Lecture 21:
Inner products
Inner produce spaces
Orthogonal projection
Length and distance

Inner products

Let V be a vector space over a field F where $F=\mathbb{R}$ or \mathbb{C}. Recall that the complex conjugate is

$$
\mathbb{C} \rightarrow \mathbb{C} \quad \text { defined by } \quad \overline{x+i y}=x-i y,
$$

for $x, y \in \mathbb{R}$. In particular, for $\alpha \in \mathbb{C}$,

$$
\bar{\alpha}=\alpha \quad \text { if and only if } \quad \alpha \in \mathbb{R} .
$$

An inner product on V is a function

$$
\begin{array}{rlc}
\langle,\rangle: V \times V & \rightarrow & F \\
(\mathbf{u}, \mathbf{v}) & \mapsto & \langle\mathbf{u}, \mathbf{v}\rangle
\end{array}
$$

satisfying the following...
For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in F$,

1. linearity (in the first coordinate): $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$ and $\langle c \mathbf{u}, \mathbf{v}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle ;$
2. conjugate symmetry: $\langle\mathbf{v}, \mathbf{u}\rangle=\overline{\langle\mathbf{u}, \mathbf{v}\rangle}$; and
3. positive-definiteness: $\langle\mathbf{u}, \mathbf{u}\rangle \in \mathbb{R}_{\geq 0}$, and $\langle\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$.

Favorite examples:

1. The standard inner product on \mathbb{R}^{n} is dot product:

$$
\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle:=\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}=x_{1} y_{1}+\cdots+x_{n} y_{n} .
$$

2. The standard inner product on \mathbb{C}^{n} is the conjugate dot product:

$$
\left\langle\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\rangle:=\mathbf{x} \cdot \overline{\mathbf{y}}=\sum_{i=1}^{n} x_{i} \overline{y_{i}}=x_{1} \overline{y_{1}}+\cdots+x_{n} \overline{y_{n}} .
$$

3. Let $V=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous $\}$ with $F=\mathbb{R}$. Then

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t \quad \text { is an inner product. }
$$

You try: Check that these are inner products (see next slide for details).

1. Let \langle,$\rangle be dot product on \mathbb{R}^{n}$.
(a) Briefly check that \langle,$\rangle is linear in the first coordinate and symmetric (conjugate$ symmetry is just symmetry in \mathbb{R}).
[We've already done the necessary proofs]
(b) Use the geometric interpretation to briefly check that \langle,$\rangle is positive definite.$
2. Let \langle,$\rangle be conjugate dot product on \mathbb{C}^{n}$.
(a) Compute (i) $\langle(1+i, 2-3 i),(5 i, 2-3 i)\rangle$, (ii) $\langle(1,2),(3,-1)\rangle$, and
(iii) $\langle(a+i b, c+i d),(a+i b, c+i d)\rangle$ (for any $a, b, c, d \in \mathbb{R}$).
(b) Briefly check that \langle,$\rangle is linear in the first coordinate.$
(c) Why is \langle,$\rangle conjugate symmetric?$
(d) Check algebraically that \langle,$\rangle is positive definite.$
[Hint. See (a)(iii): for $\alpha=x+i y \in \mathbb{C}$, what can you say about $\alpha \bar{\alpha}$?]
3. Time permitting: Consider example 3 above, with

$$
V=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is continuous }\} \text { and }\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

(a) Compute $\langle f, g\rangle$ when (i) $f(x)=x^{2}$ and $g(x)=3 x+2$,
(ii) $f(x)=(x+2) e^{x}$ and $g(x)=\frac{3}{x+2}$, and
(iii) $f(x)$ is any continuous function and $g(x)=0$.
(b) Check that (i) $\langle f+g, h\rangle=\langle f, h\rangle+\langle g, h\rangle$, (ii) $\langle c f, g\rangle=c\langle f, g\rangle$, and
(iii) $\langle f, g\rangle=\langle g, f\rangle \quad$ for all $f, g, h \in V$ and $c \in \mathbb{R}$.
(c) Check that if ζ is the zero function, then $\langle\zeta, \zeta\rangle=0$.
(d) Show that if $f \neq \zeta$, then $\langle f, f\rangle \in \mathbb{R}_{>0}$.
[Hint. Note that $(f(t))^{2} \geq 0$ for all $t \in[0,1]$; and $(f(t))^{2}>0$ whenever $f(t) \neq 0$.
And if $f \neq \zeta$, then $f \neq 0$ for some open interval $(a, b) \subseteq[0,1]$ (f is continuous).]

