
Lecture 18:
More determinants!
Permutation expansion
Laplace’s cofactor expansion

Big takeaways from the worksheet:

If a determinant det : Mn(F ) ! F exists. . .

I det(X) = 0 if and only if X is singular (non-invertible);

I det is multiplicative (meaning that det(XY ) = det(X) det(Y ));

I det(Xt) = det(X).

(You may take these as theorems now, whose proofs are outlined in the
Lecture 17 worksheet.)

The main obstruction to a determinant existing is if two sequences of row
operations accidentally give us di↵erent results.

Goal: Find a closed formula for determinant using multilinearity, and then
show that formula defines a determinant. (Check that the formula itself is
normalized, alternating, and multilinear.)



A permutation is just another word for a bijective function (usually on a finite
set), but thought of a little di↵erently. Let [n] denote the set {1, 2, . . . }. Let

Sn =
�
� : [n] ! [n]

�� � is bijective
 

be the set of permutations of [n]. For example, the permutations of [2] are

id =

1

1

2

2

meaning
id(1) = 1,
id(2) = 2;

and � =

1

1

2

2

meaning
�(1) = 2,
�(2) = 1.

The permutations of [3] are
1
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3
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1
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3

,

1
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3

3

,
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3
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1
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3

, and

1

1

2

2

3

3

.

We call this pictures of permutations permutation diagrams.

[Note: I went to a little trouble to make sure all the arrows didn’t cross at the
same point in that last permutation: versus .

This is a useful precaution in times to come.]

Sign of a permutation
The sign of a permutation � 2 Sn is

sgn(�) = (�1)#{crossings} = (�1)#{inversions}

where � is drawn with at most two edges crossing at any point.

For example, if n = 5:
1

1

2

2

3

3

4

4

5

5

# intersections: 0
sgn(id) = (�1)0 = 1

id =

1

1

2

2

3

3

4

4

5

5

# intersections: 1
sgn(�) = (�1)1 = �1

� =

1

1

2

2

3

3

4

4

5

5

# intersections: 7
sgn(⌧) = (�1)7 = �1

⌧ =

The crossings in a diagram of a permutation � 2 Sn are really just detecting
inversion pairs:

(i, j) such that i < j but �(i) > �(j).

For example, in ⌧ above, the inversion pairs are

(1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), and (3, 5).

[To find inversions (i, j), look for the arrows j ! ⌧(j) that cross i ! ⌧(i) from SE to NW.]



Permutation matrices
For a permutation � 2 Sn, we define the permutation matrix P� as the
linear extension of the map

ei 7! e�(i); i.e. P�ei = e�(i).

Namely, the ith column of P� is e�(i).

Example: If n = 5 and

1

1

2

2

3

3

4

4

5

5

⌧ = , then P⌧ =

0

BBBB@

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

1

CCCCA
.

Lemma. The permutation matrices are those matrices with exactly one 1 in
each row and in each column, and 0’s elsewhere.

Proof. The columns of a permutation matrix are elementary basis vectors; and since
a permutation is bijective, each basis vector appears in exactly one column. This
observation exactly coincides with the statement of this Lemma.

Ex. In M2(F ), the permutation matrices are
✓
1 0
0 1

◆
= I2 and

✓
0 1
1 0

◆
= P1,2.

Permutation matrices
For a permutation � 2 Sn, we define the permutation matrix P� as the
linear extension of the map

ei 7! e�(i); i.e. P�ei = e�(i).

Namely, the ith column of P� is e�(i).

Example: If n = 5 and

1
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4
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5

⌧ = , then P⌧ =

0

BBBB@

0

0 0 1 0

0

0 0 0 1

1

0 0 0 0

0

0 1 0 0

0

1 0 0 0

1

CCCCA
.

Lemma. The permutation matrices are those matrices with exactly one 1 in
each row and in each column, and 0’s elsewhere.

Proof. The columns of a permutation matrix are elementary basis vectors; and since
a permutation is bijective, each basis vector appears in exactly one column. This
observation exactly coincides with the statement of this Lemma.

