Lecture 19:
Eigenvalues and eigenvectors
Diagonalizability
Characteristic polynomial

Eigenspaces

Warmup

1. Compute the determinants of

$$
X=\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right), \quad Y=\left(\begin{array}{cc}
-2 & -1 \\
5 & 2
\end{array}\right), \quad \text { and } \quad Z=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & -2 \\
-1 & 2 & 3
\end{array}\right) .
$$

2. Let $\lambda \in F$. Compute the determinants of

$$
\begin{gathered}
X=\left(\begin{array}{cc}
10-\lambda & -9 \\
4 & -2-\lambda
\end{array}\right), \quad Y=\left(\begin{array}{cc}
-2-\lambda & -1 \\
5 & 2-\lambda
\end{array}\right) \\
\text { and } \quad Z=\left(\begin{array}{ccc}
1-\lambda & 2 & 1 \\
2 & -\lambda & -2 \\
-1 & 2 & 3-\lambda
\end{array}\right) .
\end{gathered}
$$

[Your answers should be in terms of λ. Reality check: evaluate your answers here $\lambda=0$, and compare to your answers to 1 .]

Answers to warmup:

1. $\operatorname{det}\left(\begin{array}{cc}10 & -9 \\ 4 & -2\end{array}\right)=10(-2)-(-9) 4=16$;
$\operatorname{det}\left(\begin{array}{cc}-2 & -1 \\ 5 & 2\end{array}\right)=(-2)(2)-(-1)(5)=1 ; \quad$ and $\operatorname{det}\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3\end{array}\right)=(-1)^{2+1}(2) \operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)+(-1)^{2+2}(0) \operatorname{det}\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
$+(-1)^{2+3}(-2) \operatorname{det}\left(\begin{array}{cc}1 & 2 \\ -1 & 2\end{array}\right) \quad$ (expanding along row 2) $=-2((2)(3)-(1)(2))+0-(-2)((1)(2)-(2)(-1))=0$.
2. $\operatorname{det}\left(\begin{array}{cc}10-\lambda & -9 \\ 4 & -2-\lambda\end{array}\right)=(10-\lambda)(-2-\lambda)-(-9) 4=\lambda^{2}-8 \lambda+16$; $\operatorname{det}\left(\begin{array}{cc}-2-\lambda & -1 \\ 5 & 2-\lambda\end{array}\right)=(-2-\lambda)(2-\lambda)-(-1)(5)=\lambda^{2}+1 ; \quad$ and $\operatorname{det}\left(\begin{array}{ccc}1-\lambda & 2 & 1 \\ 2 & -\lambda & -2 \\ -1 & 2 & 3-\lambda\end{array}\right) \quad$ (expanding along row 1) $=(-1)^{1+1}(1-\lambda) \operatorname{det}\left(\begin{array}{cc}-\lambda & -2 \\ 2 & 3-\lambda\end{array}\right)+(-1)^{1+2}(2) \operatorname{det}\left(\begin{array}{cc}2 & -2 \\ -1 & 3-\lambda\end{array}\right)+(-1)^{1+3}(1) \operatorname{det}\left(\begin{array}{cc}2 & -\lambda \\ -1 & 2\end{array}\right)$
$=(1-\lambda)(-\lambda(3-\lambda)-(-2)(2))-2(2(3-\lambda)-(-1)(-2))+(2(2)-(-\lambda)(-1))$
$=-\lambda^{3}+4 \lambda^{2}-4 \lambda$.

Eigenvectors and eigenvalues

Let V be a f.d. vector space over a field F, and let $f: V \rightarrow V$ be an endomorphism (linear). An eigenvector for f is a vector $\mathbf{v} \in V$ such that f only scales \mathbf{v} (the direction doesn't change):

$$
f(\mathbf{v})=\lambda \mathbf{v}, \quad \text { for some } \lambda \in F
$$

If $\mathbf{v} \neq \mathbf{0}$, then we call λ an eigenvalue for f.
[Root: eigen is a German word meaning "belonging to" or "inherent to".] Similarly, for any matrix $X \in M_{n}(F)$, eigenvectors and eigenvalues of X are the same as eigenvectors and eigenvalues of the associated endomorphism on F^{n} (with respect to the standard ordered basis).

Example. For any $X \in M_{n}(F)$ and any $\lambda \in F$, we have

$$
X \mathbf{0}=\mathbf{0}=\lambda \mathbf{0}
$$

So $\mathbf{0}$ is an eigenvector of any matrix. But this is exactly why we require that there's some nonzero \mathbf{v} satisfying $X \mathbf{v}=\lambda \mathbf{v}$ to call λ an eigenvalue of X.
(We want being an eigenvalue to be special.)

