Warmup:

- 1. Let $X=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for some $a,b,c,d\in F.$
 - (a) Row reduce $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$ to compute X^{-1} for a general 2×2 matrix. Keep track of when you might be accidentally dividing by 0.
 - (b) What does it mean if you can't row reduce (X|I) without dividing by 0? Illustrate with an example.
- 2. Let $X,Y\in M_\ell(F)$. We say Y is **similar** or **conjugate** to X, written $Y\sim X$, if $Y=PXP^{-1}$ for some invertible $P\in M_\ell(F)$. (i.e. Y represents the same linear function as X, just with respect to a different ordered basis—see below for review of context for this problem.)
 - (a) Prove that \sim defined an equivalence relation on $M_{\ell}(F)$.
 - (b) What is the equivalence class of I_{ℓ} (with respect to this relation)?
 - (c) Show that if $Y \sim X$, then $Y^k \sim X^k$. [More specifically, that the same change of basis that moves you from X to Y will also move you from X^k to Y^k .]
 - (d) For $Y \sim X$ and $Y' \sim X'$, is it true that $XX' \sim YY'$?

Context for Problem 2:

Last time, we saw that, in $M_{\ell}(F)$,

{ invertible matrices } is the same as { change of basis matrices }.

Specifically, let V be a vector space over F, and let \mathcal{A} and \mathcal{B} be ordered bases of V. Then $\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(\operatorname{id}) = (\operatorname{Rep}_{\mathcal{B}}^{\mathcal{A}}(\operatorname{id}))^{-1}$, so that change of basis matrices are all invertible. Conversely, the columns of any invertible matrix is a basis of the corresponding space, so can be viewed as a change of basis matrix. And since

$$\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(f) = \operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(\operatorname{id})\operatorname{Rep}_{\mathcal{A}}^{\mathcal{A}}(f)(\operatorname{Rep}_{\mathcal{B}}^{\mathcal{A}}(\operatorname{id}))^{-1}$$

matrix **conjugation** is the same as changing basis (two matrices represent the same function w.r.t. different bases exactly when they are conjugate).

- 1. Let $X=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ for some $a,b,c,d\in F.$
- (a) Compute X^{-1} :

$$\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$$

(b) What does it mean if you can't row reduce (X|I) without dividing by 0?

2. (a) "Similarity" defines an equivalence relation on the set $M_{\ell}(F)$:

$$Y \sim X$$
 whenever $Y = PXP^{-1}$

for some invertible $P \in M_{\ell}(F)$:

- Reflexive: If $X \in M_{\ell}(F)$, then...
- Symmetric: If $X,Y\in M_\ell(F)$ satisfy $X\sim Y$, then...
- Transitive: If $X,Y,Z\in M_\ell(F)$ satisfy $X\sim Y$ and $Y\sim Z$, then...
- (b) If $Y \sim I_{\ell}$, then for some invertible $P \in M_{\ell}(F)$, we have $Y = PI_{\ell}P^{-1} =$

Determinants

The **determinant**, $\det: M_n(F) \to F$, is one *extremely* important statistic about square matrices.

- Geometrically, it will measure the volume of a polygon generated by the rows of a matrix.
- Algebraically, it will satisfy lots of nice algebraic properties, and will determine whether a matrix is invertible or not for us.

We will also see that it is independent of change of basis, and is therefore *actually* a statistic pertaining to the underlying linear function. We begin by defining it by its desirable properties, and then show that these properties uniquely identify the function.

Example: Define

$$\det: M_2(\mathbb{R}) \to \mathbb{R}$$
 by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto ad - bc$.

We saw that X is invertible if and only if $det(X) \neq 0$.

Some other properties:

▶ The parallelogram P with corners (0,0), (a,b), (c,d), and (a,b)+(c,d) has area $\left|\det\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right|$:

Area
$$(P) = (a + c)(b + d) - 2(bc) - (cd) - (ab)$$

= $ad - bc$.

- ▶ Normalized: $\det(I_2) = \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \cdot 1 0 \cdot 0 = 1.$
- Multiplicative:

$$\det(XY) = \det\begin{pmatrix} \binom{a}{c} & \binom{b}{c'} & \binom{a'}{c'} \end{pmatrix} = \det\begin{pmatrix} \binom{aa'}{c} + \binom{bc'}{ca'} & \binom{ab'}{c} + \binom{bd'}{ca'} \\ = (aa' + bc')(cb' + dd') - (ab' + bd')(ca' + dc') \\ = \cdots = (ad - bc)(a'd' - b'c') = \det(X)\det(Y).$$

Example: Define

$$\det: M_2(\mathbb{R}) \to \mathbb{R}$$
 by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto ad - bc$.

We saw that X is invertible if and only if $det(X) \neq 0$.

