
Lecture 15:
Review
Change of basis

Notation cheat sheet

notation meaning

F Field with 0 ‰ 1

U , V , W Vector spaces over a field F

M`,kpF q Matrices with ` rows and k columns, with entries in F
Note: MkpF q “ Mk,kpF q

B “ xb1, . . . ,b`y Ordered basis

E “ xe1, . . . , e`y Standard (ordered) basis of F `

E “ xE1,1, E1,2, . . . , E`,ky Standard (ordered) basis of M`,kpF q
dimF pV q “ dimpV q Dimension of V as a vector space over F—the size of

any basis of V .

RepBpvq The vector representation of v P V with respect to an

ordered basis B (it is an element of F dimpV q
).

RepB
Apfq The matrix representation of f : U Ñ V w.r.t ordered

bases A and B of U and V respectively (it is an element

of MdimpV q,dimpUqpF q).
u ¨ v Dot product:

pu1, . . . , u`q ¨ pv1, . . . , v`q “ u1v1 ` ¨ ¨ ¨ ` u`v`
u ¨ v “ |u||v| cosp✓q



Where were we??
Linear functions between f.d. vectors spaces are “the same” as matrices.

The fine print: Let U, V be vector spaces over a field F with dimpUq “ k and
dimpV q “ `. Let A “ xa1, . . . ,aky be a basis of U and let B “ xb1, . . . ,b`y
be a basis of V . Let f : U Ñ V be a linear function. Define

Rep
B
Apfq “

¨

˝ col1 col2col1 col2 colk¨ ¨ ¨
˛

‚P M`,kpF q where coli “ RepBpaiq P F `.

Then Rep
B
A : HompU, V q Ñ M`,kpF q is an isomorphism;

and for all u P U , we have Rep
B
ApfqRepApuq “ RepBpfpuqq.

Caution! Even if u is already a vector in F k
, unless A “ E , you need to

expand/represent u in the basis A before multiplying it by the matrix.

Matrix multiplication corresponds to function composition.

The fine print: We defined the product of matrices X P Mm,`pF q and
Y P M`,k as the matrix XY P Mm,kpF q whose pi, jq entry is
rowipXq ¨ coljpY qT . Then for any functions f : U Ñ V and g : V Ñ W , we
have

Rep
C
BpgqRepBApfq “ Rep

C
Apg ˝ fq,

where A, B, and C are ordered bases of U , V , and W respectively.

[Where were we?? continued. . . ]

“Standard” matrices are great building blocks

The fine print: In M`,kpF q, we defined Ei,j as the ` ˆ k matrix that has a 1 in
row i and col j and 0’s elsewhere. This means it encodes the function that
sends ej fiÑ ei and er fiÑ 0 for all r ‰ j: Ei,jer “ �j,rei . The set

E “ tEi,j | 1 § i § `, 1 § j § ku is the standard basis of M`,kpF q. Moreover,
for any X P Mm,`pF q, we saw that

Ei,jX has rowjpXq in row i and 0’s elsewhere, and (˚)
XEi,j has colipXq in col j and 0’s elsewhere. (˚˚)

HW: Use the identities Ei,jer “ �j,rei and X “ ∞
i,j Xi,jEi,j to

prove Ei,jEr,s “ �j,rEi,s , followed by (˚) and (˚˚).

Identity matrix. The ` ˆ ` matrix corresponding to the identity map has 1s
on the main diagonal and 0s elsewhere.

I` “ Rep
B
BpidV q “

dimpV qÿ

i“1

Ei,i “

¨

˚̊
˚̋

1 0 ¨ ¨ ¨ 0

0 1 ¨ ¨ ¨ 0

...
...

. . .
...

0 0 ¨ ¨ ¨ 1

˛

‹‹‹‚.

f(a_i)



[Where were we?? continued. . . ]

We can use row operations to invert matrices

The fine print: Row operations can be done by left multiplication by
elementary reduction matrices.

Sip�q “ �Ei,i `
ÿ

r“1,...,`
r‰i

Er,r “scale”

Pi,j “ �Ei,j ` Ej,i `
ÿ

r“1,...,`
r‰i,j

Er,r “permute”

Ci,jp�q “ �Ej,i ` I` “combine”

If X row reduces to the identity matrix by operations

X
R1fi›››Ñ X2

R2fi›››Ñ X3
R3fi›››Ñ X4 ¨ ¨ ¨ Rnfi›››Ñ I`

where Ri are elementary red. matrices, then

Rn ¨ ¨ ¨R3R2R1X “ I`, so that Rn ¨ ¨ ¨R3R2R1 “ X´1.

