Lecture 20: More "eigen" stuff Jordan canonical form

Reminder to finish up the exercises from last time:

(See lecture 19 notes for hints/context.)

1. Last time, you found the eigenvalues of

$$X = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} \quad \text{and} \quad Z = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3 \end{pmatrix}.$$

Now compute the eigenspaces of each matrix. [You may assume that $F = \mathbb{R}$ or \mathbb{C} .]

- 2. What are the eigenspaces of $X = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ if we're working over $F = \mathbb{C}$? Does your answer change if we're working over $F = \mathbb{R}$? [Note: Geometrically, in \mathbb{R}^2 , multiplication by X acts by rotating clockwise by $\pi/2$. Can you reconcile your answer with this geometric interpretation?]
- 3. Let $\lambda \in F$. Compute the eigenspaces of

$$X = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \quad \text{and of} \quad Y = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

Last time:

Let V be a f.d. vector space over a field F, and let Let $f: V \to V$ be an endomorphism (linear). An **eigenvector** for f is a vector $\mathbf{v} \in F$ such

 $f(\mathbf{v}) = \lambda \mathbf{v}, \text{ for some } \lambda \in F.$

If $\mathbf{v} \neq \mathbf{0}$, then we call λ an **eigenvalue** for f. Since

$$f(\mathbf{v}) = \lambda \mathbf{v}$$
 is equivalent to $(f - \lambda \operatorname{id})(\mathbf{v}) = \mathbf{0}$,

the set of eigenvectors of eigenvalue λ , called the λ -eigenspace of f and denoted $V_{\lambda}(f)$, is a vector space (it's the nullspace of $f - \lambda$ id).

For any eigenvalue λ , we say the **algebraic multiplicity** of λ is the largest positive integer m_{λ} such that $(x - \lambda)^{m_{\lambda}}$ is a factor of $p_f(x)$.

The geometric multiplicity of λ is $d_{\lambda} = \dim(V_{\lambda}(f))$

Thm. If λ is an eigenvalue of f, then $1 \leq d_{\lambda} \leq m_{\lambda}$.

Eigenbases & diagonalization

We say f is **diagonalizable** if there is a basis $\mathcal{B} = \langle \mathbf{v}_1, \dots, \mathbf{v}_n \rangle$ of V such that

$$\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

In particular, since $f(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$, this means that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are all eigenvectors of f. If this is the case, then we're super happy because

$$\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(f^k) = (\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(f))^k = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}^k = \begin{pmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{pmatrix}.$$

To try to look for an eigenbasis of f,

- ▶ find the roots of $p_f(x) = \det(f x \text{ id})$ (these are the eigenvalues of f);
- for each root λ, compute the nullspace of f − λ id (i.e. compute V_{λ(f)})—if f is represented as a matrix X, this is done by row reducing (X − λ I | 0); then find a basis B_λ of V_{λ(f)}; and

$$\blacktriangleright \text{ let } S = \bigcup_{\lambda} \mathcal{B}_{\lambda}.$$

Claim. S is linearly independent, and S is a basis of V iff $d_{\lambda} = m_{\lambda}$ for all λ .

Example. Let $V = \mathbb{R}^5$ and consider the linear function $f_Y : V \to V$ corresponding to

$$Y = \begin{pmatrix} -2 & 0 & 0 & 0 & 9\\ 9 & 7 & 0 & -9 & -9\\ 0 & 0 & -2 & 0 & 0\\ 0 & 0 & 0 & -2 & 0\\ 0 & 0 & 0 & 0 & 7 \end{pmatrix}.$$

Then

$$p_Y(x) = -392 - 476x - 134x^2 + 23x^3 + 8x^4 - x^5 = -(x+2)^3(x-7)^2.$$

So $\Lambda = \{-2, 7\}$, with $m_{-2} = 3$ and $m_7 = 2$.

We have (see below for computations)

$$V_{-2} = \mathbb{R} \left\{ \begin{pmatrix} -1\\1\\0\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1\\0\\0\\0 \end{pmatrix} \\ \mathcal{B}_{-2} \end{pmatrix} \text{ so } d_{-2} = 3 \text{ and } V_7 = \mathbb{R} \left\{ \begin{pmatrix} 1\\0\\0\\0\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0\\0\\0 \end{pmatrix} \\ \mathcal{B}_7 \end{bmatrix} \text{ and } d_7 = 2.$$

