Lecture 18:

More determinants!

Permutation expansion

Laplace's cofactor expansion

Big takeaways from the worksheet:

If a determinant det : $M_{n}(F) \rightarrow F$ exists. . .

- $\operatorname{det}(X)=0$ if and only if X is singular (non-invertible);
- det is multiplicative (meaning that $\operatorname{det}(X Y)=\operatorname{det}(X) \operatorname{det}(Y)$);
- $\operatorname{det}\left(X^{t}\right)=\operatorname{det}(X)$.
(You may take these as theorems now, whose proofs are outlined in the Lecture 17 worksheet.)

The main obstruction to a determinant existing is if two sequences of row operations accidentally give us different results.

Goal: Find a closed formula for determinant using multilinearity, and then show that formula defines a determinant. (Check that the formula itself is normalized, alternating, and multilinear.)

A permutation is just another word for a bijective function (usually on a finite set), but thought of a little differently. Let $[n]$ denote the set $\{1,2, \ldots\}$. Let

$$
S_{n}=\{\sigma:[n] \rightarrow[n] \mid \sigma \text { is bijective }\}
$$

be the set of permutations of [n]. For example, the permutations of [2] are

The permutations of [3] are

and

We call this pictures of permutations permutation diagrams.
[Note: I went to a little trouble to make sure all the arrows didn't cross at the same point in that last permutation: X versus X.

This is a useful precaution in times to come.]

Sign of a permutation

The sign of a permutation $\sigma \in S_{n}$ is

$$
\operatorname{sgn}(\sigma)=(-1)^{\#\{\text { crossings }\}}=(-1)^{\#\{\text { inversions }\}}
$$

where σ is drawn with at most two edges crossing at any point.
For example, if $n=5$:

\# intersections: 0
$\operatorname{sgn}(\mathrm{id})=(-1)^{0}=1$

\# intersections: 1
$\operatorname{sgn}(\sigma)=(-1)^{1}=-1$

\# intersections: 7
$\operatorname{sgn}(\tau)=(-1)^{7}=-1$

The crossings in a diagram of a permutation $\sigma \in S_{n}$ are really just detecting inversion pairs:

$$
(i, j) \quad \text { such that } \quad i<j \text { but } \sigma(i)>\sigma(j) .
$$

For example, in τ above, the inversion pairs are

$$
(1,4), \quad(1,5), \quad(2,3), \quad(2,4), \quad(2,5), \quad(3,4), \quad \text { and } \quad(3,5)
$$

[To find inversions (i, j), look for the arrows $j \rightarrow \tau(j)$ that cross $i \rightarrow \tau(i)$ from SE to NW.]

Permutation matrices

For a permutation $\sigma \in S_{n}$, we define the permutation matrix P_{σ} as the linear extension of the map

$$
\mathbf{e}_{i} \mapsto \mathbf{e}_{\sigma(i)} ; \quad \text { i.e. } P_{\sigma} \mathbf{e}_{i}=\mathbf{e}_{\sigma(i)} .
$$

Namely, the i th column of P_{σ} is $\mathbf{e}_{\sigma(i)}$.
Example: If $n=5$ and

$$
\text { then } P_{\tau}=\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

Lemma. The permutation matrices are those matrices with exactly one 1 in each row and in each column, and 0 's elsewhere.
Proof. The columns of a permutation matrix are elementary basis vectors; and since a permutation is bijective, each basis vector appears in exactly one column. This observation exactly coincides with the statement of this Lemma.

