Lecture 16: Determinants

Warmup:
1. Let X = (i Z) for some a,b,c,d e F.

(a) Row reduce (Z Z ‘ (1) (1) to compute X ' for a general 2 x 2 matrix.
Keep track of when you might be accidentally dividing by O.
(b) What does it mean if you can’t row reduce (X|I) without dividing by 07

lllustrate with an example.

2. Let X,Y € My(F). We say Y is similar or conjugate to X, written
Y ~ X, ifY = PXP~! for some invertible P € My(F). (i.e. Y represents
the same linear function as X, just with respect to a different ordered
basis—see below for review of context for this problem.)

(a) Prove that ~defined an equivalence relation on M, (F).

(b) What is the equivalence class of I, (with respect to this relation)?

(c) Show that if Y ~ X, then yk-X*, [More specifically, that the same
change of basis that moves you from X to Y will also move you from X"
to Y* ]

(d) ForY ~ X and Y’ ~ X', is it true that X X' ~ YY'?

Context for Problem 2:
Last time, we saw that, in M,(F),

{ invertible matrices }  is the same as  { change of basis matrices }.

Specifically, let V' be a vector space over F', and let A and 3 be ordered bases of V.
Then Rep” (id) = (Repy (id)) ™!, so that change of basis matrices are all invertible.
Conversely, the columns of any invertible matrix is a basis of the corresponding
space, so can be viewed as a change of basis matrix. And since

Repy(f) = Rep (id)Rep’; (f) (Repy (id)) ",

matrix conjugation is the same as changing basis (two matrices represent the same
function w.r.t. different bases exactly when they are conjugate).



1. Let X = (CCL Z) for some a,b,c,d € F.

(a) Compute X ~1:

a b1l 0
c d|0 1

(b) What does it mean if you can't row reduce (X|I) without dividing by 07

2. (a) "Similarity” defines an equivalence relation on the set M,(F):
Y ~ X whenever Y =PXP!
for some invertible P € M, (F):
o Reflexive: If X € My(F), then...

e Symmetric: If X, Y € M,y(F) satisfy X ~ Y, then. ..

o Transitive: If X,Y,Z € My(F) satisfy X ~Y and Y ~ Z, then. ..

(b) If Y ~ I, then for some invertible P € M,(F’), we have
Y =PI, P~ =

We'll be studying statistics about matrices that are invariant under change of
basis, meaning that they're constant on similar matrices—these statistics are
important because they pertain to the underlying functions independent of
your choice of basis. Homework: Trace.



Determinants

The determinant, det : M,,(F') — F, is one extremely important statistic
about square matrices.

» Geometrically, it will measure the volume of a polygon generated by the
rows of a matrix.

> Algebraically, it will satisfy lots of nice algebraic properties, and will
determine whether a matrix is invertible or not for us.
We will also see that it is independent of change of basis, and is therefore
actually a statistic pertaining to the underlying linear function. We begin by

defining it by its desirable properties, and then show that these properties
uniquely identify the function.

Example: Define

det : Ma(R) — R by (‘i b

d) — ad — be.

We saw that X is invertible if and only if det(X) # 0.
Some other properties:
> The parallelogram P with corners (0,0), (a,b), (¢,d), and (a,b) + (¢, d)
has area |det <‘2 b>|:

d
......................... (a,b) Area(P) _ (a, n C)(b n d) . 2(()0) _ (Cd) — ((Ib)
N P »
0" b) O = CLd — bC.
(@ '

> Normalized: det() = det <é ?) ~1-1-0-0=1.

> Multiplicative:
_ a b\({d V _ aa +bc" ab + bd
det(X1") = det <<c d> <(:/ d’>> = det <ca’ +dd b + dd’>
= (ad" +bc)(ct! +dd") — (ab' + bd")(ca’ + dc’)
== (ad —be)(a'd — ') = det(X) det(Y).



Example: Define
det : My(R) - R by (‘Z Z) — ad — be.
We saw that X is invertible if and only if det(X) # 0.

Some other properties:

a b rOwi1 <>rows C d
e
c d a b

det(X) = ad — bc det(P1,2X) = bc — ad
= —det(X)
[Check via multiplicativity: det(Pi1,2) = det ((1) é) =—-1. V]

> Multilinear, i.e. linear row-by-row:

det <AC“ Adb) — (\a)d — (A\b)e = Aad — be)
[Check via multiplicativity: det(S1()\)) = det (3 ‘1)) =\ V]

det (al 2 . gbz) = (a1 +az)d — (b1 + b2)e

= (a1d — bic) + (asd — boc). (and similar in row 2).

> Alternating:

Generalizing: Think of a function det : M,,(F') — F as a multivariable
function of the row vectors of a matrix, meaning:

If the matrix X has row vectors ry,...,r,, write det(X) = det(ry,...,r,).
A “determinant” is any function det : M,,(F') — F that satisfies the following:
(1) Normalized. det([,,) = det(eq,...,e,) = 1.

(2) Alternating. Swapping any two rows toggles the sign of the function:

det(...,r;,...,rj,...) = —det(...,rj,...,15,...).