Eigenvectors and eigenvalues

Let V be a f.d. vector space over a field F, and let Let $f: V \rightarrow V$ be an endomorphism (linear). An eigenvector for f is a vector $\mathbf{v} \in F$ such that f only scales \mathbf{v} (the direction doesn't change):

$$
f(\mathbf{v})=\lambda \mathbf{v}, \quad \text { for some } \lambda \in F
$$

If $\mathbf{v} \neq \mathbf{0}$, then we call λ an eigenvalue for f.
[Root: eigen is a German word meaning "belonging to" or "inherent to".]

Eigenvectors and eigenvalues

Let V be a f.d. vector space over a field F, and let Let $f: V \rightarrow V$ be an endomorphism (linear). An eigenvector for f is a vector $\mathbf{v} \in F$ such that f only scales \mathbf{v} (the direction doesn't change):

$$
f(\mathbf{v})=\lambda \mathbf{v}, \quad \text { for some } \lambda \in F
$$

If $\mathbf{v} \neq \mathbf{0}$, then we call λ an eigenvalue for f.
[Root: eigen is a German word meaning "belonging to" or "inherent to".] Similarly, for any matrix $X \in M_{n}(F)$, eigenvectors and eigenvalues of X are the same as eigenvectors and eigenvalues of the associated endomorphism on F^{n} (with respect to the standard ordered basis).

Example. For any $X \in M_{n}(F)$ and any $\lambda \in F$, we have

$$
X \mathbf{0}=\mathbf{0}=\lambda \mathbf{0}
$$

So $\mathbf{0}$ is an eigenvector of any matrix. But this is exactly why we require that there's some nonzero \mathbf{v} satisfying $X \mathbf{v}=\lambda \mathbf{v}$ to call λ an eigenvalue of X.
(We want being an eigenvalue to be special.)

Example. Let

$$
X=\left(\begin{array}{ll}
-1 & 2 \\
-6 & 6
\end{array}\right), \quad \mathbf{u}=\binom{2}{3}, \quad \text { and } \quad \mathbf{v}=\binom{1}{2}
$$

Then

$$
X \mathbf{u}=\left(\begin{array}{ll}
-1 & 2 \\
-6 & 6
\end{array}\right)\binom{2}{3}=\binom{4}{6}=\mathbf{2}\binom{2}{3}=\mathbf{2} \mathbf{u}
$$

and

$$
X \mathbf{v}=\left(\begin{array}{ll}
-1 & 2 \\
-6 & 6
\end{array}\right)\binom{1}{2}=\binom{3}{6}=3\binom{1}{2}=3 \mathbf{v}
$$

So 2 and 3 are eigenvalues of X, and u and v are eigenvectors of X (of eigenvalue 2 and 3, respectively).
Notice: $\mathcal{B}=\left\langle\binom{ 2}{3},\binom{1}{2}\right\rangle$ is a basis of F^{2}. And with respect to this basis, the above calculations show

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}\left(f_{X}\right)=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)
$$

where $f_{X}: F^{2} \rightarrow F^{2}$ is the linear function associated to X. In particular,

$$
X=P D P^{-1} \quad \text { where } D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \text { and } P=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)
$$

Why is this great? For example, what if we wanted to compute X^{100} ?

Theorem. Let $X \in M_{n}(F)$ with corresponding linear function $f_{X}: F^{n} \rightarrow F^{n}$. Suppose $\mathcal{B}=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle$ is an ordered basis of eigenvectors with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, i.e.,

$$
X \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \quad \text { for } i=1, \ldots, n
$$

Let P be the matrix whose columns are $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, and let

$$
D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

Then

$$
X=P D P^{-1}
$$

In this setting, we say X is diagonalizable.
One reason to care: Usually, matrix multiplication is computationally expensive, unless the matrices are very sparse (have lots of 0's). But diagonal matrices are very sparse! So if X is diagonalizable, then

$$
X^{\ell}=\left(P D P^{-1}\right)^{\ell}=\left(P D P^{-1}\right)\left(P D P^{-1}\right) \cdots\left(P D P^{-1}\right)=P D^{\ell} P^{-1}
$$

and $D^{\ell}=\operatorname{diag}\left(\lambda_{1}^{\ell}, \ldots, \lambda_{n}^{\ell}\right)$. (By calculation!)

Important questions:

- When does an endomorphism even have such a nice basis?
- How do we find eigenvectors and eigenvalues?

Finding eigenvalues and eigenvectors.

