Lecture 21:

Inner products

Inner produce spaces
Orthogonal projection
Length and distance

Let ' =R or C.
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Inner products

Let V' be a vector space over a field ' where ' = R or C. Recall that the
complex conjugate is

C —- C defined by z+11y=2x— 1y,
for x,y € R. In particular, for a € C,
a=a ifandonlyif aeR.

An inner product on V is a function
(,):VxV — F
(w,v) = (u,v)

satisfying the following. ..
For all u,v,w €V and c € F,

1. linearity (in the first coordinate): (u+ v,w) = (u,w) + (v, w) and

(cu, v) = c(u, v);
2. conjugate symmetry: (v,u) = (u,v); and

3. positive-definiteness: (u,u) € R>g, and (u,u) = 0 if and only if u = 0.



Favorite examples:

1. The standard inner product on R™ is dot product:

(@1 ), (U1, Yn)) =Xy = > Tith = 21y + - + Tl
=1

2. The standard inner product on C™ is the conjugate dot product:

n
<(x17--'7xn)7(y17"'7y71)> :Xyzlemleﬁ—'_—i_xny_n
i=1

3. Let V={f:]0,1] = R | f is continuous} with F' = R. Then

(f,9) = /01 f(t)g(t) dt s an inner product.

You try: Check that these are inner products (see next slide for details).

1. Let (,) be dot product on R™.

(a) Briefly check that (,) is linear in the first coordinate and symmetric (conjugate
symmetry is just symmetry in R). [We've already done the necessary proofs]
(b) Use the geometric interpretation to briefly check that (,) is positive definite.
2. Let (,) be conjugate dot product on C".
(a) Compute (i) ((1 44,2 — 37), (53,2 — 37)), (i) ((1,2),(3,—1)), and
(iii) ((a + b, c + id), (a + ib,c + id)) (for any a,b,c,d € R).
b) Briefly check that (,) is linear in the first coordinate.
c) Why is (,) conjugate symmetric?
d) Check algebraically that (,) is positive definite.
[Hint. See (a)(iii): for « = x + iy € C, what can you say about aa?]

e N

3. Time permitting: Consider example 3 above, with

V ={f:[0,1] = R | f is continuous} and (f,g) = [ f(t)g(t) dt.
(a) Compute (f,g) when (i) f(z) = 2* and g(x) = 3z + 2,
(i) f(x) = (z+2)e” and g(z) = wi” and
(iii) f(zx) is any continuous function and g(z) = 0.
(b) Check that (i) (f +g,h) = (f,h) + (g, h}, (ii) (cf. ) = c(f,g), and
(iii) {f,9) = (g, f) forall f,g,h €V and c € R.
(c) Check that if ¢ is the zero function, then (¢, () = 0.
(d) Show that if f # (, then (f, f) € Rso.
[Hint. Note that (f(¢))? > 0 for all t € [0,1]; and (f(t))? > 0 whenever f(t) # 0.
And if f #£ (, then f # 0 for some open interval (a,b) C [0, 1] (f is continuous).]



An inner product is a function (, ): V x V — F that is linear (in the first
coordinate), conjugate symmetric, and positive definite.

A vector space V' together with an inner product (,) is called an inner
product space (IPS).

Proposition 1. Let (V,(,)) be an inner product space (IPS) over F' =R or
C. Then for all u,v,w € V and c € F, we have the following.

(a) conjugate linear in the second coordinate:
(u,v+w) = (u,v) + (u,w) and (u,cv) = ¢(u,v);
(b) (u,0) =(0,v) =0; and

(c) nondegenerate: if (u,v) = (u,w) for allu € V, then v =w.

To prove these, recall that complex conjugation is
» a field homomorphism (meaning it preserves field structure of C):

a+f=a+p and af=ap; and
» an involution (meaning that it is its own inverse):

@ = a.

Recall that the standard norm on C itself is given by
@ +iy|* = (z +ay)(z +iy) = 27 + ¢,

Note: When F' = R,
» “conjugate symmetric” is just symmetric;

» ‘“conjugate linear” is just linear: in this case we say (,) is bilinear.

Another name for an inner product on a real vector space is a symmetric,
bilinear, positive definite form.

An inner product on a complex vector space is also called a Hermitian form.
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Norms Still: Let (V,(,)) be an inner product space over ' =R or C.

We can use (,) to define some geometric notions on V' as follows.

The induced norm or length of v € V' is

vl = v{v,v) € Rxo.

(Must check: positive when v # 0, homogeneous (||cv|| = || [|[v
satisfies the triangle inequality (|[u+ v|| < |lu]| + ||v]||.)

), and

Examples: For V'=R" and (u,v) = u- v, we have
vl = yfoi + - o
For V.=C" and (u,v) = u-V, then

VIl = Voror + -+ ontn = Vo1 + -+ [on |,
[Note: this is just the standard norm on C with n = 1]

We say u € V is a unit vector if ||u|| = 1; equivalently, if (u,u) = 1.



