
LECTURE 17 WORKSHEET: DETERMINANTS

Instructions. Work in groups of 2–4. Appoint a scribe to begin filling in the main packet as you work
together; trade off scribes every 20-ish minutes. Hand in whatever you have done at the end of class.

Review

For a function f : Mn(F ) → F , we can write f as a multivariable function f(X) = f(r1(X), . . . , rn(X)),
where r1(X), . . . , rn(X) are the row vectors of X.

Definition 1. A determinant is a function det : Mn(F ) → F that satisfies the following.

(i) Normalized. det(In) = det(e1, . . . , en) = 1.

(ii) Alternating. Swapping any two rows toggles the sign of the function:

det(. . . , ri, . . . , rj , . . . ) = −det(. . . , rj , . . . , ri, . . . ).

(iii) Multilinear. The determinant is a linear function with respect to every row (individually): for each
i = 1, . . . , n, we have

det(r1, . . . , ri−1, ri + λ r′i, ri+1, . . . , rn) = det(r1, . . . , ri−1, ri, ri+1, . . . , rn)

+ λ det(r1, . . . , ri−1, r
′
i, ri+1, . . . , rn).

For example, we saw for n = 2 that

det : M2(F ) → F defined by

(
a b
c d

)
7→ ad− bc (∗)

defines a determinant for 2× 2 matrices.

Recall that the elementary row operation matrices in Mn(F ) are

scaling: Si(λ) = λEi,i +
∑
j ̸=i

Ej,j ; permutation: Pi,j = Ei,j + Ej,i +
∑
r ̸=i,j

Er,r;

and combination: Ci,j(λ) = λEj,i + In.

Lemma 2. Let det : Mn(F ) → F be a determinant, and let X ∈ Mn.

(a) We have

det(Si(λ)X) = λ det(X), det(Pi,jX) = −det(X), and det(Ci,j(λ)X) = det(X).

(b) If ri(X) = 0 for some i, then det(X) = 0.

(c) If ri(X) = rj(X) for some i ̸= j, then det(X) = 0.

Theorem 3.

(a) If a determinant det : Mn(F ) → F exists, then it is unique. (In other words, if f : Mn(F ) → F
satisfies Definition 1, we must have f = det.)

(b) If det : Mn(F ) → F is a determinant, then for any X ∈ Mn(F ), we have det(X) = 0 if and only if X
is singular (non-invertible).
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You try

1. Warm up. Find two different ways to row reduce X =

(
1 3
5 −20

)
(two different sequences of steps—

aim for something signifigantly different). Use both to compute det(X), and check that you get the
same answer. Then check that your answer agrees with Equation (∗).

2. Playing with the defining axioms of determinant.

(a) Take a moment to summarize why Theorem 3(a) and (b) both follow from Lemma 2.

(b) Prove that, assuming multilinearity, the condition in Lemma 2(c) is equivalent to the alternating
property.

(A little more. In class, we showed that the alternating property of determinants implies Lemma 2(c).

Conversely, prove that if f : Mn(F ) → F instead satisfies multilinearity and the property in Lemma 2(c) (if

any two rows are equal then the determinant is 0), then f is alternating.)

3. Determinants are multiplicative. Our goal in this problem is to show that if a determinant det :
Mn(F ) → F exists, then it is multiplicative; i.e.

Claim: det(XY ) = det(X) det(Y ) for all X,Y ∈ Mn(F ).

We will do this in two cases: when det(Y ) ̸= 0 and when det(Y ) = 0.

Case 1: det(Y ) ̸= 0.

Fix some Y ∈ Mn(F ) such that det(Y ) ̸= 0. Let

DY : Mn(F ) −→ F defined by DY (X) = det(XY )/ det(Y ).

You will prove that DY (X) = det(X) by showing that DY is also a determinant (by Thm. 3(a)).