For a matrix $X \in M_{n}(F)$ and a vector $\mathbf{v} \in F^{n}$, note that

$$
X \mathbf{v}=\lambda \mathbf{v} \quad \text { if and only if } \quad \mathbf{0}=X \mathbf{v}-\lambda \mathbf{v}=\left(X-\lambda I_{n}\right) \mathbf{v} .
$$

So

$$
X \mathbf{v}=\lambda \mathbf{v} \quad \text { if and only if } \quad \mathbf{v} \in \mathcal{N}\left(X-\lambda I_{n}\right)
$$

Again, $\mathbf{v}=\mathbf{0}$ is always a solution. But we're interested in non-trivial solutions! So $\lambda \in F$ is an eigenvalue for X if and only if $\mathcal{N}\left(X-\lambda I_{n}\right) \neq\{0\}$.

Determinant to the rescue!!!
$\operatorname{ker}\left(X-\lambda I_{n}\right) \neq\{0\} \quad \Leftrightarrow \quad \operatorname{rank}\left(X-\lambda I_{n}\right)<n \quad \Leftrightarrow \quad \operatorname{det}\left(X-\lambda I_{n}\right)=0$.
To find the eigenvalues of X, solve $\operatorname{det}\left(X-\lambda I_{n}\right)=0$ for $\lambda \in F$.
Example. Back to $X=\left(\begin{array}{ll}-1 & 2 \\ -6 & 6\end{array}\right)$: We have

$$
X-\lambda I_{2}=\left(\begin{array}{ll}
-1 & 2 \\
-6 & 6
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)=\left(\begin{array}{cc}
-1-\lambda & 2 \\
-6 & 6-\lambda
\end{array}\right)
$$

So

$$
\operatorname{det}\left(X-\lambda I_{2}\right)=(-1-\lambda)(6-\lambda)-2(-6)=\lambda^{2}-5 \lambda+6=(\lambda-2)(\lambda-3)
$$

Thus $\operatorname{det}\left(X-\lambda I_{2}\right)=0$ when $\lambda=2$ or $\lambda=3$;
and hence these are exactly the two eigenvalues of X.

You try:

1. Find the eigenvalues of

$$
X=\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right), \quad Y=\left(\begin{array}{cc}
-2 & -1 \\
5 & 2
\end{array}\right), \quad \text { and } \quad Z=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & -2 \\
-1 & 2 & 3
\end{array}\right)
$$

(See warmup.) Does it matter what F is?
2. If

$$
X=\left(\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
0 & -1 & -1 & 2
\end{array}\right), \quad \text { then } \operatorname{det}\left(X-\lambda I_{4}\right)=\lambda(\lambda-2)(\lambda-4)^{2}
$$

This means that X has eigenvalues $\lambda=0, \lambda=2$, and $\lambda=4$.
Compute the nullspaces of $X-0 I_{4}$ (this matrix is just X) and of $X-2 I_{4}$. (The computation of the nullspace of $X-4 I_{4}$ is on the next page.)

First, we have

$$
X-4 I_{4}=\left(\begin{array}{cccc}
2-4 & -1 & -1 & 0 \\
-1 & 3-4 & -1 & -1 \\
-1 & -1 & 3-4 & -1 \\
0 & -1 & -1 & 2-4
\end{array}\right)=\left(\begin{array}{cccc}
-2 & -1 & -1 & 0 \\
-1 & -1 & -1 & -1 \\
-1 & -1 & -1 & -1 \\
0 & -1 & -1 & -2
\end{array}\right)
$$

Recall that to compute the nullspace of $X-4 I_{4}$, we should row reduce:

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
-2 & -1 & -1 & 0 & 0 \\
-1 & -1 & -1 & -1 & 0 \\
-1 & -1 & -1 & -1 & 0 \\
0 & -1 & -1 & -2 & 0
\end{array}\right) \xrightarrow[\text { row }_{3} \mapsto \mathrm{row}_{3}-\mathrm{row}_{2}]{\stackrel{\mathrm{row}_{1} \mapsto \mathrm{row}_{1}-2 \mathrm{row}_{2}}{ }}\left(\begin{array}{cccc|c}
0 & 1 & 1 & 2 & 0 \\
-1 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & -2 & 0
\end{array}\right) \\
& \xrightarrow[\text { row }_{4} \mapsto \text { row }_{4}+\text { row }_{1}]{\text { row }_{2} \mapsto-\text { row }_{2}}\left(\begin{array}{llll|l}
0 & 1 & 1 & 2 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\text { row }_{1} \leftrightarrow \text { row }_{2}}\left(\begin{array}{llll|l}
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{\text { row }_{1} \mapsto \mathrm{row}_{1}-\mathrm{row}_{2}}\left(\begin{array}{cccc|c}
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \text {. So }\left\{\begin{array}{r}
x_{1}-x_{4}=0, \\
x_{2}+x_{3}+2 x_{4}=0 .
\end{array}\right.
\end{aligned}
$$