Some other properties:

Alternating:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \xrightarrow{\mathbf{row}_1 \leftrightarrow \mathbf{row}_2} \begin{pmatrix} c & d \\ a & b \end{pmatrix}$$
$$\det(X) = ad - bc \qquad \det(P_{1,2}X) = bc - ad$$
$$= -\det(X)$$

[Check via multiplicativity: $\det(P_{1,2}) = \det\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -1$. \checkmark]

► Multilinear, i.e. linear row-by-row:

$$\det\begin{pmatrix} \lambda a & \lambda b \\ c & d \end{pmatrix} = (\lambda a)d - (\lambda b)c = \lambda(ad - bc)$$

[Check via multiplicativity: $\det(S_1(\lambda)) = \det\begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} = \lambda$. \checkmark]

 $+\lambda \det(\mathbf{r}_1,\ldots,\mathbf{r}_{i-1},\mathbf{s}_i,\mathbf{r}_{i+1},\ldots,\mathbf{r}_n).$

$$\det \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ c & d \end{pmatrix} = (a_1 + a_2)d - (b_1 + b_2)c$$
$$= (a_1d - b_1c) + (a_2d - b_2c). \text{ (and similar in row 2)}.$$

Generalizing: Think of a function $\det: M_n(F) \to F$ as a multivariable function of the row vectors of a matrix, meaning:

If the matrix X has row vectors $\mathbf{r}_1, \dots, \mathbf{r}_n$, write $\det(X) = \det(\mathbf{r}_1, \dots, \mathbf{r}_n)$.

A "determinant" is any function $\det: M_n(F) \to F$ that satisfies the following:

- (1) Normalized. $det(I_n) = det(\mathbf{e}_1, \dots, \mathbf{e}_n) = 1$.
- (2) **Alternating.** Swapping any two rows toggles the sign of the function: $\det(\ldots, \mathbf{r}_i, \ldots, \mathbf{r}_j, \ldots) = -\det(\ldots, \mathbf{r}_j, \ldots, \mathbf{r}_i, \ldots).$
- (3) **Multilinear.** The determinant is a linear function with respect to every row (individually): for each $i=1,\ldots,n$, we have $\det(\mathbf{r}_1,\ldots,\mathbf{r}_{i-1},\mathbf{r}_i+\lambda\,\mathbf{s}_i,\mathbf{r}_{i+1},\ldots,\mathbf{r}_n)=\det(\mathbf{r}_1,\ldots,\mathbf{r}_{i-1},\mathbf{r}_i,\mathbf{r}_{i+1},\ldots,\mathbf{r}_n)$

Consequences:

- If $\mathbf{r}_i = \mathbf{r}_j$, then by (2), $\det(\dots, \mathbf{r}_i, \dots, \mathbf{r}_i, \dots) = -\det(\dots, \mathbf{r}_i, \dots, \mathbf{r}_i, \dots),$ so $\det(\dots, \mathbf{r}_i, \dots, \mathbf{r}_i, \dots) = 0$.
- If X & Y differ by a row combination, then their determinants are equal: $\det(\dots, \mathbf{r}_i + \lambda \mathbf{r}_j, \dots, \mathbf{r}_j, \dots) = \det(\dots, \mathbf{r}_i, \dots, \mathbf{r}_j, \dots)$
- So if X and Y differ by a sequence of row operations, then $\det(X) = \mu \det(Y)$ for some $0 \neq \mu \in F$.

Let $\det: M_n(F) \to F$ be a determinant, i.e. a function that, as a multivariable function in its row vectors, is normalized, alternating, and multilinear. Then if X and Y differ by a sequence of row operations, we have $\det(X) = \mu \det(Y)$ for some $0 \neq \mu \in F$.

Example.

$$A = \begin{pmatrix} 1 & 3 & 9 & 27 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\mathbf{r}_1 \leftrightarrow \mathbf{r}_4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{\mathbf{r}_3 \mapsto \mathbf{r}_3 - \mathbf{r}_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 8 \\ 0 & 3 & 9 & 27 \end{pmatrix}$$

$$\xrightarrow{\mathbf{r}_4 \mapsto \mathbf{r}_4 - \mathbf{r}_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 8 \\ 0 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{\mathbf{r}_3 \mapsto \mathbf{r}_3 - 2\mathbf{r}_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 6 \\ 0 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{\mathbf{r}_4 \mapsto \mathbf{r}_4 - 3\mathbf{r}_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 6 \\ 0 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{\mathbf{r}_4 \mapsto \mathbf{r}_4 - 3\mathbf{r}_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 6 & 24 \end{pmatrix}$$

$$\xrightarrow{\mathbf{r}_3 \mapsto \frac{1}{2}\mathbf{r}_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 6 & 24 \end{pmatrix} \xrightarrow{\mathbf{r}_4 \mapsto \frac{1}{6}\mathbf{r}_4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 \end{pmatrix} \xrightarrow{\mathbf{r}_2 \mapsto \mathbf{r}_2 - \mathbf{r}_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

$$\xrightarrow{\mathbf{r}_4 \mapsto \mathbf{r}_4 - \mathbf{r}_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathbf{r}_2 \mapsto \mathbf{r}_2 + 2\mathbf{r}_4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathbf{r}_3 \mapsto \mathbf{r}_3 - 3\mathbf{r}_4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\det : 1 \cdot 1 \cdot 1 \cdot 1 \cdot \frac{1}{6} \cdot \frac{1}{2} \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot (-1) \det(A) = \det(I_4) = 1. \quad \text{So } \det(A) = -12 \right].$$

