Warmup:
Finish up Lecture 13 Exercises
(See end of packet.)

Selected answers
and hints also on Moodle

Lecture 14:
Row operations as matrices
Inverses

Homework 6 extension coming. ..
BUT tonight is still the last day to get help.

Recall: A function f: X — Y is invertible if and only if it's bijective.
What does that mean in terms of matrices?

Let X and Y be finite-dimensional vector spaces over a field F', and let
¢ : X — Y be a bijective linear function, a.k.a. an isomorphism. Since ¢ is
bijective, there exists a (two-sided) inverse o= : ¥ — X such that

o lop=1idx and pop l =idy.
—1 —1
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X ¢ Y < X Y ¢ X < Y
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idx idy

Q. Given an isomorphism ¢ : X — Y, how can | compute ¢ 17
Q. If  is defined by a matrix A (i.e. defined on an ordered basis),
what is the matrix A~! associated to ¢ 1?7 (A~! is called the inverse of A.)



Some things we know:
Rank-nullity says dim(X) = rank(y) + nullity(¢).
But ¢ injective implies nullity(¢) = 0; and

¢ surjective implies that rank(y) = dim(Y).
So

dim(X) = dim(Y) = rank(¢)

“Isomorphisms preserve dimension.”

“Isomorphisms have full rank.”
In terms of the associated matrices:
If A= Repg/(cp) (with respect to fixed ordered bases B < X and B’ € Y), then
1. Ae M,(F), where n = dim(X) = dim(Y'); and

2. rank(A) = n. “A is nonsingular”
AT1A=1,. AATL =1T,.
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Conversely, suppose A € M,,(F) encodes a function ¢ : X - Y  (ie dim(X)
and dim(Y") are both n, and A = Repg,((p) w.r.t. some ordered bases B < X and B’ € Y).

If, additionally, we know that rank(A4) = n. ..
> First, n = rank(A) = rank(p) = dim(Y’). So since Y is
finite-dimensional and R(¢) € Y is a subspace, we know R(p) =Y. So
@ Is surjective.
» Rank-nullity says

Rank-nullity Theorem
A

n = aim(X) = rank(yp) + nullity(go} = n + nullity(¢).
So nullity(¢) = 0; and hence ¢ is also injective.

So ¢ is an isomorphism.



Theorem. Let X and Y be finite-dimensional vector spaces over F', and let
¢ : X — Y be a linear function.

Then ¢ is an isomorphism if any only if
any associated matrix A is square and has full rank.
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(+) More precisely:
For any ordered bases B < X and B’ € Y, we have

(1) |B| = |B;
(2) A= Repgl(go) € M, (F), where n = |B|; and
(3) rank(A) = n. “A is nonsingular’

Proof. See above; use Rank-Nullity theorem.

[CAUTION: This whole theorem makes less sense (and is false) if X is not
finite-dimensional. See Homework 6.]

Corollary. A linear function ¢ associated to a matrix A € My ,(F) is an
isomorphism if and only if A row reduces to an identity matrix.

Example. At the end of Lecture 12, we computed that with respect to the
standard ordered bases

A= <1,$,$2,$3> - Pg(R) and B = <E1’1,E1,2,E271,E272> - MQ(R),

the function

f:Ps(R) — My(R) defined by f(p(x)):(gg gg;g)

has matrix representation

1 0 0 O
B 1 1 1 1
A:RepA(f): 1 2 4 8
1 3 9 27
Now, A row reduces as
1 0 0 O
A,_)((l) (1) ? g),_)((l) ? (1J g),_,(cl) (1) 8 02),;) 0 1 0 0 :I4
0o 2 4 8 o 0 2 6 o o 1 3 0 0 1 0 :
o 3 9 27 0 0 6 24 o 0o o0 1
0 0 0 1

So f is an isomorphism. But what is its inverse???



Row reduction operators
Goal: Use the row reduction algorithm to compute A=1 /=1

Recall that the three row operations were
row; <> row;, TIOW; —> ArOW;, TrOW; — rOW; + UITOW;,
where A\, u € F with X # 0.

Key insight: On the Lecture 13 exercises, you saw that F; ; X takes the jth
row of X and inserts it into the ith row of a matrix that's elsewhere all 0.
For example, in M3(F),

0 1 0\ /X1 Xio Xig Xo1 Xoo Xog3
EioX=[0 0 o)X Xoo Xos|=[ 0 0 0
0 0 0/\Xs1 Xyo Xus 0 0 0

So we can build row operations by taking the right linear combinations of
E; ;'s acting on the left!

1. Row swapping. To swap row; and row;, add up:

> insert row; into row j; E;;
> insert row; into row i, E; ;
> insert rowy into into row k for all k£ # i, J. Ey 1
Define Pj=Ei;+Ej;+ Y, Bk
k=1,..., n
kA1,

2. Row scaling. To scale row; by A, add up:

> insert row; into row ¢ and scale by A; AE;
> insert row;, into into row k for all k # 1. E. «
Define Si(A)=AEii+ Y, Enk [Book: M;(\)]
k=1,..., n
k#1

3. Row Combination. To replace row; by row; + Arow, add up:

> insert row; into row ¢ and scale by J; AE;
> insert row; into row i; E;;
> insert row}, into into row k for all k # 1. E .