Ex. In M2(F ), the permutation matrices are
✓
1 0
0 1

◆
= I2 and

✓
0 1
1 0

◆
= P1,2.

Permutation matrices
For a permutation � 2 Sn, we define the permutation matrix P� as the
linear extension of the map

ei 7! e�(i); i.e. P�ei = e�(i).

Namely, the ith column of P� is e�(i).

Example: If n = 5 and

1
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4
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5
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⌧ = , then P⌧ =

0

BBBB@

0 0

0 1 0

0 0

0 0 1

1 0

0 0 0

0 0

1 0 0

0 1

0 0 0

1

CCCCA
.

Lemma. The permutation matrices are those matrices with exactly one 1 in
each row and in each column, and 0’s elsewhere.

Proof. The columns of a permutation matrix are elementary basis vectors; and since
a permutation is bijective, each basis vector appears in exactly one column. This
observation exactly coincides with the statement of this Lemma.

Ex. In M2(F ), the permutation matrices are
✓
1 0
0 1

◆
= I2 and

✓
0 1
1 0

◆
= P1,2.

Permutation matrices
For a permutation � 2 Sn, we define the permutation matrix P� as the
linear extension of the map

ei 7! e�(i); i.e. P�ei = e�(i).

Namely, the ith column of P� is e�(i).

Example: If n = 5 and
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⌧ = , then P⌧ =

0

BBBB@

0 0 0

1 0

0 0 0

0 1

1 0 0

0 0

0 0 1

0 0

0 1 0

0 0

1

CCCCA
.

Lemma. The permutation matrices are those matrices with exactly one 1 in
each row and in each column, and 0’s elsewhere.

Proof. The columns of a permutation matrix are elementary basis vectors; and since
a permutation is bijective, each basis vector appears in exactly one column. This
observation exactly coincides with the statement of this Lemma.

Ex. In M2(F ), the permutation matrices are
✓
1 0
0 1

◆
= I2 and

✓
0 1
1 0

◆
= P1,2.

Permutation matrices
For a permutation � 2 Sn, we define the permutation matrix P� as the
linear extension of the map

ei 7! e�(i); i.e. P�ei = e�(i).

Namely, the ith column of P� is e�(i).

Example: If n = 5 and
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⌧ = , then P⌧ =

0

BBBB@

0 0 0 1

0

0 0 0 0

1

1 0 0 0

0

0 0 1 0

0

0 1 0 0

0

1

CCCCA
.

Lemma. The permutation matrices are those matrices with exactly one 1 in
each row and in each column, and 0’s elsewhere.

Proof. The columns of a permutation matrix are elementary basis vectors; and since
a permutation is bijective, each basis vector appears in exactly one column. This
observation exactly coincides with the statement of this Lemma.

Ex. In M2(F ), the permutation matrices are
✓
1 0
0 1

◆
= I2 and

✓
0 1
1 0

◆
= P1,2.



For a permutation � 2 Sn, we define the permutation matrix P� as the linear
extension of the map

ei 7! e�(i); i.e. P�ei = e�(i).

Namely, the ith column of P� is e�(i).

Lemma. The permutation matrices are those matrices with exactly one 1 in
each row and in each column, and 0’s elsewhere.

Ex. In M2(F ), the permutation matrices are
✓
1 0
0 1

◆
= I2 and

✓
0 1
1 0

◆
= P1,2.

Ex. In M3(F ), the permutation matrices are
0

@
1 0 0
0 1 0
0 0 1

1

A = I3,

0

@
0 1 0
1 0 0
0 0 1

1

A = P1,2,

0

@
1 0 0
0 0 1
0 1 0

1

A = P2,3,

0

@
0 0 1
1 0 0
0 1 0

1

A,

0

@
0 1 0
0 0 1
1 0 0

1

A, and

0

@
0 0 1
0 1 0
1 0 0

1

A = P1,3,

(Compare to the six permutations of [3] = {1, 2, 3}.)