For a permutation $\sigma \in S_{n}$, we define the permutation matrix P_{σ} as the linear extension of the map

$$
\mathbf{e}_{i} \mapsto \mathbf{e}_{\sigma(i)} ; \quad \text { i.e. } P_{\sigma} \mathbf{e}_{i}=\mathbf{e}_{\sigma(i)} .
$$

Namely, the i th column of P_{σ} is $\mathbf{e}_{\sigma(i)}$.
Lemma. The permutation matrices are those matrices with exactly one 1 in each row and in each column, and 0's elsewhere.
Ex. In $M_{2}(F)$, the permutation matrices are $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I_{2}$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=P_{1,2}$.
Ex. In $M_{3}(F)$, the permutation matrices are

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I_{3}, \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=P_{1,2}, \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=P_{2,3}, \\
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=P_{1,3},
\end{gathered}
$$

(Compare to the six permutations of $[3]=\{1,2,3\}$.)
Lemma. $\operatorname{det}\left(P_{\sigma}\right)=\operatorname{sgn}(\sigma)$.
Proof-ish. To row-reduce P_{σ} to I_{n}, put pivots where they belong from left-to-right, by a sequence of adjacent rows swapst. (First find the row that has \mathbf{e}_{1} in it, and move it up one row at a time until it's at the top; then find the row that has \mathbf{e}_{2} and move it up one row at a time until it's at the top, ...). Each step "removes" one inversion, and toggles the determinant by a multiple of -1 .

Lemma. For any $\sigma \in S_{n}, \operatorname{det}\left(P_{\sigma}\right)=\operatorname{sgn}(\sigma)$.
$P_{\tau}=\left(\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right) \stackrel{\mathbf{r}_{2} \leftrightarrow \mathbf{r}_{3}}{ }$
$\left(\begin{array}{lllll}0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0\end{array}\right) \stackrel{\mathbf{r}_{1} \leftrightarrow \mathbf{r}_{2}}{\longmapsto}$

$\stackrel{\mathbf{r}_{4} \leftrightarrow \mathbf{r}_{5}}{\stackrel{ }{2}}\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right) \quad \stackrel{\mathbf{r}_{3} \leftrightarrow \mathbf{r}_{4}}{\xrightarrow{2}}\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right)$ $\xrightarrow{\mathbf{r}_{2} \leftrightarrow \mathbf{r}_{3}}\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right)$

$$
(-1)^{7} \operatorname{det}\left(P_{\tau}\right)=\operatorname{det}\left(I_{5}\right)
$$

So $\operatorname{det}\left(P_{\tau}\right)=(-1)^{7} \operatorname{det}\left(I_{5}\right)$.

Permutation expansion

Use multilinearity to expand determinant!
Example: $n=3$.
Since

$$
\left(x_{1,1}, x_{1,2}, x_{1,3}\right)=\left(x_{1,1}, 0,0\right)+\left(0, x_{1,2}, 0\right)+\left(0,0, x_{1,3}\right)
$$

we have

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{lll}
x_{1,1} & x_{1,2} & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)= & \operatorname{det}\left(\begin{array}{lll}
x_{1,1} & 0 & 0 \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
& +\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
& +\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) .
\end{aligned}
$$

First expand using

$$
\left(x_{1,1}, x_{1,2}, x_{1,3}\right)=\left(x_{1,1}, 0,0\right)+\left(0, x_{1,2}, 0\right)+\left(0,0, x_{1,3}\right)
$$

Similarly, expand in row 2 using

$$
\begin{gathered}
\left(x_{2,1}, x_{2,2}, x_{2,3}\right)=\left(x_{2,1}, 0,0\right)+\left(0, x_{2,2}, 0\right)+\left(0,0, x_{2,3}\right): \\
\operatorname{det}\left(\begin{array}{lll}
x_{1,1} & x_{1,2} & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
=\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
x_{2,1} & 0 & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & 0 & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
+\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
x_{2,1} & 0 & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
0 & x_{2,2} & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
0 & 0 & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
+\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
x_{2,1} & 0 & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
0 & x_{2,2} & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
0 & 0 & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) .
\end{gathered}
$$

But, for example,

$$
\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
x_{2,1} & 0 & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)=0 \quad \text { because } \mathbf{r}_{2}=0 \text { or } \mathbf{r}_{1}=\frac{x_{1,1}}{x_{2,1}} \mathbf{r}_{2}
$$