Then

$$S = \mathcal{B}_{-2} \cup \mathcal{B}_{7} = \left\{ \begin{pmatrix} -1\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0\\0 \end{pmatrix} \right\}, \text{ which is a basis!}$$

$$\begin{split} V_{-2}: \mbox{ Row reduce} \\ \begin{pmatrix} -2+2 & 0 & 0 & 0 & 9 & | & 0 \\ 9 & 7+2 & 0 & -9 & -9 & | & 0 \\ 0 & 0 & -2+2 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & -2+2 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & 7+2 & | & 0 \\ \end{pmatrix} \xrightarrow{\dots} \begin{pmatrix} 1 & 1 & 0 & -1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ \end{pmatrix} \\ So \\ V_{-2} &= \mathcal{N}(Y+2id) = \left\{ \begin{pmatrix} -x_2 + x_4 \\ x_2 \\ x_3 \\ x_4 \\ 0 \end{pmatrix} \right| \ x_2, x_3, x_4 \in \mathbb{R} \right\} = \mathbb{R} \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}. \\ \hline \mathcal{B}_{-2} \\ \hline \\ \mathcal{B}_$$

Example. Let $V = \mathbb{R}^5$ and consider the linear function $f_Y : V \to V$ corresponding to

$$Y = \begin{pmatrix} -1 & 1 & 0 & -1 & 9\\ 9 & 6 & 0 & -8 & -10\\ 1 & 0 & -2 & 0 & -1\\ 1 & 0 & 0 & -2 & -1\\ 1 & 1 & 0 & -1 & 7 \end{pmatrix}.$$

Then

$$p_Y(x) = -392 - 476x - 134x^2 + 23x^3 + 8x^4 - x^5 = -(x+2)^3(x-7)^2.$$

So $\Lambda = \{-2, 7\}$, with $m_{-2} = 3$ and $m_7 = 2$.

We have (see below for computations)

$$V_{-2} = \mathbb{R} \left\{ \begin{pmatrix} 0\\1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix} \right\} \text{ so } d_{-2} = 2 \text{ and } V_7 = \mathbb{R} \left\{ \begin{pmatrix} 1\\-1\\0\\0\\1 \end{pmatrix} \right\} \text{ and } d_7 = 1.$$

$$\mathcal{B}_{-2}$$

Then

$$S = \mathcal{B}_{-2} \cup \mathcal{B}_{7} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\},\$$

$$V_{-2}: \text{ Row reduce}$$

$$\begin{pmatrix} -1+2 & 1 & 0 & -1 & 9 & | & 0 \\ 9 & 6+2 & 0 & -8 & -10 & | & 0 \\ 1 & 0 & -2+2 & 0 & -1 & | & 0 \\ 1 & 1 & 0 & 0 & -2+2 & -1 & | & 0 \\ 1 & 1 & 0 & -1 & 7+2 & | & 0 \end{pmatrix} \xrightarrow{\dots} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & -1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ \end{pmatrix}$$
So
$$V_{-2} = \mathcal{N}(Y+2 \text{ id}) = \left\{ \begin{pmatrix} 0 \\ x_4 \\ x_3 \\ x_4 \\ 0 \end{pmatrix} \middle| x_3, x_4 \in \mathbb{R} \right\} = \mathbb{R} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \right\}. \quad \boxed{d_{-2} = 2}$$

$$V_7: \text{ Row reduce}$$

$$\begin{pmatrix} -1-7 & 1 & 0 & -1 & 9 & | & 0 \\ 1 & 0 & -2-7 & 0 & -1 & | & 0 \\ 1 & 0 & 0 & -2-7 & -1 & | & 0 \\ 1 & 0 & 0 & -2-7 & -1 & | & 0 \\ 1 & 0 & 0 & -1 & 7-7 & | & 0 \end{pmatrix} \xrightarrow{\dots} \left\{ \begin{array}{c} 1 & 0 & 0 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \\ \end{array} \right\}$$

So

$$V_7 = \mathcal{N}(Y - 7 \text{ id}) = \left\{ \begin{pmatrix} x_5 \\ -x_5 \\ 0 \\ 0 \\ x_5 \end{pmatrix} \middle| x_5 \in \mathbb{R} \right\} = \mathbb{R} \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}. \quad \boxed{d_7 = 1}$$

$$\mathcal{B}_7$$

Do eigenvalues even exist?

We saw last time that some linear transformations don't have eigenvalues.

Fundamental theorem of algebra.

Every polynomial in $\mathbb{C}[x]$ completely factors with roots in \mathbb{C} ; i.e.

$$\text{if } p(x) \in \mathbb{C}[x] \quad \text{ then } \quad p(x) = c(x-\lambda_1)\cdots(x-\lambda_n),$$

for some (not necessarily distinct) $c, \lambda_i \in \mathbb{C}$.