An inner product is a function $\langle\rangle:, V \times V \rightarrow F$ that is linear (in the first coordinate), conjugate symmetric, and positive definite.

A vector space V together with an inner product \langle,$\rangle is called an inner$ product space (IPS).

Proposition 1. Let $(V,\langle\rangle$,$) be an inner product space (IPS) over F=\mathbb{R}$ or \mathbb{C}. Then for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $c \in F$, we have the following.
(a) conjugate linear in the second coordinate:

$$
\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle \text { and }\langle\mathbf{u}, c \mathbf{v}\rangle=\bar{c}\langle\mathbf{u}, \mathbf{v}\rangle ;
$$

(b) $\langle\mathbf{u}, \mathbf{0}\rangle=\langle\mathbf{0}, \mathbf{v}\rangle=0$; and
(c) nondegenerate: if $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle$ for all $\mathbf{u} \in V$, then $\mathbf{v}=\mathbf{w}$.

To prove these, recall that complex conjugation is

- a field homomorphism (meaning it preserves field structure of \mathbb{C}):

$$
\overline{\alpha+\beta}=\bar{\alpha}+\bar{\beta} \quad \text { and } \quad \overline{\alpha \beta}=\bar{\alpha} \bar{\beta} ; \quad \text { and }
$$

- an involution (meaning that it is its own inverse):

$$
\overline{(\bar{\alpha})}=\alpha .
$$

Recall that the standard norm on \mathbb{C} itself is given by

Note: When $F=\mathbb{R}$,

- "conjugate symmetric" is just symmetric;
- "conjugate linear" is just linear: in this case we say \langle,$\rangle is bilinear.$

Another name for an inner product on a real vector space is a symmetric, bilinear, positive definite form.

An inner product on a complex vector space is also called a Hermitian form.

$$
\begin{gathered}
\text { "form" loosly means a function } \\
\underbrace{V \times \cdots \times V}_{K} \longrightarrow F
\end{gathered}
$$

We can use \langle,$\rangle to define some geometric notions on V$ as follows.
The induced norm or length of $\mathbf{v} \in V$ is

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle} \in \mathbb{R}_{\geq 0}
$$

(Must check: positive when $\mathbf{v} \neq \mathbf{0}$, homogeneous $(\|c \mathbf{v}\|=|c|\|\mathbf{v}\|)$, and satisfies the triangle inequality $(\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.)

Examples: For $V=\mathbb{R}^{n}$ and $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}$, we have

$$
\|\mathbf{v}\|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
$$

For $V=\mathbb{C}^{n}$ and $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \overline{\mathbf{v}}$, then

$$
\|\mathbf{v}\|=\sqrt{v_{1} \overline{v_{1}}+\cdots+v_{n} \overline{v_{n}}}=\sqrt{\left|v_{1}\right|^{2}+\cdots+\left|v_{n}\right|^{2}}
$$

[Note: this is just the standard norm on \mathbb{C} with $n=1$!]
We say $\mathbf{u} \in V$ is a unit vector if $\|\mathbf{u}\|=1$; equivalently, if $\langle\mathbf{u}, \mathbf{u}\rangle=1$.

Triangle inequality:

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =\langle\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle \\
& =\langle\mathbf{u}, \mathbf{u}+\mathbf{v}\rangle+\langle\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle \\
& =\langle\mathbf{u}, \mathbf{u}\rangle+\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{v}, \mathbf{u}\rangle+\langle\mathbf{v}, \mathbf{v}\rangle \quad \text { using linear/conj linear. }
\end{aligned}
$$

Piece-by-piece, we have

$$
\begin{aligned}
\langle\mathbf{u}, \mathbf{u}\rangle & =\|\mathbf{u}\|^{2} \\
\langle\mathbf{v}, \mathbf{v}\rangle & =\|\mathbf{v}\|^{2}, \quad \text { and } \\
\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{v}, \mathbf{u}\rangle & =\underbrace{\langle\mathbf{u}, \mathbf{v}\rangle}_{\in \mathbb{C}}+\underbrace{\overline{\langle\mathbf{u}, \mathbf{v}\rangle}}_{\in \mathbb{C}} \quad[(x+i y)+(x-i y)=2 x] \\
& =2 \operatorname{Re}(\langle\mathbf{u}, \mathbf{v}\rangle) .
\end{aligned}
$$