Finally, expand each (non-zero) determinant in the third row, using

$$
\begin{aligned}
& \left(x_{3,1}, x_{3,2}, x_{3,3}\right)=\left(x_{3,1}, 0,0\right)+\left(0, x_{3,2}, 0\right)+\left(0,0, x_{3,3}\right): \\
& \operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & 0 \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
& =\underbrace{\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & 0 \\
x_{3,1} & 0 & 0
\end{array}\right)}_{0}+\underbrace{\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & 0 \\
0 & x_{3,2} & 0
\end{array}\right)}_{0}+\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & 0 \\
0 & 0 & x_{3,3}
\end{array}\right)
\end{aligned}
$$

$$
\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & 0 & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)
$$

$$
=\underbrace{\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & 0 & x_{2,3} \\
x_{3,1} & 0 & 0
\end{array}\right)}_{0}+\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & 0 & x_{2,3} \\
0 & x_{3,2} & 0
\end{array}\right)+\underbrace{\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & 0 & x_{2,3} \\
0 & 0 & x_{3,3}
\end{array}\right)}_{0}
$$

Note: In the end, we're only left with terms whose "footprint" is in the shape of a permutation matrix! (Meaning that they're a permutation matrix whose rows have been scaled.)

So

$$
\operatorname{det}\left(\begin{array}{lll}
x_{1,1} & x_{1,2} & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)
$$

$$
=\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & 0 \\
0 & 0 & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & 0 & x_{2,3} \\
0 & x_{3,2} & 0
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
x_{2,1} & 0 & 0 \\
0 & 0 & x_{3,3}
\end{array}\right)
$$

$$
+\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
0 & 0 & x_{2,3} \\
x_{3,1} & 0 & 0
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
x_{2,1} & 0 & 0 \\
0 & x_{3,2} & 0
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
0 & x_{2,2} & 0 \\
x_{3,1} & 0 & 0
\end{array}\right)
$$

$$
=x_{1,1} x_{2,2} x_{3,3} \operatorname{det}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+x_{1,1} x_{2,3} x_{3,2} \operatorname{det}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+x_{1,2} x_{2,1} x_{3,3} \operatorname{det}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
+x_{1,2} x_{2,3} x_{3,1} \operatorname{det}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)+x_{1,3} x_{2,1} x_{3,2} \operatorname{det}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)+x_{1,3} x_{2,2} x_{3,1} \operatorname{det}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right),
$$

using the multilinearity of determinant to pull out coefficients one row at a time.

Rewriting this result in terms of permutations, we have

$$
\operatorname{det}\left(\begin{array}{lll}
x_{1,1} & x_{1,2} & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right)=\sum_{\sigma \in S_{3}} x_{\sigma(1), 1} x_{\sigma(2), 2} x_{\sigma(3), 3} \underbrace{\operatorname{det}\left(P_{\sigma}\right)}_{\operatorname{sgn}(\sigma)} .
$$

Theorem. For $X \in M_{n}$, define

$$
\operatorname{det}(X)=\sum_{\sigma \in S_{n}} x_{\sigma(1), 1} x_{\sigma(2), 2} \ldots x_{\sigma(n), n} \operatorname{sgn}(\sigma)
$$

Then det : $M_{n}(F) \rightarrow F$ is a determinant.
Proof. See Ch. Four, §I.4, Lemma 4.9. Notation: The book writes ι_{j} for \mathbf{e}_{j}.
Caution! We have only justified that if a determinant exists, it must satisfy this formula. To prove that this formula is a determinant (hence showing that determinant is well-defined), you must check that it is normalized, alternating, and multilinear.

