Lecture 20:
More "eigen" stuff
Jordan canonical form
Reminder to finish up the exercises from last time:
(See lecture 19 notes for hints/context.)

1. Last time, you found the eigenvalues of

$$
X=\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right) \quad \text { and } \quad Z=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & -2 \\
-1 & 2 & 3
\end{array}\right) .
$$

Now compute the eigenspaces of each matrix.
[You may assume that $F=\mathbb{R}$ or \mathbb{C}.]
2. What are the eigenspaces of $X=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ if we're working over $F=\mathbb{C}$? Does your answer change if we're working over $F=\mathbb{R}$?
[Note: Geometrically, in \mathbb{R}^{2}, multiplication by X acts by rotating clockwise by $\pi / 2$. Can you reconcile your answer with this geometric interpretation?]
3. Let $\lambda \in F$. Compute the eigenspaces of

$$
X=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \quad \text { and of } \quad Y=\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right) .
$$

Last time:

Let V be a f.d. vector space over a field F, and let Let $f: V \rightarrow V$ be an endomorphism (linear). An eigenvector for f is a vector $\mathbf{v} \in F$ such

$$
f(\mathbf{v})=\lambda \mathbf{v}, \quad \text { for some } \lambda \in F .
$$

If $\mathbf{v} \neq \mathbf{0}$, then we call λ an eigenvalue for f. Since

$$
f(\mathbf{v})=\lambda \mathbf{v} \text { is equivalent to }(f-\lambda \mathrm{id})(\mathbf{v})=\mathbf{0},
$$

the set of eigenvectors of eigenvalue λ, called the λ-eigenspace of f and denoted $V_{\lambda}(f)$, is a vector space (it's the nullspace of $f-\lambda \mathrm{id}$).

For any eigenvalue λ, we say the algebraic multiplicity of λ is the largest positive integer m_{λ} such that $(x-\lambda)^{m_{\lambda}}$ is a factor of $p_{f}(x)$.
The geometric multiplicity of λ is $d_{\lambda}=\operatorname{dim}\left(V_{\lambda}(f)\right)$.
Thm. If λ is an eigenvalue of f, then $1 \leq d_{\lambda} \leq m_{\lambda}$.

Eigenbases \& diagonalization

We say f is diagonalizable if there is a basis $\mathcal{B}=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle$ of V such that

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(f)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

In particular, since $f\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i}$, this means that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are all eigenvectors of f. If this is the case, then we're super happy because

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}\left(f^{k}\right)=\left(\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(f)\right)^{k}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)^{k}=\left(\begin{array}{cccc}
\lambda_{1}^{k} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}^{k}
\end{array}\right) .
$$

To try to look for an eigenbasis of f,

- find the roots of $p_{f}(x)=\operatorname{det}(f-x$ id) (these are the eigenvalues of f);
- for each root λ, compute the nullspace of $f-\lambda$ id (i.e. compute $V_{\lambda(f)}$)-if f is represented as a matrix X, this is done by row reducing $(X-\lambda I \mid \mathbf{0})$; then find a basis \mathcal{B}_{λ} of $V_{\lambda(f)}$; and
- let $S=\bigcup_{\lambda} \mathcal{B}_{\lambda}$.

Claim. S is linearly independent, and S is a basis of V iff $d_{\lambda}=m_{\lambda}$ for all λ.