Triangle inequality:

[u+v|]*={(u+v,u+v) by definition
=(w,u+v)+(v,utv)
= (u,u) + (u,v) + (v,u) + (v,v) using linear/conj linear.

Piece-by-piece, we have

(u,u) = [lu]?
(vv) = V], and
(u,v) + (v,u) = (u,v) + (u,v) [(z +iy) + (v — iy) = 212]
eC eC
=2 Re((u,v)).

Let |2 + iy| = /22 + 42 (the usual norm on C). So
Re(z +iy) = 2 < /22 + 2 = | + iy|.
Therefore
a4+ v[* < fJull® + [Iv]* + 2[(u, v)]

Goal: understand |(u,v)|.

We say u,v € V are orthogonal or perpendicular if (u,v) = 0.
Shorthand: u | v.

Example: For V' =R" and (u,v) =u- v, we saw
(u,v) = ||lul| ||v]] cos(f), where d =u 2L v.

So (u,v) = 0 exactly when # = £7/2, or one of u or v is 0.

Example: As a vector space over R, C" is isomorphic to R?" via

fi(xr 4y, ..o, xn +iyn) = (T1, Y15 s Try Yn)-
This isomorphism preserves norms: the norm of v € C” using the conjugate
dot product is the norm of f(v) using the regular dot product.

Proposition 2. (Pythagorean theorem) Let (V, (,)) be an inner product space
over FF =R or C. If u,v € V are perpendicular, then

[l vII* = [ull* + (v,

u+v

Pf. |(u,v)| = 0 above.



Components and projections  still: Let (V,(,)) be an IPS/F = R or C.
Let u,v € V with v # 0.

Goal: Find x,y € V such that
v is parallel to x and perp.toy and x+y=u:

Av\
u
y
v o0 X v (={tv|teF}

Idea: The vector x is the “shadow” of u along the line generated by v. Our
answer shouldn’t depend on which representative vector we picked along /!

We call x the orthogonal projection of u to v, denoted
x = proj, (u).

To compute: Note that x =cv forsomece FFandy =u—x=u—cv. So
(u,v)

(v,v)

0= (y,v)=(u—cv,v) = (u,v) —c(v,Vv). Soc=

The component of u along v is the scalar

_ (u,v) _ (u,v)
(viv) vl?”

The orthogonal projection of u to v is the vector proj, (u) = ¢y V.



Let (V,(,)) be an inner product space over ' =R or C.

Proposition 3. Let u,v € V and c € F. Then

(@) lleul] = lef[lull Pt leul| = v/{cu, cu) = \/ce(u,u) = - -
(b) |lu|| =0 if and only if u=0. Pf. (exercise)

(c) Cauchy-Schwarz inequality: |(u, v)| < |[u|||v]|-
Pf. If v.= 0, we're done; so consider v # 0. We can apply the
Pythagorean Theorem to

(u,v)

X = CyvV = and y=u—-x=u-—cyvV,

(v,v)
as above! Namely,
[all® =[x+ ylI* = [=I* + lyl* > [x]?
But
[(u, v)|

vl

[(u, v)
vl = vl =
vl

||X|| = ||Cu7vv|| = |Cu,v

since ||v||2 € Rsg. Thus |Juf| > Kevil,

IKdl
(d) Triangle inequality: ||[u+ v| < |jul| + |v].

Pf. Use (c) in our calculation above.

Distance and metric spaces  still: Let (V,(,)) be an IPS/F =R or C.

Define the distance between points x,y € V as

d(x,y) = |x -yl

Proposition. For all x,y,z €V,
1. Symmetry: d(x,y) = d(y, x).
2. Positive-definiteness: d(x,y) > 0, and d(x,y) =0 if and only if x =y.
3. Triangle inequality: d(x,y) < d(x,z) + d(z,y).

Namely, an inner product space is also a metric space.



You try.

1. Let u= (1,0,—2). For each of the following v, compute proj,,(u).
(a) v=(3—1,4);
(b) v=1(1,0,0);
(c) v=1(0,1,0);
(d) v=1(1,1,1);
(e) v =(—2,0,4).

2. For (b), (c), and (e) above, can you make sense of the answer you got
geometrically?
3. Under what circumstances is proj, (u) = u?
4. Under what circumstances is proj, (u) = proj,(v)?
5. Finish the proof of Prop 3 above:
How do we know that ||u|| = O if and only if u = 0.
6. A particle is traveling along the line 3 = 2x in R? such that its position
at time t is p(t) = (¢, 2t).
(a) At time ¢, what is the point on the z-axis that the particle is closest to?
How far away is the particle from that point?
(b) At time t, what is the point on the line y = 5x that the particle is closest
to? How far away is the particle from that point?
[Hint: project p(t) onto the line by taking any vector v (besides 0) on
the line, and computing proj,, (p(t)).]