Note: This says that if I take the exact same sequence of operations that I
did to move from X to I`, but instead I do them to I`, I will end with X´1:

Rn ¨ ¨ ¨R3R2R1I` “ X´1.

Example. To compute the inverse of X “
ˆ

1 ´3
´5 12

˙
, we start by row

reducing:

ˆ
1 ´3

´5 12

˙
row2 fiÑrow2`5row1fi›››››››››››››Ñ

C1,2p5q

ˆ
1 ´3
0 ´3

˙

row1 fiÑrow1´row2fi››››››››››››Ñ
C2,1p1q

ˆ
1 0
0 ´3

˙
row2 fiÑp91{3qrow2fi›››››››››››Ñ

S2p91{3q

ˆ
1 0
0 1

˙
.

Then

X´1 “ S2p91{3qC2,1p´1qC1,2p5q “
ˆ
1 0
0 91{3

˙ˆ
1 ´1
0 1

˙ˆ
1 0
5 1

˙
“

ˆ ´4 ´1
95{3 91{3

˙
.

Shortcut for doing calculations by hand.
Augment X by I` and then row reduce:

ˆ
1 ´3 1 0

´5 12 0 1

˙
row2 fiÑrow2`5row1fi›››››››››››››Ñ

ˆ
1 ´3 1 0

0 ´3 5 1

˙

row1 fiÑrow1´row2fi››››››››››››Ñ
ˆ
1 0 ´4 ´1

0 ´3 5 1

˙

row2 fiÑp91{3qrow2fi›››››››››››Ñ
ˆ
1 0 ´4 ´1

0 1 95{3 91{3
˙
.

(-1)



Change of basis

Suppose we computed a matrix for a linear function f : U Ñ V with respect
to ordered bases A (of U) and B (of V ), but what we want is the linear
function in terms of a di↵erent set of ordered bases A1 (of U) and B1 (of V )?

Examples.

1. If f : F 2 Ñ F 2 sends
ˆ
1
3

˙
fiÑ

ˆ
5
0

˙
and

ˆ
0

´2

˙
fiÑ

ˆ
1
1

˙
. What is RepEEpfq?

2. Suppose f : R2 Ñ R2 is given by Rep
E
Epfq “

ˆ
1 2
2 1

˙
. What is the

matrix for f with respect to a frame of reference rotated by ⇡{4?

e1

e2

rotate›››Ñ ⇡{4

b1
b2

3. How does the evaluation map compare on polynomials “Taylor expanded”
around a “ 0 versus around a “ 1?

Big idea: For any functions f : U Ñ V and g : V Ñ W , we have

Rep
C
BpgqRepBApfq “ Rep

C
Apg ˝ fq

where A, B, and C are ordered bases of U , V , and W respectively.

So for ordered bases A1 and A2 of U and ordered bases B1 and B2 of V , we
have

Rep
B2
B1

pidV qRepB1
A1

pfqRepA1
A2

pidU q “ Rep
B2
A2

pfq,
since idV ˝ f ˝ idU “ f .

U in basis A2

U in basis A1

V in basis B2

V in basis B1

Rep
A1
A2

pidU qRep
B2
B1

pidV q

Rep
B1
A1

pfq

Rep
B2
A2

pfq



Example: If f : F 2 Ñ F 2 sends
ˆ
1
3

˙
fiÑ

ˆ
5
0

˙
and

ˆ
0

´2

˙
fiÑ

ˆ
1
1

˙
.

What is RepEEpfq?
Ans. Let B “

B
b1 “

ˆ
1
3

˙
,b2 “

ˆ
0

´2

˙F
.

Then

b1 “
ˆ
1
3

˙
ffi›Ñ

ˆ
5
0

˙
“ 5e1 ` 0e2 and b2 “

ˆ
0

´2

˙
ffi›Ñ

ˆ
1
1

˙
“ 1e1 ` 1e2

means

Rep
E
Bpfq “

ˆ
5 1
0 1

˙
. But we want Rep

E
Epfq “ Rep

E
BpfqRepBE pidq.

Computing Rep
B
E pidq. . .

Old perspective: Our job would be to solve

e1 “ c1b1 ` c2b2 and e2 “ d1b1 ` d2b2 for c1, c2, d1, d2 P F .
Row reduce ˆ

1 0 1
3 ´2 0

˙
and

ˆ
1 0 0
3 ´2 1

˙

New perspective: Note that

Rep
E
BpidqRepBE pidq “ Rep

E
Epid ˝ idq “ I2.

So

Rep
E
Bpidq “

`
Rep

B
E pidq

˘´1
.

