Lecture 15:

Review

Change of basis

notation	Notation cheat sheet meaning
F	Field with $0 \neq 1$
U, V, W	Vector spaces over a field F
$M_{\ell, k}(F)$	Matrices with ℓ rows and k columns, with entries in F Note: $\quad M_{k}(F)=M_{k, k}(F)$
$\mathcal{B}=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\rangle$	Ordered basis
$\mathcal{E}=\left\langle\mathbf{e}_{1}, \ldots, \mathbf{e}_{\ell}\right\rangle$	Standard (ordered) basis of F^{ℓ}
$\mathcal{E}=\left\langle E_{1,1}, E_{1,2}, \ldots, E_{\ell, k}\right\rangle$	Standard (ordered) basis of $M_{\ell, k}(F)$
$\operatorname{dim}_{F}(V)=\operatorname{dim}(V)$	Dimension of V as a vector space over F-the size of any basis of V.
$\operatorname{Rep}_{\mathcal{B}}(\mathbf{v})$	The vector representation of $\mathbf{v} \in V$ with respect to an ordered basis \mathcal{B} (it is an element of $F^{\operatorname{dim}(V)}$).
$\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(f)$	The matrix representation of $f: U \rightarrow V$ w.r.t ordered bases \mathcal{A} and \mathcal{B} of U and V respectively (it is an element of $\left.M_{\operatorname{dim}(V), \operatorname{dim}(U)}(F)\right)$.
$\mathbf{u} \cdot \mathbf{v}$	Dot product: $\begin{aligned} & \left(u_{1}, \ldots, u_{\ell}\right) \cdot\left(v_{1}, \ldots, v_{\ell}\right)=u_{1} v_{1}+\cdots+u_{\ell} v_{\ell} \\ & \mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos (\theta) \end{aligned}$

Where were we??

Linear functions between f.d. vectors spaces are "the same" as matrices.
The fine print: Let U, V be vector spaces over a field F with $\operatorname{dim}(U)=k$ and $\operatorname{dim}(V)=\ell$. Let $\mathcal{A}=\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{k}\right\rangle$ be a basis of U and let $\mathcal{B}=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right\rangle$ be a basis of V. Let $f: U \rightarrow V$ be a linear function. Define
$\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(f)=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ \operatorname{col}_{1} & \operatorname{col}_{2} & \cdots & \operatorname{col}_{k} \\ \mid & \mid & & \mid\end{array}\right) \in M_{\ell, k}(F) \quad$ where $\quad \operatorname{col}_{i}=\operatorname{Rep}_{\mathcal{B}} f\left(a_{-} \mathrm{i}\right) \in F^{\ell}$.
Then $\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}: \operatorname{Hom}(U, V) \rightarrow M_{\ell, k}(F)$ is an isomorphism;

$$
\text { and for all } \mathbf{u} \in U \text {, we have } \operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(f) \operatorname{Rep}_{\mathcal{A}}(\mathbf{u})=\operatorname{Rep}_{\mathcal{B}}(f(\mathbf{u})) \text {. }
$$

Caution! Even if \mathbf{u} is already a vector in F^{k}, unless $\mathcal{A}=\mathcal{E}$, you need to expand/represent \mathbf{u} in the basis \mathcal{A} before multiplying it by the matrix.

Matrix multiplication corresponds to function composition.

The fine print: We defined the product of matrices $X \in M_{m, \ell}(F)$ and $Y \in M_{\ell, k}$ as the matrix $X Y \in M_{m, k}(F)$ whose (i, j) entry is $\operatorname{row}_{i}(X) \cdot \operatorname{col}_{j}(Y)^{T}$. Then for any functions $f: U \rightarrow V$ and $g: V \rightarrow W$, we have

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{C}}(g) \operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(f)=\operatorname{Rep}_{\mathcal{A}}^{\mathcal{C}}(g \circ f),
$$

where \mathcal{A}, \mathcal{B}, and \mathcal{C} are ordered bases of U, V, and W respectively.

[Where were we?? continued...]

"Standard" matrices are great building blocks
The fine print: $\ln M_{\ell, k}(F)$, we defined $E_{i, j}$ as the $\ell \times k$ matrix that has a 1 in row i and col j and 0 's elsewhere. This means it encodes the function that sends $\mathbf{e}_{j} \mapsto \mathbf{e}_{i}$ and $\mathbf{e}_{r} \mapsto 0$ for all $r \neq j: E_{i, j} \mathbf{e}_{r}=\delta_{j, r} \mathbf{e}_{i}$. The set $\mathcal{E}=\left\{E_{i, j} \mid 1 \leqslant i \leqslant \ell, 1 \leqslant j \leqslant k\right\}$ is the standard basis of $M_{\ell, k}(F)$. Moreover, for any $X \in M_{m, \ell}(F)$, we saw that
$E_{i, j} X$ has $\operatorname{row}_{j}(X)$ in row i and 0 's elsewhere, and
$X E_{i, j}$ has $\operatorname{col}_{i}(X)$ in col j and 0 's elsewhere.