Example. Let $V=\mathbb{R}^{5}$ and consider the linear function $f_{Y}: V \rightarrow V$ corresponding to

$$
Y=\left(\begin{array}{ccccc}
-2 & 0 & 0 & 0 & 9 \\
9 & 7 & 0 & -9 & -9 \\
0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 7
\end{array}\right)
$$

Then

$$
p_{Y}(x)=-392-476 x-134 x^{2}+23 x^{3}+8 x^{4}-x^{5}=-(x+2)^{3}(x-7)^{2} .
$$

So $\Lambda=\{-2,7\}$, with $m_{-2}=3$ and $m_{7}=2$.
$V_{-2}=\mathbb{R} \underbrace{\left\{\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}}_{\mathcal{B}_{-2}}$ so $d_{-2}=3 \quad$ and $\quad V_{7}=\mathbb{R} \underbrace{\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right)\right\}}_{\mathcal{B}_{7}}$ and $d_{7}=2$.
Then

$$
S=\mathcal{B}_{-2} \cup \mathcal{B}_{7}=\left\{\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)\right\}, \quad \text { which is a basis! }
$$

V_{-2} : Row reduce

$$
\left(\begin{array}{ccccc|c}
-2+2 & 0 & 0 & 0 & 9 & 0 \\
9 & 7+2 & 0 & -9 & -9 & 0 \\
0 & 0 & -2+2 & 0 & 0 & 0 \\
0 & 0 & 0 & -2+2 & 0 & 0 \\
0 & 0 & 0 & 0 & 7+2 & 0
\end{array}\right) \stackrel{\longmapsto}{ } \quad\left(\begin{array}{ccccc|c}
1 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

So

$$
V_{-2}=\mathcal{N}(Y+2 \mathrm{id})=\left\{\left.\left(\begin{array}{c}
-x_{2}+x_{4} \\
x_{2} \\
x_{3} \\
x_{4} \\
0
\end{array}\right) \right\rvert\, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\}=\mathbb{R}\left\{\begin{array}{c}
\left\{\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right)\right\} . \\
\mathcal{B}_{-2}
\end{array}\right.
$$

$$
\begin{aligned}
& \hline V_{7} \text { : Row reduce } \\
& \left(\begin{array}{ccccc|c}
-2-7 & 0 & 0 & 0 & 9 & 0 \\
9 & 7-7 & 0 & -9 & -9 & 0 \\
0 & 0 & -2-7 & 0 & 0 & 0 \\
0 & 0 & 0 & -2-7 & 0 & 0 \\
0 & 0 & 0 & 0 & 7-7 & 0
\end{array}\right) \stackrel{\cdots}{\longrightarrow}\left(\begin{array}{ccccc|c}
1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

So

$$
\left.\left.V_{7}=\mathcal{N}(Y-7 \text { id })=\left\{\left.\left(\begin{array}{c}
x_{5} \\
x_{2} \\
0 \\
0 \\
x_{5}
\end{array}\right) \right\rvert\, x_{2}, x_{5} \in \mathbb{R}\right\}=\mathbb{R}\right\}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right)\right\} .
$$

Example. Let $V=\mathbb{R}^{5}$ and consider the linear function $f_{Y}: V \rightarrow V$ corresponding to

$$
Y=\left(\begin{array}{ccccc}
-1 & 1 & 0 & -1 & 9 \\
9 & 6 & 0 & -8 & -10 \\
1 & 0 & -2 & 0 & -1 \\
1 & 0 & 0 & -2 & -1 \\
1 & 1 & 0 & -1 & 7
\end{array}\right)
$$

Then

$$
\begin{array}{r}
p_{Y}(x)=-392-476 x-134 x^{2}+23 x^{3}+8 x^{4}-x^{5}=-(x+2)^{3}(x-7)^{2} . \\
\text { So } \Lambda=\{-2,7\}, \text { with } m_{-2}=3 \text { and } m_{7}=2 .
\end{array}
$$

We have

Then
$S=\mathcal{B}_{-2} \cup \mathcal{B}_{7}=\left\{\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}, \quad$ which is lin. indep. but not spanning.