Caution! You do not know what function det is: if I gave you a matrix and asked you to compute
det, you don’t have a closed formula for that yet. In the following exercises, the only things you
know about det is what you’re told in Definition 1. Just rely on those properties, Lemma 2, and/or
Theorem 3 applied to det (but not to DY —you don’t yet know that DY is a determinant).

(a) Compute DY (In).

(b) Prove that if ri(X) = rj(X), then ri(XY ) = rj(XY ), and use this to argue that DY (X) = 0.
Conclude that DY is alternating. (For the first part, once you know ri(XY ) = rj(XY ), you can

use Lemma 2 to say something useful about det(XY ). For the last part, use Problem 2b.)

(c) Prove that DY is multilinear on rows. That is, show that DY satisfies

DY (r1, . . . , ri + λ · r′i, . . . , rn) = DY (r1, . . . , ri, . . . , rn) + λDY (r1, . . . , r
′
i, . . . , rn)

for all r1, . . . , rn, r
′
i ∈ Fn and any λ ∈ F .

Hint. Some suggested notation to help in your proof: Let

X be the matrix with rows r1, . . . , ri, . . . , rn;

X ′ be the matrix with rows r1, . . . , r
′
i, . . . , rn; and

Z be the matrix with rows r1, . . . , ri + λr′i, . . . , rn.

Let c1, . . . , cn denote the columns of Y . Then (XY )s,t = rs · ct; i.e. the s, t-entry of XY is the
dot product of the s-th row of X with the t-th column of Y . You will need compare the rows of
XY , X ′Y and ZY in order to prove that

det(XY )

det(Y )
+ λ

det(X ′Y )

det(Y )
=

det(ZY )

det(Y )
.
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(d) Deduce that for all X, we have that DY (X) = det(X). Use this to show that det(XY ) =
det(X) det(Y ). (Use Theorem 3(a) for the first part.)

Case 2: det(Y ) = 0.

Let Y ∈ Mn(F ) satisfy det(Y ) = 0. Prove that det(XY ) = det(X) det(Y ).

(Hint: We have basically done this already. Explain why det(Y ) = 0 if and only if rank(Y ) < n (See Theorem

3(b)); and then consider rank(XY ).)

4. Transpose. Assume a determinant det : Mn(F ) → F exists.

(a) Recall that matrix inversion reverses the order of multiplication: for any invertible X,Y ∈ Mn(F ),
we have (XY )−1 = Y −1X−1. We aim to prove a similar result for transpose: for X ∈ Mk,ℓ(F ) and
Y ∈ Mℓ,n(F ), we have

(XY )t = Y tXt.

(i) Compute (XY )t and Y tXt for

X =

(
1 2 0
−1 0 3

)
and Y =

4
0
1

 ,

and compare. (Compute XY and take the transpose; then compute Y t and Xt and multiply.)

(ii) Prove using direct computation that (XY )t = Y tXt for any X ∈ Mk,ℓ(F ) and Y ∈ Mℓ,n(F ).
(Hint: If the rows and columns of X are ri(X) and ci(X), respectively, what are the rows and columns

of Xt? Compute the (i, j)-entry of XtY t and of (XY )t and compare.)

(b) Use the previous problem to show that for any invertible X ∈ Mn(F ), we have

(X−1)t = (Xt)−1.

(Multiply (X−1)t by Xt and use the previous problem.)

(c) Check that for each of the elementary row operation matrices R ∈ Mn(F ), we have det(R) =
det(Rt) by row reducing Rt to the identity.

(d) Show that for X ∈ Mn(F ), we have det(Xt) = det(X).
(There is a sequence of elementary row operation matrices R1, . . . , Rℓ such that Rℓ · · ·R1X = E, where E is

in reduced row echelon form. Then (1) compute det(X) in terms of the det(Ri)’s and det(E) (which is either

0 or 1 depending on whether or not X has full rank); and (2) compute det(Xt) by taking the transpose of

Rℓ · · ·R1X = E and then repeating (1). Reminder: for any matrix Y , rank(Y ) = rank(Y t). . . why?)