Let $|x+i y|=\sqrt{x^{2}+y^{2}}$ (the usual norm on \mathbb{C}). So

$$
\operatorname{Re}(x+i y)=x \leq \sqrt{x^{2}+y^{2}}=|x+i y|
$$

Therefore

$$
\|\mathbf{u}+\mathbf{v}\|^{2} \leq\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2|\langle\mathbf{u}, \mathbf{v}\rangle|
$$

Goal: understand $|\langle\mathbf{u}, \mathbf{v}\rangle|$.

We say $\mathbf{u}, \mathbf{v} \in V$ are orthogonal or perpendicular if $\langle\mathbf{u}, \mathbf{v}\rangle=0$.
Shorthand: $\mathbf{u} \perp \mathbf{v}$.
Example: For $V=\mathbb{R}^{n}$ and $\langle\mathbf{u}, \mathbf{v}\rangle=\mathbf{u} \cdot \mathbf{v}$, we saw

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta), \quad \text { where } \theta=\mathbf{u} \angle \mathbf{v}
$$

So $\langle\mathbf{u}, \mathbf{v}\rangle=0$ exactly when $\theta= \pm \pi / 2$, or one of \mathbf{u} or \mathbf{v} is $\mathbf{0}$.
Example: As a vector space over $\mathbb{R}, \mathbb{C}^{n}$ is isomorphic to $\mathbb{R}^{2 n}$ via

$$
f:\left(x_{1}+i y_{1}, \ldots, x_{n}+i y_{n}\right) \rightarrow\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)
$$

This isomorphism preserves norms: the norm of $\mathbf{v} \in \mathbb{C}^{n}$ using the conjugate dot product is the norm of $f(\mathbf{v})$ using the regular dot product.

Proposition 2. (Pythagorean theorem) Let $(V,\langle\rangle$,$) be an inner product space$ over $F=\mathbb{R}$ or \mathbb{C}. If $\mathbf{u}, \mathbf{v} \in V$ are perpendicular, then

$$
\|\mathrm{u}+\mathrm{v}\|^{2}=\|\mathrm{u}\|^{2}+\|\mathrm{v}\|^{2} .
$$

Pf. $|\langle\mathbf{u}, \mathbf{v}\rangle|=0$ above.

Components and projections Still: Let $(V,\langle\rangle$,$) be an IPS/F= \mathbb{R}$ or \mathbb{C}.
Let $\mathbf{u}, \mathbf{v} \in V$ with $\mathbf{v} \neq \mathbf{0}$.
Goal: Find $\mathbf{x}, \mathbf{y} \in V$ such that
v is parallel to x and perp. to y and $\mathrm{x}+\mathrm{y}=\mathrm{u}$:

Idea: The vector x is the "shadow" of u along the line generated by v . Our answer shouldn't depend on which representative vector we picked along ℓ ! We call x the orthogonal projection of u to v , denoted

$$
\mathbf{x}=\operatorname{proj}_{\mathbf{v}}(\mathbf{u}) .
$$

To compute: Note that $\mathbf{x}=c \mathbf{v}$ for some $c \in F$ and $\mathbf{y}=\mathbf{u}-\mathbf{x}=\mathbf{u}-c \mathbf{v}$. So

$$
0=\langle\mathbf{y}, \mathbf{v}\rangle=\langle\mathbf{u}-c \mathbf{v}, \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle-c\langle\mathbf{v}, \mathbf{v}\rangle . \quad \text { So } c=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} .
$$

The component of u along v is the scalar

$$
c_{\mathrm{u}, \mathrm{v}}=\frac{\langle\mathbf{u}, \mathrm{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle}=\frac{\langle\mathbf{u}, \mathrm{v}\rangle}{\|\mathbf{v}\|^{2}} .
$$

The orthogonal projection of \mathbf{u} to \mathbf{v} is the vector $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=c_{\mathbf{u}, \mathbf{v}} \mathbf{v}$.