Cor. If $f: V \to V$, where V is a vector space over $F = \mathbb{C}$, then (counting multiplicity) f has $\dim(V)$ eigenvalues. Meaning, if Λ is the set of eigenvalues of f, then

$$\sum_{\lambda \in \Lambda} m_{\lambda} = \dim(V).$$

Thm. If $p(x) \in \mathbb{R}[x]$, then p(x) factors into polynomials in $\mathbb{R}[x]$ of degree at most 2; i.e.

$$p(x) = c \left(\prod_{j} (x^2 + a_j x + b_j)\right) \left(\prod_{i} (x - \lambda_i)\right)$$

for some (not necessarily distinct) $c, \lambda_i, a_j, b_j \in \mathbb{C}$.

Cor. If $f: V \to V$, where V is a vector space over $F = \mathbb{R}$ and $\dim(V)$ is odd, then f has at least one eigenvalue.

If V is a v.s. $/\mathbb{C}$, then $f: V \to V$ has $\dim(V)$ eigenvalues (counting multiplicity. If V is a v.s. $/\mathbb{R}$, and $\dim(V)$ is odd, then $f: V \to V$ has at least one eigenvalue. Otherwise, f may not have any eigenvalues.

A field F is called **algebraically closed** if every polynomial $p \in F[x]$ completely factors with roots in F. Only familiar example: \mathbb{C} .

By definition, if λ is an eigenvalue of f, then $V_{\lambda}(f)$ is non-trivial (there's at least one non-zero eigenvector or eigenvalue λ).

Can eigenspaces overlap (nontrivially)?

Suppose $\mathbf{v} \in V_{\lambda}(f)$ and $\mathbf{v} \in V_{\mu}(f)$. Then

$$\lambda \mathbf{v} = f(\mathbf{v}) = \mu \mathbf{v}.$$

By Midterm 1, this implies that either $\mathbf{v} = \mathbf{0}$ or $\lambda = \mu$.

Lemma. If
$$\lambda \neq \mu$$
, then $V_{\lambda}(f) \cap V_{\mu}(f) = 0$.

(No!)

Prop. Let Λ be the set of eigenvalues of f. If, for each $\lambda \in \Lambda$, \mathcal{B}_{λ} is a basis of $V_{\lambda}(f)$, then

$$S = \bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$$
 is linearly independent.

Pf. Show by induction on ℓ that $\mathbf{v} = c_1 \mathbf{s}_1 + \cdots + c_\ell \mathbf{s}_\ell$ is an eigenvector if and only if all of the \mathbf{s}_i are from the same \mathcal{B}_{λ} .

Generalized eigenspaces and Jordan form

What happens if $f: V \rightarrow V$ isn't diagonalizable?

Let $\lambda \in \Lambda$. Recall that the eigenspace associated to λ is

$$V_{\lambda}(f) = \{ \mathbf{v} \in V \mid (f - \lambda \text{ id})(\mathbf{v}) = 0 \}.$$

The **generalized eigenspace** of eigenvalue λ is

$$V^{\lambda}(f) = \{ \mathbf{v} \in V \mid (f - \lambda \text{ id})^{\ell}(\mathbf{v}) = 0 \text{ for some } \ell \in \mathbb{Z}_{\geq 0} \}.$$

Example. Let

$$Y = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \text{ Then } p_Y(x) = -(x-3)^2(x-2),$$
$$V_3(Y) = F\{\mathbf{e}_1\} \subseteq V^3(f) \text{ and } V_2(f) = F\{\mathbf{e}_3\} \subseteq V^2(f)$$

But now, note that

$$(Y - 3I_3)\mathbf{e}_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

so that

$$(Y - 3I_3)^2 \mathbf{e}_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$
 Hence $\mathbf{e}_2 \in V^3(f)$ as well.

What about linear combinations of e_1 and e_2 ?

$$(Y - 3I_3)(a\mathbf{e}_1 + b\mathbf{e}_2) = \begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} a\\ b\\ 0 \end{pmatrix} = \begin{pmatrix} b\\ 0\\ 0 \end{pmatrix},$$

so that

$$(Y - 3I_3)^2(a\mathbf{e}_1 + b\mathbf{e}_2) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} b \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Hence $F{\mathbf{e}_1,\mathbf{e}_2} \subseteq V^3(f)$.