Thus, $x_{1}=x_{4}$ and $x_{2}=-x_{3}-2 x_{4}$, so that

$$
\mathcal{N}\left(X-4 I_{2}\right)=\left\{\left.\left(\begin{array}{c}
x_{4} \\
-x_{3}-2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right) \right\rvert\, x_{3}, x_{4} \in F\right\}=F\left\{\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-2 \\
0 \\
1
\end{array}\right)\right\} .
$$

Continuing with the example from Problem 2:

We just saw that matrix $X=\left(\begin{array}{cccc}2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2\end{array}\right)$ has eigenvalues $\lambda=0,2$, and 4; and that

$$
\begin{aligned}
& \mathcal{N}\left(X-0 I_{4}\right)=F\left\{(1,1,1,1)^{t}\right\} \\
& \mathcal{N}\left(X-2 I_{4}\right)=F\left\{(-1,0,0,1)^{t}\right\}, \quad \text { and } \\
& \mathcal{N}\left(X-4 I_{4}\right)=F\left\{(0,-1,1,0)^{t},(1,-2,0,1)\right\}
\end{aligned}
$$

One can check that

$$
\mathcal{B}=\left\langle\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-2 \\
0 \\
1
\end{array}\right)\right\rangle
$$

is a basis of F^{4} (so long as F isn't too small). So

$$
X=P D P^{-1} \quad \text { where } P=\left(\begin{array}{cccc}
1 & -1 & 0 & 1 \\
1 & 0 & -1 & -2 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right) \text { and } D=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

General strategy:

- Find the eigenvalues of X by solving $\operatorname{det}\left(X-\lambda I_{n}\right)=0$ for λ.
- For each eigenvalue λ, compute a basis for $\mathcal{N}\left(X-\lambda I_{n}\right)$.
- If this process results in finding n eigenvectors, $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then A is diagonalizable. (This is a significant "if", but there's a reasonable backup plan.)

Let V be a finite-dimensional vector space over F, and let $f: V \rightarrow V$ be an endomorphism. Back to the language of linear maps (instead of just matrices):

- The eigenvalues of f are the roots of $\operatorname{det}(f-\lambda i d)$. Note that the determinant $\operatorname{det}(f-\lambda$ id) will always be a polynomial in the variable λ. We call

$$
p_{f}(x)=\operatorname{det}(f-x \mathrm{id})
$$

the characteristic polynomial of f.
(The eigenvalues of f are exactly the roots of $p_{f}(x)$.)

- The eigenvectors of f associated to λ are those vectors in $\mathcal{N}(f-\lambda$ id $)$. We call this space the eigenspace of f corresponding to λ, or just the λ-eigenspace of f, denoted

$$
V_{\lambda}=V_{\lambda}(f)=\{\mathbf{v} \in V \mid f(\mathbf{v})=\lambda \mathbf{v}\} .
$$

Note that because V_{λ} is a nullspace, it is a subspace of V.

- For $\lambda \in F$, if $(x-\lambda)^{\ell}$ is a factor of $p_{f}(x)$, but $(x-\lambda)^{\ell+1}$ is not, we call ℓ the (algebraic) multiplicity of λ, and denote it $\ell=m_{\lambda}$.

Thm. If λ is an eigenvalue of f, then $1 \leq \operatorname{dim}\left(V_{\lambda}(f)\right) \leq m_{\lambda}$.

- If there is a basis of V consisting of eigenvectors of f, we call such a basis an eigenbasis, and say that f is diagonalizable (since there is a basis in which f is represented as a diagonal matrix).

Sufficient (but not necessary): $\operatorname{dim}\left(V_{\lambda}(f)\right)=1$ for all eigenvalues λ.

You try:

1. Above, you found the eigenvalues of

$$
X=\left(\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right) \quad \text { and } \quad Z=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 0 & -2 \\
-1 & 2 & 3
\end{array}\right)
$$

Now compute the eigenspaces of each matrix.
[For X, the eigenspaces are subspaces of F^{2}; the eigenspaces of Z are subspaces of F^{3}. You may assume that $F=\mathbb{R}$ or \mathbb{C}.]
2. What are the eigenspaces of $X=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ if we're working over $F=\mathbb{C}$? [Compute $p_{X}(x)$ and find its roots; then compute $V_{\lambda}(X)=\mathcal{N}\left(X-\lambda I_{2}\right)$ for each root λ.]

Does your answer change if we're working over $F=\mathbb{R}$?
[Note: Geometrically, in \mathbb{R}^{2}, multiplication by X acts by rotating clockwise by $\pi / 2$. Can you reconcile your answer with this geometric interpretation?]
3. Let $\lambda \in F$. Compute the eigenspaces of

$$
X=\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \quad \text { and of } \quad Y=\left(\begin{array}{ccc}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)
$$