Lemma. det(P�) = sgn(�).
Proof-ish. To row-reduce P� to In, put pivots where they belong from left-to-right, by a

sequence of adjacent rows swapst. (First find the row that has e1 in it, and move it up one

row at a time until it’s at the top; then find the row that has e2 and move it up one row at

a time until it’s at the top, . . . ). Each step “removes” one inversion, and toggles the

determinant by a multiple of �1.

Lemma. For any � 2 Sn, det(P�) = sgn(�).

P⌧ =

0

BBBB@

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

1

CCCCA

r2$r37�����!

0

BBBB@

0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

1

CCCCA

r1$r27�����!

0

BBBB@

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

1

CCCCA

1

1

2

2

3

3

4

4

5

5

1

1
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3
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4
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1

1
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4

4

5

5

r4$r57�����!

0

BBBB@

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

1

CCCCA

r3$r47�����!

0

BBBB@

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

1

CCCCA

r2$r37�����!

0

BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

1

CCCCA

1

1

2

2

3

3

4

4
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5

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

r4$r57�����!

0

BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

1

CCCCA

r3$r47�����!

0

BBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

CCCCA
(�1)7 det(P⌧ ) = det(I5)

1

1

2

2

3

3

4

4

5

5

1

1

2
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3
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5

So det(P⌧ ) = (�1)7 det(I5).



Permutation expansion
Use multilinearity to expand determinant!

Example: n = 3.
Since

(x1,1, x1,2, x1,3) = (x1,1, 0, 0) + (0, x1,2, 0) + (0, 0, x1,3),

we have

det

0

@
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A = det

0

@
x1,1 0 0
x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A

+ det

0

@
0 x1,2 0

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A

+ det

0

@
0 0 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A.

First expand using

(x1,1, x1,2, x1,3) = (x1,1, 0, 0) + (0, x1,2, 0) + (0, 0, x1,3).

Similarly, expand in row 2 using

(x2,1, x2,2, x2,3) = (x2,1, 0, 0) + (0, x2,2, 0) + (0, 0, x2,3):

det

0

@
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A

= det

0

@
x1,1 0 0
x2,1 0 0
x3,1 x3,2 x3,3

1

A+ det

0

@
x1,1 0 0
0 x2,2 0

x3,1 x3,2 x3,3

1

A+ det

0

@
x1,1 0 0
0 0 x2,3

x3,1 x3,2 x3,3

1

A

+ det

0

@
0 x1,2 0

x2,1 0 0
x3,1 x3,2 x3,3

1

A+ det

0

@
0 x1,2 0
0 x2,2 0

x3,1 x3,2 x3,3

1

A+ det

0

@
0 x1,2 0
0 0 x2,3

x3,1 x3,2 x3,3

1

A

+ det

0

@
0 0 x1,3

x2,1 0 0
x3,1 x3,2 x3,3

1

A+ det

0

@
0 0 x1,3

0 x2,2 0
x3,1 x3,2 x3,3

1

A+ det

0

@
0 0 x1,3

0 0 x2,3

x3,1 x3,2 x3,3

1

A.

But, for example,

det

0

@
x1,1 0 0
x2,1 0 0
x3,1 x3,2 x3,3

1

A = 0 because r2 = 0 or r1 = x1,1

x2,1
r2.



Finally, expand each (non-zero) determinant in the third row, using

(x3,1, x3,2, x3,3) = (x3,1, 0, 0) + (0, x3,2, 0) + (0, 0, x3,3) :

det

0

@
x1,1 0 0
0 x2,2 0

x3,1 x3,2 x3,3

1

A

= det

0

@
x1,1 0 0
0 x2,2 0

x3,1 0 0

1

A

| {z }
0

+det

0

@
x1,1 0 0
0 x2,2 0
0 x3,2 0

1

A

| {z }
0

+det

0

@
x1,1 0 0
0 x2,2 0
0 0 x3,3

1

A

det

0

@
x1,1 0 0
0 0 x2,3

x3,1 x3,2 x3,3

1

A

=

0

@
x1,1 0 0
0 0 x2,3

x3,1 0 0

1

A

| {z }
0

+

0

@
x1,1 0 0
0 0 x2,3

0 x3,2 0

1

A+

0

@
x1,1 0 0
0 0 x2,3

0 0 x3,3

1

A

| {z }
0

Note: In the end, we’re only left with terms whose “footprint” is in the shape
of a permutation matrix! (Meaning that they’re a permutation matrix whose
rows have been scaled.)