Let $f: V \to V$, where V is a f.d. vector space over \mathbb{C} . Let Λ be the set of eigenvalues of f. Let

$$V_{\lambda}(f) = \{ \mathbf{v} \in V \mid (f - \lambda \text{ id})(\mathbf{v}) = 0 \}.$$

and

 $V^{\lambda}(f) = \{ \mathbf{v} \in V \mid (f - \lambda \text{ id})^{\ell}(\mathbf{v}) = 0 \text{ for some } \lambda \in \mathbb{Z}_{\geq 0} \}.$ Note $V_{\lambda}(f) \subseteq V^{\lambda}(f)$. Homework.

1. $V^{\lambda}(f)$ is a subspace of V.

2. If
$$\lambda \neq \mu$$
, then $V^{\lambda}(f) \cap V^{\mu}(f) = 0$.

Claim.

- 1. For all $\mathbf{v} \in V^{\lambda}(f)$, $f(\mathbf{v}) \in V^{\lambda}(f)$.
- 2. dim $(V^{\lambda}(f)) = m_{\lambda}$.
- 3. If, for each $\lambda \in \Lambda$, \mathcal{B}_{λ} is a basis of $V^{\lambda}(f)$, then $\bigcup_{\lambda \in \Lambda}$ is a basis of V.

Theorem. For each $\lambda \in \Lambda$, there is a basis \mathcal{B}_{λ} of $V^{\lambda}(f)$ for which the matrix representation Y of f (restricted to $V^{\lambda}(f)$) with respect to \mathcal{B}_{λ} satisfies...

- ► Y is upper-triangular,
- \triangleright Y has λ 's on the main diagonal,
- some of the entries just above the main diagonal are 1's, and
- ▶ all other entries are 0's.

Jordan canonical form

For $\lambda \in F$, we call a $k \times k$ matrix of the form

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & 0 \\ & & \ddots & 1 & \\ & 0 & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}$$

a $k \times k$ elementary Jordan matrix (of eigenvalue λ). A matrix J is said to be in Jordan canonical form if it consists of Jordan blocks along the diagonal and 0's elsewhere, i.e.

$$J = \operatorname{diag}(J_{k_1}(\lambda_1), \dots, J_{k_\ell}(\lambda_\ell)) = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 \\ & \ddots & \\ 0 & & J_{k_\ell}(\lambda_\ell) \end{pmatrix}.$$

Example: d

$$\operatorname{diag}(J_3(7), J_2(7), J_2(-2), J_2(-2), J_1(-2), J_1(-2))$$

	_										1
	7	1	0	0	0	0	0	0	0	0	0
	0	7	1	0	0	0	0	0	0	0	0
	0	0	7	0	0	0	0	0	0	0	0
	0	0	0	7	1	0	0	0	0	0	0
	0	0	0	0	7	0	0	0	0	0	0
=	0	0	0	0	0	-2	1	0	0	0	0
	0	0	0	0	0	0	$^{-2}$	0	0	0	0
	0	0	0	0	0	0	0	-2	1	0	0
	0	0	0	0	0	0	0	0	$^{-2}$	0	0
	0	0	0	0	0	0	0	0	0	-2	0
	0	0	0	0	0	0	0	0	0	0	-2
(

Thm. Let $Y \in M_n(\mathbb{C})$. Then there is some matrix J in Jordan canonical form such that $J \sim Y$; i.e. there is some choice of basis under which Y can be written in Jordan canonical form. Moreover, this form is unique up to permutation of the blocks.

Pf. Choose "nice" bases of $V^{\lambda}(Y)$ and put them together.

Some notes:

▶ The reading comes at Jordan form from a different perspective: polynomials satisfied by the matrix (!!!)-this is an awesome topic, and I highly recommend it.

Example. We saw $Y = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ has characteristic polynomial $p_Y(x) = -(x-3)^2(x-2).$

But now, notice

$$p_Y(Y) = -(Y - 3 \operatorname{id})^2 (Y - 2 \operatorname{id})$$

$$= -\begin{pmatrix} 3 - 3 & 1 & 0 \\ 0 & 3 - 3 & 0 \\ 0 & 0 & 2 - 3 \end{pmatrix}^2 \begin{pmatrix} 3 - 2 & 1 & 0 \\ 0 & 3 - 2 & 0 \\ 0 & 0 & 2 - 2 \end{pmatrix}$$

$$= -\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}^2 \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = -\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- ▶ The Jordan blocks in the book are the transpose of these Jordan blocks.
 - Does it matter?
 - Not really: They just vary by reversing the order of your favorite basis.
 - ► Then did we do it *this* way then?