HW: Use the identities $E_{i, j} \mathbf{e}_{r}=\delta_{j, r} \mathbf{e}_{i}$ and $X=\sum_{i, j} X_{i, j} E_{i, j}$ to prove $E_{i, j} E_{r, s}=\delta_{j, r} E_{i, s}$, followed by ($*$) and ($* *$).

Identity matrix. The $\ell \times \ell$ matrix corresponding to the identity map has 1 s on the main diagonal and 0 s elsewhere.

$$
I_{\ell}=\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}\left(\operatorname{id}_{V}\right)=\sum_{i=1}^{\operatorname{dim}(V)} E_{i, i}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

We can use row operations to invert matrices
The fine print: Row operations can be done by left multiplication by elementary reduction matrices.

$$
\begin{array}{rlr}
S_{i}(\lambda) & =\lambda E_{i, i}+\sum_{\substack{r=1, \ldots, \ell \\
r \neq i}} E_{r, r} & \text { "scale" } \\
P_{i, j} & =E_{i, j}+E_{j, i}+\sum_{\substack{r=1, \ldots, \ell \\
r \neq i, j}} E_{r, r} & \text { "permute" } \\
C_{i, j}(\lambda) & =\lambda E_{j, i}+I_{\ell} &
\end{array}
$$

If X row reduces to the identity matrix by operations

$$
X \stackrel{R_{1}}{\longmapsto} X_{2} \stackrel{R_{2}}{\longmapsto} X_{3} \stackrel{R_{3}}{\longmapsto} X_{4} \ldots \stackrel{R_{n}}{\longmapsto} I_{\ell}
$$

where R_{i} are elementary red. matrices, then

$$
R_{n} \cdots R_{3} R_{2} R_{1} X=I_{\ell}, \quad \text { so that } \quad R_{n} \cdots R_{3} R_{2} R_{1}=X^{-1} .
$$

Note: This says that if I take the exact same sequence of operations that I did to move from X to I_{ℓ}, but instead I do them to I_{ℓ}, I will end with X^{-1} :

$$
R_{n} \cdots R_{3} R_{2} R_{1} I_{\ell}=X^{-1}
$$

Example. To compute the inverse of $X=\left(\begin{array}{cc}1 & -3 \\ -5 & 12\end{array}\right)$, we start by row reducing:

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & -3 \\
-5 & 12
\end{array}\right) & \xrightarrow[C_{1,2}(5)]{\stackrel{\text { row }_{2} \mapsto \operatorname{row}_{2}+\text { fow }_{1}}{\longrightarrow}}\left(\begin{array}{cc}
1 & -3 \\
0 & -3
\end{array}\right) \\
& \stackrel{\text { row }_{1} \mapsto \operatorname{row}_{1}-\text { row }_{2}(-1)}{\text { row }_{2}}\left(\begin{array}{cc}
1 & 0 \\
0 & -3
\end{array}\right) \xrightarrow[S_{2}(-1 / 3)]{\stackrel{\text { row }_{2} \leftrightarrow(-1 / 3) \text { row }_{2}}{\rightleftarrows}}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Then
$X^{-1}=S_{2}(-1 / 3) C_{2,1}(-1) C_{1,2}(5)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1 / 3\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right)=\left(\begin{array}{cc}-4 & -1 \\ -5 / 3 & -1 / 3\end{array}\right)$.
Shortcut for doing calculations by hand.
Augment X by I_{ℓ} and then row reduce:

$$
\begin{aligned}
& \left(\begin{array}{cc|cc}
1 & -3 & 1 & 0 \\
-5 & 12 & 0 & 1
\end{array}\right) \xrightarrow{\text { row }_{2} \rightarrow \text { row }_{2}+5 \text { row }_{1}}\left(\begin{array}{cc|cc}
1 & -3 & 1 & 0 \\
0 & -3 & 5 & 1
\end{array}\right) \\
& \xrightarrow{\text { row }_{1} \mapsto \text { row }_{1}-\text { row }_{2}}\left(\begin{array}{cc|cc}
1 & 0 & -4 & -1 \\
0 & -3 & 5 & 1
\end{array}\right) \\
& \xrightarrow{\text { row }_{2} \mapsto(-1 / 3) \text { row }_{2}}\left(\begin{array}{cc|cc}
1 & 0 & -4 & -1 \\
0 & 1 & -5 / 3 & -1 / 3
\end{array}\right) .
\end{aligned}
$$

Change of basis

Suppose we computed a matrix for a linear function $f: U \rightarrow V$ with respect to ordered bases \mathcal{A} (of U) and \mathcal{B} (of V), but what we want is the linear function in terms of a different set of ordered bases \mathcal{A}^{\prime} (of U) and \mathcal{B}^{\prime} (of V)?