V_{-2} : Row reduce

$$
\begin{aligned}
& \left(\begin{array}{ccccc|c}
-1+2 & 1 & 0 & -1 & 9 & 0 \\
9 & 6+2 & 0 & -8 & -10 & 0 \\
1 & 0 & -2+2 & 0 & -1 & 0 \\
1 & 0 & 0 & -2+2 & -1 & 0 \\
1 & 1 & 0 & -1 & 7+2 & 0
\end{array}\right) \stackrel{\ldots}{\longrightarrow}\left(\begin{array}{ccccc|c}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& V_{-2}=\mathcal{N}(Y+2 \mathrm{id})=\left\{\left.\left(\begin{array}{c}
0 \\
x_{4} \\
x_{3} \\
x_{4} \\
0
\end{array}\right) \right\rvert\, x_{3}, x_{4} \in \mathbb{R}\right\}=\mathbb{R}\left\{\left(\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right)\right\} . \quad{ }_{\mathcal{B}-2} \quad d_{-2}=2 \\
& V_{7} \text { : Row reduce } \\
& \left(\begin{array}{ccccc|c}
-1-7 & 1 & 0 & -1 & 9 & 0 \\
9 & 6-7 & 0 & -8 & -10 & 0 \\
1 & 0 & -2-7 & 0 & -1 & 0 \\
1 & 0 & 0 & -2-7 & -1 & 0 \\
1 & 1 & 0 & -1 & 7-7 & 0
\end{array}\right) \stackrel{\cdots}{\longrightarrow}\left(\begin{array}{ccccc|c}
1 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { So } \\
& V_{7}=\mathcal{N}(Y-7 \mathrm{id})=\left\{\left.\left(\begin{array}{c}
x_{5} \\
-x_{5} \\
0 \\
0 \\
x_{5}
\end{array}\right) \right\rvert\, x_{5} \in \mathbb{R}\right\}=\mathbb{R}\left\{\begin{array}{c}
\left.\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
1
\end{array}\right)\right\} . \\
\mathcal{B}_{7}
\end{array}\right.
\end{aligned}
$$

Do eigenvalues even exist?

We saw last time that some linear transformations don't have eigenvalues.
Fundamental theorem of algebra.
Every polynomial in $\mathbb{C}[x]$ completely factors with roots in \mathbb{C}; i.e.

$$
\text { if } p(x) \in \mathbb{C}[x] \quad \text { then } \quad p(x)=c\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right) \text {, }
$$

for some (not necessarily distinct) $c, \lambda_{i} \in \mathbb{C}$.
Cor. If $f: V \rightarrow V$, where V is a vector space over $F=\mathbb{C}$, then (counting multiplicity) f has $\operatorname{dim}(V)$ eigenvalues. Meaning, if Λ is the set of eigenvalues of f, then

$$
\sum_{\lambda \in \Lambda} m_{\lambda}=\operatorname{dim}(V)
$$

Thm. If $p(x) \in \mathbb{R}[x]$, then $p(x)$ factors into polynomials in $\mathbb{R}[x]$ of degree at most 2; i.e.

$$
p(x)=c\left(\prod_{j}\left(x^{2}+a_{j} x+b_{j}\right)\right)\left(\prod_{i}\left(x-\lambda_{i}\right)\right)
$$

for some (not necessarily distinct) $c, \lambda_{i}, a_{j}, b_{j} \in \mathbb{C}$.
Cor. If $f: V \rightarrow V$, where V is a vector space over $F=\mathbb{R}$ and $\operatorname{dim}(V)$ is odd, then f has at least one eigenvalue.

If V is a v.s. / \mathbb{C}, then $f: V \rightarrow V$ has $\operatorname{dim}(V)$ eigenvalues (counting multiplicity. If V is a v.s. \mathbb{R}, and $\operatorname{dim}(V)$ is odd, then $f: V \rightarrow V$ has at least one eigenvalue. Otherwise, f may not have any eigenvalues.

A field F is called algebraically closed if every polynomial $p \in F[x]$ completely factors with roots in F.

Only familiar example: \mathbb{C}.
By definition, if λ is an eigenvalue of f, then $V_{\lambda}(f)$ is non-trivial (there's at least one non-zero eigenvector or eigenvalue λ).