Examples. Each of the elementary row reduction matrices is one row reduction away from I_{ℓ} , so computing their determinant is simple.

$$P_{i,j} \xrightarrow{\mathbf{r}_i \leftrightarrow \mathbf{r}_j} I_\ell, \quad \text{so}$$

$$\det(P_{i,j}) = -\det(I_\ell) = -1 \quad \text{(because det is alternating)}$$

$$S_i(\lambda) \xrightarrow{\mathbf{r}_i \mapsto \frac{1}{\lambda} \mathbf{r}_i} I_\ell, \quad \text{so}$$

$$\det(S_i(\lambda)) = \lambda \det(I_\ell) = \lambda \quad \text{(because det is multilinear)}$$

$$C_{i,j}(\lambda) \xrightarrow{\mathbf{r}_j \mapsto \mathbf{r}_j - \lambda \mathbf{r}_i} I_\ell, \quad \text{so}$$

$$\det(C_{i,j}(\lambda)) = \det(I_\ell) = 1 \quad \text{(see "consequences")}$$

Example: If

$$X = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ 0 & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_{n,n} \end{pmatrix},$$

then either...

(i) $x_{i,i} = 0$ for some i: then row reducing produces a matrix with at least one row of 0's at the end,

$$X \mapsto \cdots \mapsto E = \begin{pmatrix} & \mathbf{r}_1 & & \\ & \vdots & \\ & \mathbf{r}_{n-1} & & \\ & & \mathbf{0} & \end{pmatrix}.$$

Then
$$\det(E) = \det(\mathbf{r}_1, \dots, \mathbf{r}_{n-1}, \mathbf{0}) = \det(\mathbf{r}_1, \dots, \mathbf{r}_{n-1}, \mathbf{0} \cdot \mathbf{0})$$

= $0 \det(\mathbf{r}_1, \dots, \mathbf{r}_{n-1}, \mathbf{0}) = 0.$
So $\det(X) = \mu \det(E) = \mu \cdot 0 = 0.$ Or,

Either way, $|\det(X) = x_{1,1}x_{2,2}\cdots x_{n,n}|$

Let $\det: M_n(F) \to F$ be a determinant, i.e. a function that, as a multivariable function in its row vectors, is normalized, alternating, and multilinear. Then if X and Y differ by a sequence of row operations, we have $\det(X) = \mu \det(Y)$ for some $0 \neq \mu \in F$.

Lemma. If X has reduced row echelon form E, then

$$det(X) = \mu det(E)$$
 for some $0 \neq \mu \in F$,

where μ is determined by the row operations moving from X to E:

$$\mu = (-1)^{\# \text{row swaps}} \Bigg(\prod_{\substack{\text{scaling operations} \\ S_i(\lambda)}} (1/\lambda) \Bigg).$$

Lemma. If $E \in M_n(F)$ has a row of 0's, then det(E) = 0.

Pf.
$$det(\mathbf{r}_1, \dots, \mathbf{r}_{n-1}, \mathbf{0}) = det(\mathbf{r}_1, \dots, \mathbf{r}_{n-1}, 0 \cdot \mathbf{0}) = 0 det(\mathbf{r}_1, \dots, \mathbf{r}_{n-1}, \mathbf{0}) = 0.$$

Proposition. If det exists, it's unique.

Given existence...

AMAZING Theorem. For $X \in M_n(F)$, we have $\det(X) \neq 0$ if and only if X is invertible.

Ok, great. But does such a function even exist?

For instance, what if there's more than one sequence of row operations that gets me from X to E? Do I get different answers? (Spoiler: no)

Next time/homework:

More properties of determinants (if they exists), like what happens to products, inverses, and transposes, and what they mean geometrically.

Caution: For now, do not assume \det is multiplicative for $n \ge 3$. (This has to be proven.)

- ightharpoonup The existence of determinant for all n.
- ► The *symmetric group* and a formula for determinant in terms of *permutations*.

For now, if we take for granted that determinant is well-defined, we can already calculate the determinant of a matrix by row reducing.

Practice exercises:

Chapter Four, Section I: 2.8, 2.11, 2.12, 2.15, 2.18, 2.22

Note: The book uses the notation det(A) = |A|, and shorthands

$$\det \begin{pmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{pmatrix} = \begin{vmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{vmatrix}.$$

This is common (but not uniformly standard), but it's generally better to use notation that describes what it is.