Examples.

1. If $f: F^{2} \rightarrow F^{2}$ sends $\binom{1}{3} \mapsto\binom{5}{0}$ and $\binom{0}{-2} \mapsto\binom{1}{1}$. What is $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{E}}(f)$?
2. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{E}}(f)=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. What is the matrix for f with respect to a frame of reference rotated by $\pi / 4$?

3. How does the evaluation map compare on polynomials "Taylor expanded" around $a=0$ versus around $a=1$?

Big idea: For any functions $f: U \rightarrow V$ and $g: V \rightarrow W$, we have

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{C}}(g) \operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(f)=\operatorname{Rep}_{\mathcal{A}}^{\mathcal{C}}(g \circ f)
$$

where \mathcal{A}, \mathcal{B}, and \mathcal{C} are ordered bases of U, V, and W respectively.
So for ordered bases \mathcal{A}_{1} and \mathcal{A}_{2} of U and ordered bases \mathcal{B}_{1} and \mathcal{B}_{2} of V, we have

$$
\operatorname{Rep}_{\mathcal{B}_{1}}^{\mathcal{B}_{2}}\left(\operatorname{id}_{V}\right) \operatorname{Rep}_{\mathcal{A}_{1}}^{\mathcal{B}_{1}}(f) \operatorname{Rep}_{\mathcal{A}_{2}}^{\mathcal{A}_{1}}\left(\operatorname{id}_{U}\right)=\operatorname{Rep}_{\mathcal{A}_{2}}^{\mathcal{B}_{2}}(f),
$$

since $\operatorname{id}_{V} \circ f \circ \operatorname{id}_{U}=f$.

Example: If $f: F^{2} \rightarrow F^{2}$ sends $\binom{1}{3} \mapsto\binom{5}{0}$ and $\binom{0}{-2} \mapsto\binom{1}{1}$.
What is $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{E}}(f)$?
Ans. Let $\mathcal{B}=\left\langle b_{1}=\binom{1}{3}, b_{2}=\binom{0}{-2}\right\rangle$.
Then
$\mathbf{b}_{1}=\binom{1}{3} \stackrel{f}{\mapsto}\binom{5}{0}=5 \mathbf{e}_{1}+0 \mathbf{e}_{2} \quad$ and $\quad \mathbf{b}_{2}=\binom{0}{-2} \stackrel{f}{\mapsto}\binom{1}{1}=1 \mathbf{e}_{1}+1 \mathbf{e}_{2}$ means

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(f)=\left(\begin{array}{ll}
5 & 1 \\
0 & 1
\end{array}\right) . \quad \text { But we want } \quad \operatorname{Rep}_{\mathcal{E}}^{\mathcal{E}}(f)=\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(f) \operatorname{Rep} \overline{\mathcal{E}}^{\mathcal{B}}(\mathrm{id})
$$

Computing $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id}) \ldots$
Old perspective: Our job would be to solve
$\mathbf{e}_{1}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2} \quad$ and $\quad \mathbf{e}_{2}=d_{1} \mathbf{b}_{1}+d_{2} \mathbf{b}_{2} \quad$ for $c_{1}, c_{2}, d_{1}, d_{2} \in F$.
Row reduce

$$
\left(\begin{array}{cc|c}
1 & 0 & 1 \\
3 & -2 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc|c}
1 & 0 & 0 \\
3 & -2 & 1
\end{array}\right)
$$

New perspective: Note that

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id}) \operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id})=\operatorname{Rep}_{\mathcal{E}}^{\mathcal{E}}(\mathrm{id} \circ \mathrm{id})=I_{2} .
$$

So

$$
\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id})=\left(\operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id})\right)^{-1}
$$

But

$$
\begin{aligned}
& \mathbf{b}_{1} \xrightarrow{\stackrel{\mathrm{id}}{\longmapsto}} \mathbf{b}_{1}=\mathbf{e}_{1}+3 \mathbf{e}_{2} \quad \text { and } \\
& \mathbf{b}_{2} \stackrel{\mathrm{id}}{\longmapsto} \mathbf{b}_{2}=0 \mathbf{e}_{1}+(-2) \mathbf{e}_{2}
\end{aligned} \quad \text { means } \quad \operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id})=\left(\begin{array}{cc}
1 & 0 \\
3 & -2
\end{array}\right) .
$$

