
Lecture 19:
Eigenvalues and eigenvectors
Diagonalizability
Characteristic polynomial
Eigenspaces

Warmup

1. Compute the determinants of

X =
✓
10 �9
4 �2

◆
, Y =

✓
�2 �1
5 2

◆
, and Z =

0

@
1 2 1
2 0 �2
�1 2 3

1

A.

2. Let � 2 F . Compute the determinants of

X =
✓
10� � �9

4 �2� �

◆
, Y =

✓
�2� � �1

5 2� �

◆
,

and Z =

0

@
1� � 2 1
2 �� �2
�1 2 3� �

1

A.

[Your answers should be in terms of �. Reality check: evaluate your answers
here � = 0, and compare to your answers to 1. ]



Answers to warmup:

1. det
✓
10 �9
4 �2

◆
= 10(�2)� (�9)4 = 16;

det
✓
�2 �1
5 2

◆
= (�2)(2)� (�1)(5) = 1; and

det

0

@
1 2 1
2 0 �2
�1 2 3

1

A = (91)2+1(2) det

✓
2 1
2 3

◆
+ (91)2+2(0) det

✓
1 1
�1 3

◆

+ (91)2+3(�2) det

✓
1 2
�1 2

◆
(expanding along row 2)

= �2((2)(3)� (1)(2)) + 0� (�2)((1)(2)� (2)(�1)) = 0.

2. det
✓
10� � �9

4 �2� �

◆
= (10� �)(�2� �)� (�9)4 = �2 � 8�+ 16;

det
✓
�2� � �1

5 2� �

◆
= (�2� �)(2� �)� (�1)(5) = �2 + 1; and

det

0

@
1� � 2 1
2 �� �2
�1 2 3� �

1

A (expanding along row 1)

= (91)1+1(19�) det
✓9� �2

2 3 9 �

◆
+ (91)1+2(2) det

✓
2 92
91 3 9 �

◆
+ (91)1+3(1) det

✓
2 9�
91 2

◆

= (19�)(9�(39�) 9 (92)(2))� 2(2(39�) 9 (91)(92)) + (2(2) 9 (9�)(91))
= ��3 + 4�2 � 4�.

Eigenvectors and eigenvalues
Let V be a f.d. vector space over a field F , and let f : V ! V be an
endomorphism (linear). An eigenvector for f is a vector v 2 V such that f
only scales v (the direction doesn’t change):

f(v) = �v, for some � 2 F.

If v 6= 0, then we call � an eigenvalue for f .

[Root: eigen is a German word meaning “belonging to” or “inherent to”.]

Similarly, for any matrix X 2 Mn(F ), eigenvectors and eigenvalues of X are
the same as eigenvectors and eigenvalues of the associated endomorphism on
Fn (with respect to the standard ordered basis).

Example. For any X 2 Mn(F ) and any � 2 F , we have

X0 = 0 = �0.

So 0 is an eigenvector of any matrix. But this is exactly why we require that
there’s some nonzero v satisfying Xv = �v to call � an eigenvalue of X.

(We want being an eigenvalue to be special.)
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Example. Let

X =
✓
�1 2
�6 6

◆
, u =

✓
2
3

◆
, and v =

✓
1
2

◆
.

Then

Xu =
✓
�1 2
�6 6

◆✓
2
3

◆
=

✓
4
6

◆
= 2

✓
2
3

◆
= 2u;

and

Xv =
✓
�1 2
�6 6

◆✓
1
2

◆
=

✓
3
6

◆
= 3

✓
1
2

◆
= 3v.

So 2 and 3 are eigenvalues of X, and u and v are eigenvectors of X (of
eigenvalue 2 and 3, respectively).

Notice: B =

⌧✓
2
3

◆
,
✓
1
2

◆�
is a basis of F 2. And with respect to this basis, the

above calculations show

RepBB(fX) =
✓
2 0
0 3

◆
,

where fX : F 2 ! F 2 is the linear function associated to X.
In particular,

X = PDP�1 where D =
✓
2 0
0 3

◆
and P =

✓
2 1
3 2

◆
.

Why is this great? For example, what if we wanted to compute X100?