Example: If f : F 2 Ñ F 2 sends

ˆ
1
3

˙
fiÑ

ˆ
5
0

˙
and

ˆ
0

´2

˙
fiÑ

ˆ
1
1

˙
. What is RepEEpfq?

Ans. Let B “
Bˆ

1
3

˙
,

ˆ
0

´2

˙F
, so RepEBpfq “

ˆ
5 1
0 1

˙
and RepEE pfq “ RepEBpfqRepBE pidq.

Computing RepBE pidq. . .
New perspective: Note that

RepE
BpidqRepB

E pidq “ RepE
Epid ˝ idq “ I2.

So

RepE
Bpidq “

´
RepB

E pidq
¯´1

.

But

b1
idfi›Ñ b1 “ e1 ` 3e2 and

b2
idfi›Ñ b2 “ 0e1 ` p´2qe2

means RepE
Bpidq “

ˆ
1 0
3 ´2

˙
.

Row reduce:ˆ
1 0 1 0
3 ´2 0 1

˙
row2 fiÑrow2´3row1fi›››››››››››››Ñ

ˆ
1 0 1 0
0 ´2 ´3 1

˙

row2 fiÑp´1{2qrow2fi››››››››››››Ñ
ˆ
1 0 1 0
0 1 3{2 ´1{2

˙

Therefore RepE
Bpidq “

ˆ
1 0
3{2 ´1{2

˙
, and hence

RepE
Epfq “ RepE

BpfqRepB
E pidq “

ˆ
5 1
0 1

˙ˆ
1 0
3{2 ´1{2

˙
“ 1

2

ˆ
13 ´1
3 ´1

˙
.

E
B



You try:

1. Suppose f : R2 Ñ R2 is given by Rep
E
Epfq “

ˆ
1 2
2 1

˙
. What is the

matrix for f with respect to a frame of reference rotated by ⇡{4?

e1

e2

rotate›››Ñ ⇡{4

b1
b2

(a) Compute b1 and b2 in terms of e1 and e2.

(b) Use (a) to write down RepE
Bpidq.

(c) Compute RepB
E pidq “ pRepE

Bpidqq´1
.

(d) Use (b) and (c) to compute RepB
Bpfq.

2. Let X “
ˆ
a b
c d

˙
for some a, b, c, d P F .

(a) Row reduce

ˆ
a b 1 0
c d 0 1

˙
to compute X´1

for a general 2 ˆ 2 matrix.

Keep track of when you might be accidentally dividing by 0.

(b) What does it mean if you can’t row reduce pX|Iq without dividing by 0?

Illustrate with an example.

(c) Compare your formula with our computations of inverses of 2 ˆ 2 matrices

thus far in this lecture.



Let A and B be ordered bases of a vector space V . We call RepBApidq the
change of basis matrix from A to B.

Because it’s worth highlighting. . .
Lemma. We have

Rep
B
Apidq “

`
Rep

A
B pidq

˘´1
.

Consequences:

1. If P is a change of basis matrix, then P is invertible.

2. If P is an invertible matrix, it encodes an isomorphism. Thus the image
of the basis E , B “ xPei | ei P Ey, is also a basis. So

P “
¨

˝ Pe1 Pe2 Pe`¨ ¨ ¨
˛

‚“ Rep
E
Bpidq.

Theorem. The set of invertible ` ˆ ` matrices is the same as the set of
change of basis matrices.

Namely, two square matrices X,Y P M`pF q represent the same function

f : V Ñ V (where dimpV q “ `), but with respect to di↵erent bases, if and
only if there is some invertible P P M`pF q for which Y “ PXP´1; in this
case we say X and Y are conjugate or similar. We call X fiÑ PXP´1

conjugating X by P .

Thm. The set of invertible ` ˆ ` matrices is the same as the set of change of basis matrices.

Namely, two square matrices X,Y P M`pF q represent the same function f : V Ñ V
(where dimpV q “ `), but with respect to di↵erent bases, if and only if there is some
invertible P P M`pF q for which Y “ PXP´1; in this case we say X and Y are conjugate

or similar. We call X fiÑ PXP´1
conjugating X by P .

“Similarity” defines an equivalence relation on the set M`pF q:
X „ Y whenever Y “ PXP´1

for some invertible P P M`pF q.
‚ Reflexive: If X P M`pF q, then. . .
‚ Symmetric: If X,Y P M`pF q satisfy X „ Y , then. . .

‚ Transitive: If X,Y, Z P M`pF q satisfy X „ Y and Y „ Z, then. . .

We’ll be studying statistics about matrices that are invariant under change of
basis, meaning that they’re constant on similar matrices—these statistics are
important because they pertain to the underlying functions independent of
your choice of basis.