You try:

1. Use the permutation expansion to compute the determinants of

$$
\text { (a) } X=\left(\begin{array}{cc}
5 & 2 \\
-1 & 3
\end{array}\right) \quad \text { and } \quad \text { (b) } Y=\left(\begin{array}{ccc}
1 & 0 & 3 \\
5 & 2 & 1 \\
0 & 4 & -1
\end{array}\right)
$$

2. Compare the permutation expansion of $\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to the determinant function we already established for $M_{2}(F)$.
3. Use the formula in the theorem above to compute $\operatorname{det}\left(I_{n}\right)$ (confirm it's equal to 1 as it should be).

Reading the inversions directly off of a permutation matrix:
For each 1, count how many 1's are NE of it, and add up those values.

$$
\begin{array}{ll}
\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right)
\end{array}\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

$$
\begin{aligned}
& \left(\begin{array}{lllll}
0 & 0 & 0 & \boxed{1} & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \\
& 0 \text { inversions }(4, j) \quad 0 \text { inversions }(5, j)
\end{aligned}
$$

Total: $2+3+2+0+0=7$ inversions.

Answer to 1(b)
$\operatorname{det}\left(\begin{array}{ccc}1 & 0 & 3 \\ 5 & 2 & 1 \\ 0 & 4 & -1\end{array}\right)$
$=\operatorname{det}\left(\begin{array}{ccc}\boxed{1} & 0 & 0 \\ 0 & \boxed{2} & 0 \\ 0 & 0 & \boxed{-1}\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}\boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1} \\ 0 & \boxed{4} & 0\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}0 & \boxed{0} & 0 \\ 5 & 0 & 0 \\ 0 & 0 & \boxed{-1}\end{array}\right)$
$+\operatorname{det}\left(\begin{array}{ccc}0 & 0 & 3 \\ 5 & 0 & 0 \\ 0 & \boxed{4} & 0\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}0 & \boxed{0} & 0 \\ 0 & 0 & \boxed{1} \\ 0 & 0 & 0\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}0 & 0 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right)$
$=(1)(2)(-1) \operatorname{det}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)+(1)(4)(1) \operatorname{det}\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)+\underbrace{(5)(0)(-1)}_{0} \operatorname{det}\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
$+(5)(4)(3) \operatorname{det}\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)+\underbrace{(0)(0)(0)}_{0} \operatorname{det}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)+\underbrace{(0)(2)(3)}_{0} \operatorname{det}\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$
$=-2(-1)^{0}+4(-1)^{1}+0+60 *(-1)^{2}+0+0$
$=-2-4+60=54$.

Grouping terms wisely:

$$
\begin{array}{rlr}
\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & x_{1,2} & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
=\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & 0 \\
0 & 0 & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & 0 & x_{2,3} \\
0 & x_{3,2} & 0
\end{array}\right) & =\operatorname{det}\left(\begin{array}{ccc}
x_{1,1} & 0 & 0 \\
0 & x_{2,2} & x_{2,3} \\
0 & x_{3,2} & x_{3,3}
\end{array}\right) \\
+\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
x_{2,1} & 0 & 0 \\
0 & 0 & x_{3,3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
x_{2,1} & 0 & 0 \\
0 & x_{3,2} & 0
\end{array}\right) & +\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & x_{1,3} \\
x_{2,1} & 0 & 0 \\
0 & x_{3,2} & x_{3,3}
\end{array}\right) \\
+\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & 0 \\
0 & 0 & x_{2,3} \\
x_{3,1} & 0 & 0
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
0 & 0 & x_{1,3} \\
0 & x_{2,2} & 0 \\
x_{3,1} & 0 & 0
\end{array}\right) & +\operatorname{det}\left(\begin{array}{ccc}
0 & x_{1,2} & x_{1,3} \\
0 & x_{2,2} & 2,3 \\
x_{3,1} & 0 & 0
\end{array}\right) \\
=x_{1,1} x_{2,2} x_{3,3} & - & x_{1,1} x_{3,2} x_{2,3} \\
& -x_{2,1} x_{1,2} x_{3,3} & + \\
\quad+x_{2,1} x_{3,2} x_{1,3} & & =x_{1,1}\left(x_{2,2} x_{3,3}-x_{3,2} x_{2,3}\right) \\
& +x_{3,1} x_{1,2} x_{2,3} & - \\
x_{3,1} x_{2,2} x_{1,3} & & -x_{2,1}\left(x_{1,2} x_{3,3}-x_{3,2} x_{1,3}\right) \\
& +x_{3,1}\left(x_{1,2} x_{2,3}-x_{2,2} x_{1,3}\right)
\end{array}
$$