Theorem. Let X 2 Mn(F ) with corresponding linear function
fX : Fn ! Fn. Suppose B = hv1, . . . ,vni is an ordered basis of eigenvectors
with corresponding eigenvalues �1, . . . ,�n, i.e.,

Xvi = �ivi for i = 1, . . . , n.

Let P be the matrix whose columns are v1, . . . ,vn, and let

D = diag(�1, . . . ,�n) =

0

BBB@

�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · �n

1

CCCA
.

Then

X = PDP�1.
In this setting, we say X is diagonalizable.

One reason to care: Usually, matrix multiplication is computationally
expensive, unless the matrices are very sparse (have lots of 0’s). But diagonal
matrices are very sparse! So if X is diagonalizable, then

X` = (PDP�1)` = (PDP�1)(PDP�1) · · · (PDP�1) = PD`P�1;

and D` = diag(�`
1, . . . ,�

`
n). (By calculation!)

Important questions:
• When does an endomorphism even have such a nice basis?
• How do we find eigenvectors and eigenvalues?



Finding eigenvalues and eigenvectors.
For a matrix X 2 Mn(F ) and a vector v 2 Fn, note that

Xv = �v if and only if 0 = Xv � �v = (X � �In)v.

So
Xv = �v if and only if v 2 N (X � �In).

Again, v = 0 is always a solution. But we’re interested in non-trivial
solutions! So � 2 F is an eigenvalue for X if and only if N (X � �In) 6= {0}.

Determinant to the rescue!!!
ker(X � �In) 6= {0} , rank(X � �In) < n , det(X � �In) = 0.

To find the eigenvalues of X, solve det(X � �In) = 0 for � 2 F .

Example. Back to X =
✓
�1 2
�6 6

◆
: We have

X � �I2 =
✓
�1 2
�6 6

◆
�

✓
� 0
0 �

◆
=

✓
�1� � 2
�6 6� �

◆
.

So

det(X � �I2) = (�1� �)(6� �)� 2(�6) = �2 � 5�+ 6 = (�� 2)(�� 3).

Thus det(X � �I2) = 0 when � = 2 or � = 3;
and hence these are exactly the two eigenvalues of X.

To find the eigenvalues of X, solve det(X � �In) = 0 for � 2 F .

You try:

1. Find the eigenvalues of

X =
✓
10 �9
4 �2

◆
, Y =

✓
�2 �1
5 2

◆
, and Z =

0

@
1 2 1
2 0 �2
�1 2 3

1

A.

(See warmup.) Does it matter what F is?

2. If

X =

0

BB@

2 �1 �1 0
�1 3 �1 �1
�1 �1 3 �1
0 �1 �1 2

1

CCA, then det(X � �I4) = �(�� 2)(�� 4)2.

This means that X has eigenvalues � = 0, � = 2, and � = 4.

Compute the nullspaces of X � 0I4 (this matrix is just X) and of
X � 2I4. (The computation of the nullspace of X � 4I4 is on the next page.)



First, we have

X�4I4 =

0

BB@

2�4 �1 �1 0
�1 3�4 �1 �1
�1 �1 3�4 �1
0 �1 �1 2�4

1

CCA =

0

BB@

�2 �1 �1 0
�1 �1 �1 �1
�1 �1 �1 �1
0 �1 �1 �2

1

CCA.

Recall that to compute the nullspace of X � 4I4, we should row reduce:
0

BB@

�2 �1 �1 0 0
�1 �1 �1 �1 0
�1 �1 �1 �1 0
0 �1 �1 �2 0

1

CCA
row1 7!row1�2row27������������!
row3 7!row3�row2

0

BB@

0 1 1 2 0
�1 �1 �1 �1 0
0 0 0 0 0
0 �1 �1 �2 0

1

CCA

row2 7!�row27�����������!
row4 7!row4+row1

0

BB@

0 1 1 2 0
1 1 1 1 0
0 0 0 0 0
0 0 0 0 0

1

CCA
row1$row27�������!

0

BB@

1 1 1 1 0
0 1 1 2 0
0 0 0 0 0
0 0 0 0 0

1

CCA

row1 7!row1�row27�����������!