Can eigenspaces overlap (nontrivially)?

Suppose $\mathbf{v} \in V_{\lambda}(f)$ and $\mathbf{v} \in V_{\mu}(f)$. Then

$$
\lambda \mathbf{v}=f(\mathbf{v})=\mu \mathbf{v} .
$$

By Midterm 1, this implies that either $\mathbf{v}=\mathbf{0}$ or $\lambda=\mu$.

$$
\text { Lemma. If } \lambda \neq \mu \text {, then } V_{\lambda}(f) \cap V_{\mu}(f)=0 \text {. }
$$

Prop. Let Λ be the set of eigenvalues of f. If, for each $\lambda \in \Lambda, \mathcal{B}_{\lambda}$ is a basis of $V_{\lambda}(f)$, then

$$
S=\bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \quad \text { is linearly independent. }
$$

Pf. Show by induction on ℓ that $\mathbf{v}=c_{1} \mathbf{s}_{1}+\cdots+c_{\ell} \mathbf{s}_{\ell}$ is an eigenvector if and only if all of the \mathbf{s}_{i} are from the same \mathcal{B}_{λ}.

Generalized eigenspaces and Jordan form

What happens if $f: V \rightarrow V$ isn't diagonalizable?
Let $\lambda \in \Lambda$. Recall that the eigenspace associated to λ is

$$
V_{\lambda}(f)=\{\mathbf{v} \in V \mid(f-\lambda \mathrm{id})(\mathbf{v})=0\} .
$$

The generalized eigenspace of eigenvalue λ is

$$
V^{\lambda}(f)=\left\{\mathbf{v} \in V \mid(f-\lambda \mathrm{id})^{\ell}(\mathbf{v})=0 \text { for some } \ell \in \mathbb{Z}_{\geq 0}\right\} .
$$

Example. Let

$$
\begin{aligned}
Y= & \left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right) . \text { Then } p_{Y}(x)=-(x-3)^{2}(x-2) \\
& V_{3}(Y)=F\left\{\mathbf{e}_{1}\right\} \subseteq V^{3}(f) \quad \text { and } \quad V_{2}(f)=F\left\{\mathbf{e}_{3}\right\} \subseteq V^{2}(f)
\end{aligned}
$$

But now, note that

$$
\left(Y-3 I_{3}\right) \mathbf{e}_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

so that

$$
\left(Y-3 I_{3}\right)^{2} \mathbf{e}_{2}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) . \quad \text { Hence } \mathbf{e}_{2} \in V^{3}(f) \text { as well. }
$$

What about linear combinations of \mathbf{e}_{1} and \mathbf{e}_{2} ?

$$
\left(Y-3 I_{3}\right)\left(a \mathbf{e}_{1}+b \mathbf{e}_{2}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
0
\end{array}\right)=\left(\begin{array}{l}
b \\
0 \\
0
\end{array}\right)
$$

so that

$$
\left(Y-3 I_{3}\right)^{2}\left(a \mathbf{e}_{1}+b \mathbf{e}_{2}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
b \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Hence $F\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\} \subseteq V^{3}(f)$.

Let $f: V \rightarrow V$, where V is a $\mathrm{f} . \mathrm{d}$. vector space over \mathbb{C}. Let Λ be the set of eigenvalues of f. Let

$$
V_{\lambda}(f)=\{\mathbf{v} \in V \mid(f-\lambda \mathrm{id})(\mathbf{v})=0\}
$$

and

$$
V^{\lambda}(f)=\left\{\mathbf{v} \in V \mid(f-\lambda \mathrm{id})^{\ell}(\mathbf{v})=0 \text { for some } \lambda \in \mathbb{Z}_{\geq 0}\right\}
$$

Note $V_{\lambda}(f) \subseteq V^{\lambda}(f)$.
Homework.