(3) Multilinear. The determinant is a linear function with respect to every

row (individually): for each i = 1,...,n, we have
det(rl, RN R P ASi, ri+i,... ,I‘n) = det(rl, e, 1,0, P51, .. ,I‘n)
+Adet(r,...,ri—1,8,Cit1,...,Tn).
Consequences:

> If r; = rj, then by (2),
det(...,ry, ... v .. ) = —det(...,ry ... 15 ...),
sodet(...,r;...,r;...)=0.
» If X & Y differ by a row combination, then their determinants are equal:
det(...,r;+ Arj,...,rj,...) =det(...,r;,...,15,...)
+A (jet(...,rj,...,rj,...z.

g

0
» So if X and Y differ by a sequence of row operations, then

det(X) = pdet(Y) for some 0 # p e F.




Let det : M,,(F') — F be a determinant, i.e. a function that, as a
multivariable function in its row vectors, is normalized, alternating, and
multilinear. Then if X and Y differ by a sequence of row operations, we have

det(X) = pdet(Y) for some 0 # p e F.

Example.
1 3 9 27 1 0 O 0 1 0 O 0
0 1 1 1 ri<ry 0 1 1 1 rs—rs-ri 0 1 1 1
A= —_ _
1 2 4 8 1 2 4 8 0 2 4 8
1 0 0 O 1 3 9 27 1 3 9 27
1 0 0 O 1 0 0 O 1 0 0 O
ry-—ra-r] 0 1 1 1 r3—rz-2ro 0 1 1 1 JFa—ry-3ry 3ro 0 1 1 1
—_ s
0 2 4 8 0O 0 2 6 0O 0 2 ©6
0 3 9 0o 3 9 27 0O 0 6 24
1 0 O 0 1 0 0 O 1 0 O 0
rs—>3rs [0 01 1 1| ramgra |0 1 1 1] rerers (001 0 —2
—_ — 67
0O 0 1 3 0O 0 1 3 0 0 1 3
0O 0 6 24 0O 0 1 4 0O 0 1 4
1 0 O 0 1 0 0 O 1 0 0 O
ry—>ra-r3 0O 1 O ro—>ro+2ry 0O 1 0 0] ra—rz-3ry 0O 1 0 O
e >
0O 0 1 3 0O 0 1 3 0O 0 1 O
0O 0 O 1 0O 0 0 1 0O 0 0 1

det:1-1-1-1-L-2.1.1-1-1-(-1)det(A) =det(ly) =1. So|det(A) = -12|

Examples. Each of the elementary row reduction matrices is one row
reduction away from I,, so computing their determinant is simple.

r;<>r;

P j — 1, so
det(P; ;) = —det(I;) = —1 (because det is alternating)

Si(A) =251, so

det(S;(N\)) = Adet(Iy) = A (because det is multilinear)

5 I, so
det(C; ;(N)) = det(ly) =1 (see “consequences”)




Example: If

Tl T2 ot Tln

x 0 T2,2 ccr T2n
= 9

0 0 o Tpm

then either. ..
(i) x;; = 0 for some i: then row reducing produces a matrix with at least

one row of 0's at the end,

rp

Then det(F) = det(ry,...,r,—1,0) = det(ry,...,r,—1,0-0)
= 0 det(ry,...,ry—1,0) = 0.

So det(X) ZMth(E) =pu-0=0. Or,
(ii) @;; # 0 for all i: Then
ri1 r1,2 ot Ti,n ] (El,g/(l,,‘]_l xl,n/él‘l.l
0 x272 “e xQ’n 1‘1'_’(1/:1‘],\)1'1 O I272 e :Z:Q,’)’L
_
0 0 cee Tpon 0 0 . Trom
I zio/ria - xin/ T
Ir2'—’(1/ZL'212)I‘2 Ir’n'—’(l/l’n,n)rn 0 1 o 332’71/.'17272
0 0 1
10 0
_sequence of row combinations L. 0 _ 7
’ . . . - n-
0 O 1

Either way, |det(X) = 21 1222 Ty |




Let det : M,,(F') — F be a determinant, i.e. a function that, as a
multivariable function in its row vectors, is normalized, alternating, and
multilinear. Then if X and Y differ by a sequence of row operations, we have

det(X) = pdet(Y) for some 0 # pu e F.

Lemma. If X has reduced row echelon form E, then
det(X) = pdet(FE) for some 0 # p e F,
where p is determined by the row operations moving from X to E:

p= (cpyprovswens( (1/A>>.

scaling operations
Si(N)
Lemma. If E € M, (F) has a row of O's, then det(E) = 0.
Pf. det(ri,...,rn—1,0) = det(r1,...,rp—1,0-0) = 0 det(r1,...,rn—1,0) = 0.
Proposition. If det exists, it's unique.

Given existence. ..

AMAZING Theorem. For X € M, (F), we have
det(X)# 0 ifand only if X is invertible.

Ok, great. But does such a function even exist?

For instance, what if there's more than one sequence of row operations that
gets me from X to E7 Do | get different answers? (Spoiler: no)

Next time/homework:

> More properties of determinants (if they exists), like what happens to
products, inverses, and transposes, and what they mean geometrically.

Caution: For now, do not assume det is multiplicative for n > 3.
(This has to be proven.)
» The existence of determinant for all n.
> The symmetric group and a formula for determinant in terms of
permutations.
For now, if we take for granted that determinant is well-defined, we can

already calculate the determinant of a matrix by row reducing.

Practice exercises:
Chapter Four, Section I: 2.8, 2.11, 2.12, 2.15, 2.18, 2.22

Note: The book uses the notation det(A) = |A|, and shorthands
11 0 Tin 11 o Tinm
det : : =
Tn1l *° Tnp Tn1 °  Tnp
This is common (but not uniformly standard), but it's generally better to use
notation that describes what it is.