0

BB@

1 0 0 �1 0
0 1 1 2 0
0 0 0 0 0
0 0 0 0 0

1

CCA. So

⇢
x1 � x4 = 0,

x2 + x3 + 2x4 = 0.

Thus, x1 = x4 and x2 = �x3 � 2x4, so that

N (X � 4I2) =

8
<

:

0

BB@

x4

�x3 � 2x4

x3

x4

1

CCA

������
x3, x4 2 F

9
=

; = F

8
<

:

0

BB@

0
�1
1
0

1

CCA,

0

BB@

1
�2
0
1

1

CCA

9
=

; .

Continuing with the example from Problem 2:

We just saw that matrix X =

0

B@

2 �1 �1 0
�1 3 �1 �1
�1 �1 3 �1
0 �1 �1 2

1

CA has eigenvalues � = 0, 2,

and 4; and that

N (X � 0I4) = F{(1, 1, 1, 1)t},
N (X � 2I4) = F{(�1, 0, 0, 1)t}, and

N (X � 4I4) = F{(0,�1, 1, 0)t, (1,�2, 0, 1)}.
One can check that

B =

*0

B@

1
1
1
1

1

CA,

0

B@

�1
0
0
1

1

CA,

0

B@

0
�1
1
0

1

CA,

0

B@

1
�2
0
1

1

CA

+

is a basis of F 4 (so long as F isn’t too small). So

X = PDP�1 where P =

0

BB@

1 �1 0 1
1 0 �1 �2
1 0 1 0
1 1 0 1

1

CCA and D =

0

BB@

0 0 0 0
0 2 0 0
0 0 4 0
0 0 0 4

1

CCA.

General strategy:
I Find the eigenvalues of X by solving det(X � �In) = 0 for �.
I For each eigenvalue �, compute a basis for N (X � �In).
I If this process results in finding n eigenvectors, v1, . . . ,vn, then A is

diagonalizable. (This is a significant “if”, but there’s a reasonable backup plan.)



Let V be a finite-dimensional vector space over F , and let f : V ! V be an
endomorphism. Back to the language of linear maps (instead of just matrices):
I The eigenvalues of f are the roots of det(f � � id). Note that the

determinant det(f � � id) will always be a polynomial in the variable �.
We call

pf (x) = det(f � x id)

the characteristic polynomial of f .
(The eigenvalues of f are exactly the roots of pf (x).)

I The eigenvectors of f associated to � are those vectors in N (f � � id).
We call this space the eigenspace of f corresponding to �, or just the
�-eigenspace of f , denoted

V� = V�(f) = {v 2 V | f(v) = �v}.
Note that because V� is a nullspace, it is a subspace of V .

I For � 2 F , if (x� �)` is a factor of pf (x), but (x� �)`+1 is not, we call
` the (algebraic) multiplicity of �, and denote it ` = m�.

Thm. If � is an eigenvalue of f , then 1  dim(V�(f))  m�.

I If there is a basis of V consisting of eigenvectors of f , we call such a
basis an eigenbasis, and say that f is diagonalizable (since there is a
basis in which f is represented as a diagonal matrix).

Su�cient (but not necessary): dim(V�(f)) = 1 for all eigenvalues �.

You try:

1. Above, you found the eigenvalues of

X =
✓
10 �9
4 �2

◆
and Z =

0

@
1 2 1
2 0 �2
�1 2 3

1

A.

Now compute the eigenspaces of each matrix.
[For X, the eigenspaces are subspaces of F 2; the eigenspaces of Z are
subspaces of F 3. You may assume that F = R or C.]

2. What are the eigenspaces of X =
✓

0 1
�1 0

◆
if we’re working over F = C?

[Compute pX(x) and find its roots; then compute V�(X) = N (X � �I2) for
each root �.]

Does your answer change if we’re working over F = R?
[Note: Geometrically, in R2, multiplication by X acts by rotating clockwise by
⇡/2. Can you reconcile your answer with this geometric interpretation?]

3. Let � 2 F . Compute the eigenspaces of

X =
✓
� 1
0 �

◆
and of Y =

0

@
� 1 0
0 � 1
0 0 �

1

A.


