

Proposition 3. Let $\mathbf{u}, \mathbf{v} \in V$ and $c \in F$. Then

- (a) $||c\mathbf{u}|| = |c|||\mathbf{u}||.$ Pf. $||c\mathbf{u}|| = \sqrt{\langle c\mathbf{u}, c\mathbf{u} \rangle} = \sqrt{c\overline{c}\langle \mathbf{u}, \mathbf{u} \rangle} = \cdots$
- (b) $\|\mathbf{u}\| = 0$ if and only if $\mathbf{u} = \mathbf{0}$.
- (c) Cauchy-Schwarz inequality: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$.

Pf. If $\mathbf{v} = \mathbf{0}$, we're done; so consider $\mathbf{v} \neq \mathbf{0}$. We can apply the Pythagorean Theorem to

$$\mathbf{x} = c_{\mathbf{u},\mathbf{v}}\mathbf{v} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}\mathbf{v}$$
 and $\mathbf{y} = \mathbf{u} - \mathbf{x} = \mathbf{u} - c_{\mathbf{u},\mathbf{v}}\mathbf{v}$,

as above! Namely,

$$\|\mathbf{u}\|^2 = \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 \ge \|\mathbf{x}\|^2$$

But

$$\|\mathbf{x}\| = \|c_{\mathbf{u},\mathbf{v}}\mathbf{v}\| = |c_{\mathbf{u},\mathbf{v}}|\|\mathbf{v}\| = \frac{|\langle \mathbf{u},\mathbf{v}\rangle|}{\|\mathbf{v}\|^2}\|\mathbf{v}\| = \frac{|\langle \mathbf{u},\mathbf{v}\rangle|}{\|\mathbf{v}\|},$$

since $\|\mathbf{v}\|^2 \in \mathbb{R}_{>0}$. Thus $\|\mathbf{u}\| \geq \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|}{\|\mathbf{v}\|}$.

(d) Triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$.

Pf. Use (c) in our calculation above.

Distance and metric spaces Still: Let (V, \langle, \rangle) be an IPS/ $F = \mathbb{R}$ or \mathbb{C} .

Define the distance between points $\mathbf{x}, \mathbf{y} \in V$ as $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|.$

Proposition. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$,

- 1. Symmetry: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.
- 2. Positive-definiteness: $d(\mathbf{x}, \mathbf{y}) \ge 0$, and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.
- 3. Triangle inequality: $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$.

Namely, an inner product space is also a metric space.

Pf. (exercise)

You try.

- 1. Let $\mathbf{u} = (1, 0, -2)$. For each of the following \mathbf{v} , compute $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$.
 - (a) $\mathbf{v} = (3, -1, 4);$
 - (b) $\mathbf{v} = (1, 0, 0);$
 - (c) $\mathbf{v} = (0, 1, 0);$
 - (d) $\mathbf{v} = (1, 1, 1);$
 - (e) $\mathbf{v} = (-2, 0, 4).$
- 2. For (b), (c), and (e) above, can you make sense of the answer you got geometrically?
- 3. Under what circumstances is $proj_{\mathbf{v}}(\mathbf{u}) = \mathbf{u}$?
- 4. Under what circumstances is $proj_{\mathbf{v}}(\mathbf{u}) = proj_{\mathbf{u}}(\mathbf{v})$?
- 5. Finish the proof of Prop 3 above: How do we know that $||\mathbf{u}|| = \mathbf{0}$ if and only if $\mathbf{u} = \mathbf{0}$.
- 6. A particle is traveling along the line y = 2x in \mathbb{R}^2 such that its position at time t is $\mathbf{p}(t) = (t, 2t)$.
 - (a) At time *t*, what is the point on the *x*-axis that the particle is closest to? How far away is the particle from that point?
 - (b) At time t, what is the point on the line y = 5x that the particle is closest to? How far away is the particle from that point?

[Hint: project $\mathbf{p}(t)$ onto the line by taking *any* vector \mathbf{v} (besides 0) on the line, and computing $\operatorname{proj}_{\mathbf{v}}(\mathbf{p}(t))$.]