So

det

0

@
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A

= det

0

@
x1,1 0 0
0 x2,2 0
0 0 x3,3

1

A+ det

0

@
x1,1 0 0
0 0 x2,3

0 x3,2 0

1

A+ det

0

@
0 x1,2 0

x2,1 0 0
0 0 x3,3

1

A

+ det

0

@
0 x1,2 0
0 0 x2,3

x3,1 0 0

1

A+ det

0

@
0 0 x1,3

x2,1 0 0
0 x3,2 0

1

A+ det

0

@
0 0 x1,3

0 x2,2 0
x3,1 0 0

1

A

= x1,1x2,2x3,3det

0

@
1 0 0
0 1 0
0 0 1

1

A + x1,1x2,3x3,2det

0

@
1 0 0
0 0 1
0 1 0

1

A + x1,2x2,1x3,3det

0

@
0 1 0
1 0 0
0 0 1

1

A

+ x1,2x2,3x3,1det

0

@
0 1 0
0 0 1
1 0 0

1

A + x1,3x2,1x3,2det

0

@
0 0 1
1 0 0
0 1 0

1

A + x1,3x2,2x3,1det

0

@
0 0 1
0 1 0
1 0 0

1

A,

using the multilinearity of determinant to pull out coe�cients one row at a time.

Rewriting this result in terms of permutations, we have

det

0

@
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A =
X

�2S3

x�(1),1x�(2),2x�(3),3 det(P�)| {z }
sgn(�)

.



Theorem. For X 2 Mn, define

det(X) =
X

�2Sn

x�(1),1x�(2),2 . . . x�(n),nsgn(�)

Then det : Mn(F ) ! F is a determinant.

Proof. See Ch. Four, §I.4, Lemma 4.9. Notation: The book writes ◆j for ej .

Caution! We have only justified that if a determinant exists, it must satisfy this formula. To

prove that this formula is a determinant (hence showing that determinant is well-defined),

you must check that it is normalized, alternating, and multilinear.

You try:

1. Use the permutation expansion to compute the determinants of

(a) X =

✓
5 2
�1 3

◆
and (b) Y =

0

@
1 0 3
5 2 1
0 4 �1

1

A .

2. Compare the permutation expansion of det
✓
a b
c d

◆
to the determinant

function we already established for M2(F ).

3. Use the formula in the theorem above to compute det(In) (confirm it’s
equal to 1 as it should be).



Reading the inversions directly o↵ of a permutation matrix:

For each 1, count how many 1’s are NE of it, and add up those values.

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

0

BBBB@

1

CCCCA

2 inversions (1, j)

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

0

BBBB@

1

CCCCA

3 inversions (2, j)

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 0 0

0

BBBB@

1

CCCCA

2 inversions (3, j)

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0

BBBBBB@

1

CCCCCCA

0 inversions (4, j)

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0

BBBBBB@

1

CCCCCCA

0 inversions (5, j)

Total: 2 + 3 + 2 + 0 + 0 = 7 inversions.