Our favorite convention has been upper-triangular (rather than lower-triangular).

Lecture 19 end exercises:

١.

$$X = \begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix} \quad \text{we found} \quad P_X(x) = (x-4)^2.$$

Eigenspace

$$\lambda = 4 : \quad V_{q} = \mathcal{N}(X - 4I_{2}) = \mathcal{N}\begin{pmatrix} 6 & -9 \\ 4 & -6 \end{pmatrix}.$$
Reduce $\begin{pmatrix} 6 & -9 & 0 \\ 4 & -6 & 0 \end{pmatrix} \xrightarrow{c_{1} \rightarrow \frac{1}{c_{1}} \rightarrow \frac{1}{c_{1}} \rightarrow \frac{1}{c_{1}} \begin{pmatrix} 0 \\ 1 & -3I_{2} & 0 \\ 1 & -3I_{2} & 0 \end{pmatrix}$

$$\xrightarrow{c_{1} \rightarrow c_{1} - c_{1}} \begin{pmatrix} 1 & -3I_{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
So $V_{q} = \begin{cases} \begin{pmatrix} (\frac{3}{\lambda}) x_{2} \\ x_{2} \end{pmatrix} | x_{2} \neq F_{2}^{2} = F \begin{cases} \begin{pmatrix} 3I_{2} \\ 1 \end{pmatrix} \end{cases}$

$$Z = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3 \end{pmatrix}$$
 we found $P_{z}(x) = -x(x-2)^{2}$

Eigenspaces

$$\begin{split} \lambda = 0: \ \bigvee_{0} = \mathcal{N} \left(Z - 0 \mathbf{I} \right) = \mathcal{N} \left(Z \right). \\ \mathcal{P}_{\text{cov}} \left(\begin{array}{c} 1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3 \\ \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{2} - 2r_{1} \\ r_{1} + r_{2} + r_{1} \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{2} - 2r_{1} \\ r_{1} + r_{2} + r_{1} \end{array} \right) \left(\begin{array}{c} 1 & 2 & 1 \\ 0 & -4 & -4 \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{1} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{1} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{1} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{1} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{1} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} + r_{1} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 & 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} + r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right) \left(\begin{array}{c} r_{1} \\ 0 \\ 0 \\ 0 \\ 0$$

2.
$$X = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
: then $P_X(x) = det \begin{pmatrix} -x & 1 \\ -1 - x \end{pmatrix} = \chi^2 - |-1| = \chi^2 + 1.$
If $F = C_3 P_X(x) = (\chi - i)(\chi + i)$ so $\Lambda = \{i_3 - i\}$
are the eigenvalues.

Eigenspaces

$$\lambda = i : \begin{pmatrix} -i & 1 & 0 \\ -1 & -i & 0 \end{pmatrix} \stackrel{c_{i} \mapsto ir_{i}}{c_{i} \mapsto -r_{i}} \begin{pmatrix} 1 & i & 0 \\ 1 & i & 0 \end{pmatrix} \stackrel{c_{i} \mapsto ir_{i} - i}{i & 0} \begin{pmatrix} 1 & i & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$V_{i} = \left\{ \begin{pmatrix} -ix_{2} \\ x_{2} \end{pmatrix} \middle| x_{2} + \mathbb{C}_{i}^{2} = \mathbb{C} \left\{ \begin{pmatrix} -i \\ 1 \end{pmatrix} \right\}$$

$$\lambda = -i : \begin{pmatrix} i & 1 & 0 \\ -1 & i & 0 \end{pmatrix} \stackrel{c_{i} \mapsto ir_{i}}{c_{i} \mapsto c_{2}} \begin{pmatrix} 1 & -i & 0 \\ 1 & -i & 0 \end{pmatrix} \stackrel{c_{i} \mapsto ir_{i}}{c_{i} \mapsto c_{2}} \begin{pmatrix} 1 & -i & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$V_{-i} = \left\{ \begin{pmatrix} ix_{2} \\ x_{2} \end{pmatrix} \middle| x_{1} + \mathbb{C}_{i}^{2} = \mathbb{C} \right\} \stackrel{(i)}{i} \right\}.$$
If $F = \mathbb{R}$, then $P_{X}(x)$ does not factor. \Rightarrow no e.vals. no e.vects.

3.
$$X = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$
 : $P_X(x) = (x - \lambda)^2$ and $V_X = F\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\}$
 $Y = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$: $P_Y(x) = -(x - \lambda)^3$ and $V_X = F\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\}$.