1. $V^{\lambda}(f)$ is a subspace of V.
2. If $\lambda \neq \mu$, then $V^{\lambda}(f) \cap V^{\mu}(f)=0$.

Claim.

1. For all $\mathbf{v} \in V^{\lambda}(f), f(\mathbf{v}) \in V^{\lambda}(f)$.
2. $\operatorname{dim}\left(V^{\lambda}(f)\right)=m_{\lambda}$.
3. If, for each $\lambda \in \Lambda, \mathcal{B}_{\lambda}$ is a basis of $V^{\lambda}(f)$, then $\bigcup_{\lambda \in \Lambda}$ is a basis of V.

Theorem. For each $\lambda \in \Lambda$, there is a basis \mathcal{B}_{λ} of $V^{\lambda}(f)$ for which the matrix representation Y of f (restricted to $\left.V^{\lambda}(f)\right)$ with respect to \mathcal{B}_{λ} satisfies. .

- Y is upper-triangular,
- Y has λ 's on the main diagonal,
- some of the entries just above the main diagonal are 1's, and
- all other entries are 0's.

Jordan canonical form

For $\lambda \in F$, we call a $k \times k$ matrix of the form

$$
J_{k}(\lambda)=\left(\begin{array}{ccccc}
\lambda & 1 & & & \\
& \lambda & 1 & & 0 \\
& & \ddots & 1 & \\
& 0 & & \lambda & 1 \\
& & & & \lambda
\end{array}\right)
$$

a $k \times k$ elementary Jordan matrix (of eigenvalue λ). A matrix J is said to be in Jordan canonical form if it consists of Jordan blocks along the diagonal and 0 's elsewhere, i.e.

$$
J=\operatorname{diag}\left(J_{k_{1}}\left(\lambda_{1}\right), \ldots, J_{k_{\ell}}\left(\lambda_{\ell}\right)\right)=\left(\begin{array}{ccc}
\boxed{J_{k_{1}}\left(\lambda_{1}\right)} & & 0 \\
& \ddots & \\
0 & & J_{k_{\ell}\left(\lambda_{\ell}\right)}
\end{array}\right)
$$

Example: $\quad \operatorname{diag}\left(J_{3}(7), J_{2}(7), J_{2}(-2), J_{2}(-2), J_{1}(-2), J_{1}(-2)\right)$

Thm. Let $Y \in M_{n}(\mathbb{C})$. Then there is some matrix J in Jordan canonical form such that $J \sim Y$; i.e. there is some choice of basis under which Y can be written in Jordan canonical form. Moreover, this form is unique up to permutation of the blocks.

Pf. Choose "nice" bases of $V^{\lambda}(Y)$ and put them together.

Some notes:

- The reading comes at Jordan form from a different perspective: polynomials satisfied by the matrix (!!!)-this is an awesome topic, and I highly recommend it.
Example. We saw $Y=\left(\begin{array}{lll}3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right)$ has characteristic polynomial

$$
p_{Y}(x)=-(x-3)^{2}(x-2)
$$

But now, notice

$$
\begin{aligned}
p_{Y}(Y) & =-(Y-3 \mathrm{id})^{2}(Y-2 \mathrm{id}) \\
& =-\left(\begin{array}{ccc}
3-3 & 1 & 0 \\
0 & 3-3 & 0 \\
0 & 0 & 2-3
\end{array}\right)^{2}\left(\begin{array}{ccc}
3-2 & 1 & 0 \\
0 & 3-2 & 0 \\
0 & 0 & 2-2
\end{array}\right) \\
& =-\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)^{2}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=-\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

- The Jordan blocks in the book are the transpose of these Jordan blocks.
- Does it matter?

Not really: They just vary by reversing the order of your favorite basis.

- Then did we do it this way then?

Our favorite convention has been upper-triangular (rather than lower-triangular).