Row reduce:

$$
\begin{aligned}
\left(\begin{array}{cc|cc}
1 & 0 & 1 & 0 \\
3 & -2 & 0 & 1
\end{array}\right) & \stackrel{{ }^{\mathbf{r o w}_{2} \mapsto \mathbf{r o w}_{2}-3 \mathbf{r o w}_{1}}\left(\begin{array}{cc|cc}
1 & 0 & 1 & 0 \\
0 & -2 & -3 & 1
\end{array}\right)}{ } \\
& \stackrel{\operatorname{row}_{2} \mapsto(-1 / 2) \mathbf{r o w}_{2}}{\longmapsto}\left(\begin{array}{cc|cc}
1 & 0 & 1 & 0 \\
0 & 1 & 3 / 2 & -1 / 2
\end{array}\right)
\end{aligned}
$$

Therefore $\left.\operatorname{Rep}_{\mathrm{E}} \mathrm{B}_{(\mathrm{id}}^{\prime}\right)=\left(\begin{array}{cc}1 & 0 \\ 3 / 2 & -1 / 2\end{array}\right)$, and hence

$$
\operatorname{Rep}_{\mathcal{E}}^{\mathcal{E}}(f)=\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(f) \operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id})=\left(\begin{array}{ll}
5 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
3 / 2 & -1 / 2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
13 & -1 \\
3 & -1
\end{array}\right) .
$$

You try:

1. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is given by $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{E}}(f)=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$. What is the matrix for f with respect to a frame of reference rotated by $\pi / 4$?

(a) Compute \mathbf{b}_{1} and \mathbf{b}_{2} in terms of \mathbf{e}_{1} and \mathbf{e}_{2}.
(b) Use (a) to write down $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}$ (id).
(c) Compute $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id})=\left(\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id})\right)^{-1}$.
(d) Use (b) and (c) to compute $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(f)$.
2. Let $X=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ for some $a, b, c, d \in F$.
(a) Row reduce $\left(\begin{array}{ll|ll}a & b & 1 & 0 \\ c & d & 0 & 1\end{array}\right)$ to compute X^{-1} for a general 2×2 matrix. Keep track of when you might be accidentally dividing by 0 .
(b) What does it mean if you can't row reduce $(X \mid I)$ without dividing by 0 ? Illustrate with an example.
(c) Compare your formula with our computations of inverses of 2×2 matrices thus far in this lecture.

Let \mathcal{A} and \mathcal{B} be ordered bases of a vector space V. We call $\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(\mathrm{id})$ the change of basis matrix from \mathcal{A} to \mathcal{B}.

Because it's worth highlighting. . .
Lemma. We have

$$
\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(\mathrm{id})=\left(\operatorname{Rep}_{\mathcal{B}}^{\mathcal{A}}(\mathrm{id})\right)^{-1}
$$

Consequences:

1. If P is a change of basis matrix, then P is invertible.
2. If P is an invertible matrix, it encodes an isomorphism. Thus the image of the basis $\mathcal{E}, \mathcal{B}=\left\langle P \mathbf{e}_{i} \mid \mathbf{e}_{i} \in \mathcal{E}\right\rangle$, is also a basis. So

$$
P=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
P \mathbf{e}_{1} & P \mathbf{e}_{2} & \cdots & P \mathbf{e}_{\ell} \\
\mid & \mid & & \mid
\end{array}\right)=\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id})
$$

Theorem. The set of invertible $\ell \times \ell$ matrices is the same as the set of change of basis matrices.

Namely, two square matrices $X, Y \in M_{\ell}(F)$ represent the same function $f: V \rightarrow V$ (where $\operatorname{dim}(V)=\ell$), but with respect to different bases, if and only if there is some invertible $P \in M_{\ell}(F)$ for which $Y=P X P^{-1}$; in this case we say X and Y are conjugate or similar. We call $X \mapsto P X P^{-1}$ conjugating X by P.
"Similarity" defines an equivalence relation on the set $M_{\ell}(F)$:

$$
X \sim Y \quad \text { whenever } \quad Y=P X P^{-1}
$$

for some invertible $P \in M_{\ell}(F)$.

- Reflexive: If $X \in M_{\ell}(F)$, then...
- Symmetric: If $X, Y \in M_{\ell}(F)$ satisfy $X \sim Y$, then...
- Transitive: If $X, Y, Z \in M_{\ell}(F)$ satisfy $X \sim Y$ and $Y \sim Z$, then...

We'll be studying statistics about matrices that are invariant under change of basis, meaning that they're constant on similar matrices-these statistics are important because they pertain to the underlying functions independent of your choice of basis.