Proposition 3. Let $\mathbf{u}, \mathbf{v} \in V$ and $c \in F$. Then
(a) $\|c \mathbf{u}\|=|c|\|\mathbf{u}\|$. Pf. $\|c \mathbf{u}\|=\sqrt{\langle c \mathbf{u}, c \mathbf{u}\rangle}=\sqrt{c \bar{c}\langle\mathbf{u}, \mathbf{u}\rangle}=\cdots$
(b) $\|\mathbf{u}\|=0$ if and only if $\mathbf{u}=\mathbf{0}$. Pf. (exercise)
(c) Cauchy-Schwarz inequality: $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|$.
Pf. If $\mathbf{v}=\mathbf{0}$, we're done; so consider $\mathbf{v} \neq \mathbf{0}$. We can apply the Pythagorean Theorem to

$$
\mathbf{x}=c_{\mathbf{u}, \mathbf{v}} \mathbf{v}=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\langle\mathbf{v}, \mathbf{v}\rangle} \mathbf{v} \quad \text { and } \quad \mathbf{y}=\mathbf{u}-\mathbf{x}=\mathbf{u}-c_{\mathbf{u}, \mathbf{v}} \mathbf{v}
$$

as above! Namely,

$$
\|\mathbf{u}\|^{2}=\|\mathbf{x}+\mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+\|\mathbf{y}\|^{2} \geq\|\mathbf{x}\|^{2}
$$

But

$$
\|\mathbf{x}\|=\left\|c_{\mathbf{u}, \mathbf{v}} \mathbf{v}\right\|=\left|c_{\mathbf{u}, \mathbf{v}}\right|\|\mathbf{v}\|=\frac{|\langle\mathbf{u}, \mathbf{v}\rangle|}{\|\mathbf{v}\|^{2}}\|\mathbf{v}\|=\frac{|\langle\mathbf{u}, \mathbf{v}\rangle|}{\|\mathbf{v}\|}
$$

since $\|\mathbf{v}\|^{2} \in \mathbb{R}_{>0}$. Thus $\|\mathbf{u}\| \geq \frac{|\langle\mathbf{u}, \mathbf{v}\rangle|}{\|\mathbf{v}\|}$.
(d) Triangle inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.

Pf. Use (c) in our calculation above.

Distance and metric spaces Still: Let $(V,\langle\rangle$,$) be an IPS / F=\mathbb{R}$ or \mathbb{C}.

Define the distance between points $\mathbf{x}, \mathbf{y} \in V$ as

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|
$$

Proposition. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$,

1. Symmetry: $d(\mathbf{x}, \mathbf{y})=d(\mathbf{y}, \mathbf{x})$.
2. Positive-definiteness: $d(\mathbf{x}, \mathbf{y}) \geq 0$, and $d(\mathbf{x}, \mathbf{y})=0$ if and only if $\mathbf{x}=\mathbf{y}$.
3. Triangle inequality: $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z})+d(\mathbf{z}, \mathbf{y})$.

Namely, an inner product space is also a metric space.

You try.

1. Let $\mathbf{u}=(1,0,-2)$. For each of the following \mathbf{v}, compute $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$.
(a) $\mathbf{v}=(3,-1,4)$;
(b) $\mathbf{v}=(1,0,0)$;
(c) $\mathbf{v}=(0,1,0)$;
(d) $\mathbf{v}=(1,1,1)$;
(e) $\mathbf{v}=(-2,0,4)$.
2. For (b), (c), and (e) above, can you make sense of the answer you got geometrically?
3. Under what circumstances is $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\mathbf{u}$?
4. Under what circumstances is $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$?
5. Finish the proof of Prop 3 above:

How do we know that $\|\mathbf{u}\|=\mathbf{0}$ if and only if $\mathbf{u}=\mathbf{0}$.
6. A particle is traveling along the line $y=2 x$ in \mathbb{R}^{2} such that its position at time t is $\mathbf{p}(t)=(t, 2 t)$.
(a) At time t, what is the point on the x-axis that the particle is closest to? How far away is the particle from that point?
(b) At time t, what is the point on the line $y=5 x$ that the particle is closest to? How far away is the particle from that point?
[Hint: project $\mathbf{p}(t)$ onto the line by taking any vector \mathbf{v} (besides $\mathbf{0}$) on the line, and computing $\operatorname{proj}_{\mathbf{v}}(\mathbf{p}(t))$.]