Lecture 19 end exercises:

1. $X=\left(\begin{array}{rr}10 & -9 \\ 4 & -2\end{array}\right)$ we found $p_{x}(x)=(x-4)^{2}$.
Eigenspace

$$
\lambda=4: \quad V_{4}=N\left(X-4 I_{2}\right)=N\left(\begin{array}{cc}
6 & -9 \\
4 & -6
\end{array}\right) .
$$

Reduce $\left(\begin{array}{cc|c}6 & -9 & 0 \\ 4 & -6 & 0\end{array}\right) \xrightarrow{\stackrel{-1}{5} \rightarrow \frac{15}{4}}\left(\begin{array}{cc|c}1 & -3 / 2 & 0 \\ 1 & -3 / 2 & 0\end{array}\right)$

$$
\xrightarrow{\left.\stackrel{a}{c}-c_{1}\right)}\left(\begin{array}{cc|c}
1 & -3 / 2 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

so $\quad V_{4}=\left\{\left.\binom{\left(\frac{3}{2}\right) x_{2}}{x_{2}} \right\rvert\, x_{2}+F\right\}=F\left\{\binom{3 / 2}{1}\right\}$
$Z=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3\end{array}\right)$ we fond $p_{z}(x)=-x(x-2)^{2}$
Eigenspares

$$
\begin{aligned}
& \lambda=0: V_{0}=N(Z-0 I)=N(z) . \\
& \left.\begin{array}{l}
\text { Row } \\
\text { reduce } \\
2
\end{array}\left(\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
2 & 0 & -2 & 0 \\
-1 & 2 & 3 & 0
\end{array}\right) \xrightarrow{\substack{3 \\
5}} \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=2: V_{2}=N(z-2 I)=N\left(\begin{array}{ccc}
-1 & 2 & 1 \\
-1 & -2 & -2 \\
-2 & 1
\end{array}\right) \text {. } \\
& \text { Row }
\end{aligned}
$$

2. $X=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$: then $P_{x}(x)=\operatorname{det}\left(\begin{array}{cc}-x & 1 \\ -1 & -x\end{array}\right)=x^{2}-(-1)=x^{2}+1$.

If $F=\mathbb{C}, \quad P_{x}(x)=(x-i)(x+i)$ so $\Lambda=\{i,-i\}$ are the eignualles.
Eigonspanes

$$
\begin{aligned}
& \left.V_{i}=\left\{\left.\binom{-i x_{2}}{x_{2}} \right\rvert\, x_{2}+\mathbb{C}\right\}=\mathbb{C}\left\{\begin{array}{c}
-i \\
1
\end{array}\right)\right\} \\
& \lambda=-i=\left(\begin{array}{cc|c}
i & 1 & 0 \\
-1 & i & 0
\end{array}\right) \xrightarrow[a \rightarrow 2]{ }\left(\begin{array}{cc|c}
1 & -i & 0 \\
1 & -i & 0
\end{array}\right) \xrightarrow{\substack{\operatorname{cosen}+i x}}\left(\begin{array}{cc|c}
1 & -i & 0 \\
0 & 0 & 0
\end{array}\right) \\
& V_{-i}=\left\{\left(\begin{array}{c}
\left.\left.\binom{x_{2}}{x_{2}} \right\rvert\, x_{2} \in \mathbb{C}\right\}
\end{array}\right]=\mathbb{C} .\left\{\begin{array}{l}
i \\
1 \\
1
\end{array}\right)\right\} .
\end{aligned}
$$

If $F=\mathbb{R}$, then $P_{x}(x)$ does not factor. \Rightarrow no e.vals.
3.

$$
\begin{aligned}
& X=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right): \quad P_{x}(x)=(x-\lambda)^{2} \text { and } V_{\lambda}=F\left\{\binom{1}{0}\right\} \\
& Y=\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right): \quad P_{y}(x)=-(x-\lambda)^{3} \text { and } V_{\lambda}=F\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} .
\end{aligned}
$$