Answer to 1(b)

det

0

@
1 0 3
5 2 1
0 4 91

1

A

= det

0

@
1 0 0
0 2 0
0 0 91

1

A+ det

0

@
1 0 0
0 0 1
0 4 0

1

A+ det

0

@
0 0 0
5 0 0
0 0 91

1

A

+ det

0

@
0 0 3
5 0 0
0 4 0

1

A+ det

0

@
0 0 0
0 0 1
0 0 0

1

A+ det

0

@
0 0 3
0 2 0
0 0 0

1

A

= (1)(2)(91)det
0

@
1 0 0
0 1 0
0 0 1

1

A+ (1)(4)(1)det

0

@
1 0 0
0 0 1
0 1 0

1

A+ (5)(0)(91)| {z }
0

det

0

@
0 1 0
1 0 0
0 0 1

1

A

+ (5)(4)(3)det

0

@
0 0 1
1 0 0
0 1 0

1

A+ (0)(0)(0)| {z }
0

det

0

@
0 1 0
0 0 1
1 0 0

1

A+ (0)(2)(3)| {z }
0

det

0

@
0 0 1
0 1 0
1 0 0

1

A

= �2(�1)0 + 4(�1)1 + 0 + 60 ⇤ (�1)2 + 0 + 0

= �2� 4 + 60 = 54.



Grouping terms wisely:

det

0

@
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A

= det

0

@
x1,1 0 0
0 x2,2 0
0 0 x3,3

1

A+ det

0

@
x1,1 0 0
0 0 x2,3

0 x3,2 0

1

A = det

0

@
x1,1 0 0
0 x2,2 x2,3

0 x3,2 x3,3

1

A

+ det

0

@
0 x1,2 0

x2,1 0 0
0 0 x3,3

1

A+ det

0

@
0 0 x1,3

x2,1 0 0
0 x3,2 0

1

A + det

0

@
0 x1,2 x1,3

x2,1 0 0
0 x3,2 x3,3

1

A

+ det

0

@
0 x1,2 0
0 0 x2,3

x3,1 0 0

1

A+ det

0

@
0 0 x1,3

0 x2,2 0
x3,1 0 0

1

A + det

0

@
0 x1,2 x1,3

0 x2,2 2, 3
x3,1 0 0

1

A

= x1,1x2,2x3,3 � x1,1x3,2x2,3 = x1,1(x2,2x3,3 � x3,2x2,3)

� x2,1x1,2x3,3 + x2,1x3,2x1,3 � x2,1(x1,2x3,3 � x3,2x1,3)

+ x3,1x1,2x2,3 � x3,1x2,2x1,3 + x3,1(x1,2x2,3 � x2,2x1,3)

The (k, `)-submatrix of a matrix X 2 Mn(F ) is the matrix Subk,`(X) gotten by
deleting the kth row and `th column from X. For example, taking X 2 M3(F )
above, we have

Sub1,1(X) =

✓
x2,2 x2,3

x3,2 x3,3

◆
Sub2,1(X) =

✓
x1,2 x1,3

x3,2 x3,3

◆
Sub3,1(X) =

✓
x1,2 x1,3

x2,2 x2,3

◆
.

The (k, `)-submatrix of a matrix X 2 Mn(F ) is the matrix Subk,`(X) gotten
by deleting the kth row and `th column from X.
For example, taking X 2 M3(F ) above, we have

Sub1,1(X) =

✓
x2,2 x2,3

x3,2 x3,3

◆
Sub2,1(X) =

✓
x1,2 x1,3

x3,2 x3,3

◆
Sub3,1(X) =

✓
x1,2 x1,3

x2,2 x2,3

◆
.

Then

det

0

@
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

1

A

= x1,1det(Sub1,1(X))� x2,1det(Sub2,1(X)) + x3,1det(Sub3,1(X))

We call (�1)k+` det(Subk,`(X)) the cofactor of entry (k, `).

Theorem. (Laplace’s cofactor expansion) For any fixed 1  k  n, we have

det(X) =
nX

`=1

(�1)k+`Xk,` det(Subk,`(X)); (fixed row k)

and for any fixed 1  `  n, we have

det(X) =
nX

`=1

(�1)k+`Xk,` det(Subk,`(X)). (fixed column `)

Remark: Think of this theorem like a recursive way to reduce determinant
calculations. See: Chapter Four, Section III.1 for examples.