The (k, ℓ)-submatrix of a matrix $X \in M_{n}(F)$ is the matrix $\operatorname{Sub}_{k, \ell}(X)$ gotten by deleting the k th row and ℓ th column from X. For example, taking $X \in M_{3}(F)$ above, we have
$\operatorname{Sub}_{1,1}(X)=\left(\begin{array}{ll}x_{2,2} & x_{2,3} \\ x_{3,2} & x_{3,3}\end{array}\right) \quad \operatorname{Sub}_{2,1}(X)=\left(\begin{array}{ll}x_{1,2} & x_{1,3} \\ x_{3,2} & x_{3,3}\end{array}\right) \quad \operatorname{Sub}_{3,1}(X)=\left(\begin{array}{ll}x_{1,2} & x_{1,3} \\ x_{2,2} & x_{2,3}\end{array}\right)$.

The (k, ℓ)-submatrix of a matrix $X \in M_{n}(F)$ is the matrix $\operatorname{Sub}_{k, \ell}(X)$ gotten by deleting the k th row and ℓ th column from X. For example, taking $X \in M_{3}(F)$ above, we have
$\operatorname{Sub}_{1,1}(X)=\left(\begin{array}{ll}x_{2,2} & x_{2,3} \\ x_{3,2} & x_{3,3}\end{array}\right) \quad \operatorname{Sub}_{2,1}(X)=\left(\begin{array}{ll}x_{1,2} & x_{1,3} \\ x_{3,2} & x_{3,3}\end{array}\right) \quad \operatorname{Sub}_{3,1}(X)=\left(\begin{array}{ll}x_{1,2} & x_{1,3} \\ x_{2,2} & x_{2,3}\end{array}\right)$.
Then

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{lll}
x_{1,1} & x_{1,2} & x_{1,3} \\
x_{2,1} & x_{2,2} & x_{2,3} \\
x_{3,1} & x_{3,2} & x_{3,3}
\end{array}\right) \\
& \quad= x_{1,1} \operatorname{det}\left(\operatorname{Sub}_{1,1}(X)\right)-x_{2,1} \operatorname{det}\left(\operatorname{Sub}_{2,1}(X)\right)+x_{3,1} \operatorname{det}\left(\operatorname{Sub}_{3,1}(X)\right)
\end{aligned}
$$

We call $(-1)^{k+\ell} \operatorname{det}\left(\operatorname{Sub}_{k, \ell}(X)\right)$ the cofactor of entry (k, ℓ).
Theorem. (Laplace's cofactor expansion) For any fixed $1 \leq k \leq n$, we have

$$
\left.\operatorname{det}(X)=\sum_{\ell=1}^{n}(-1)^{k+\ell} X_{k, \ell} \operatorname{det}\left(\operatorname{Sub}_{k, \ell}(X)\right) ; \quad \text { (fixed row } k\right)
$$

and for any fixed $1 \leq \ell \leq n$, we have

$$
\left.\operatorname{det}(X)=\sum_{\ell=1}^{n}(-1)^{k+\ell} X_{k, \ell} \operatorname{det}\left(\operatorname{Sub}_{k, \ell}(X)\right) . \quad \text { (fixed column } \ell\right)
$$

Remark: Think of this theorem like a recursive way to reduce determinant calculations. See: Chapter Four, Section III. 1 for examples.