Define Cii(N\) = AE; ; + I,.




For example, in My(F),

P173X = (E1’3 + E371 + E272 + E474)X
= E1’3X + E3’1X + E2’2X + E4’4X

o o 1 o\(X1,1 Xi12 X133 Xi14 o o o0 o0\[X1,1 X112 X133 X1.4
— o o o o|[X21 X292 Xo3 Xou 4+ [0 o o o X211 X212 X233 Xog
0 0 0 OffX31 X32 X33 X34 1 0 0 O0J|X31 X332 X33 X34
0 0 0 0/\Xy1 X492 X433 X4 0 0 0 O0/\Xy; Xy Xq3 Xgq4
o o o o\(X1,1 X122 X133 X1 o o o o\(X1,1 X122 X133 X1a
4+ (0 1 o o0 X211 X222 X223 Xo4 + (0 o o o X211 X212 X223 Xog
0 0 0 OffX3y1 X32 X33 X34 0 0 0 O0ffX371 X332 X33 X324
0 0 0 O0/\Xy;1 X422 Xg3 Xgg4 0 0 0 1/\Xy1 Xg2 Xg3 Xgg4
X331 X322 X33 Xsu 0 0 0 0
. 0 0 0 0 n 0 0 0 0
0 0 0 0 X1 Xi2 Xi13 Xia
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
i Xo1 Xopo Xosz Xog n 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 Xa1 Xao Xa3z Xaa
X31 X3z2 X33 X3
| X2 Xo2 Xo3 Xog
X1 Xi2 Xi3 Xia) )
Xa1 Xao Xa3z Xaa W
which is exactly the result of swapping row; < rows!
For example, in My(F),
S ()\)X = (/\El,l + E2,2 + E3,3 + E4,4)X
= >\E171X + E272X + E373X + E474X
1 0 o o\(X1,1 X12 X13 Xi4 o o o0 o0\(X1,1 X122 X133 Xi14
=)0 0 0 0|fX21 X2 Xogz Xog 4+ (0 1 o o X211 X222 Xa23 Xog
0 0 0 O0JlX31 X332 X33 X34 0 0 0 O0ffX31 X332 X33 X324
0 0 0 0/\X41 Xq2 Xg3 X4 0 0 0 0/\Xy1 Xyo Xg3 Xau
o o o o\(X1,1 X122 X13 Xig4 o o o o\(X1,1 X12 X133 Xi14
4+ (0 o o o0 X211 X222 X223 Xo4 + (0 o o o X211 X212 X223 Xog
0 0 1 O0ffX31 X32 X33 X34 0 0 0 OffX371 X332 X33 X324
0 0 0 O0/\Xy;1 X422 Xg3 Xgg4 0 0 0 1/\Xyy Xg2 Xg3 Xgg4
AX1: AXi1o AXis AXi. 0 0 0 0
_ 0 0 0 0 " Xo1 Xoo Xo3z Xou
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
i 0 0 0 0 n 0 0 0 0
X331 X3z2 Xsz3 X3 0 0 0 0
0 0 0 0 Xan1 Xao Xuz Xuag
AN AXi2 AXiz AXia
| Xen Xo 2 Xo3 Xo4
Xz1  Xz2 X33 Xsza |
X4,1 X4 X4,3 X4,4

which is exactly the result of scaling row; by A!



Permute row; & row;: P, j = E; j + Eji + D k=1,..n Ex
k#i,j
Scale row; — Arow;: S;(\) = AE;; + Y k=1...n Frx i

Combine row; — Arow; + row;: CZJ(A) = )\Ejﬂ' + I,

Back to our example from Lecture 12:

1 0 0 O 1 0 0 O
_]/1 1 1 1 | rowg—rowz—row; o 1 1 1] _ .
A= 1 2 4 8| 1 2 4 8 = C1a2(-1)A
1 3 9 27 1 3 9 27
1 0 0 O
rows—rows—rowj 0 1 1 1
: 0 2 4 8§ = 01;3(*1)(0172(71)14)
1 3 9 27
1 0 0 O
TOW4—TOW4 —TOW] 0O 1 1 1
' 0 2 4 8
0 3 9 27
= C14(—1)(C13(=1)(C12(~1)A))
1 0 0 O 1 0 0 O 1 0 0 O
A 1 1 1 1| Ci2=1) Jo 1 1 1| Cis- o 1 1 1
= _
1 2 4 8 1 2 4 8 0 2 4 8
1 3 9 27 1 3 9 27 1 3 9 27
1 0 0 O 1 0 0 O 1 0 0 O
Cia(=1) fo 1 1 1] C25(-2 o 1 1 1| C24(=3 (0 1 1 1
| |
0 2 4 8 0 0 2 6 0 0 2 6
0 3 9 27 0 3 9 27 0 0 6 24
1 0 0 O 1 0 0 O 1 0 0 O
Sz(1/2) o 1 1 1| Sa(1/6) o 1 1 1| Cs20-1) |0 1 0 =2
_ _
0 0 1 3 0 0 1 3 0 0 1 3
0 0 6 24 0 0 1 4 0 0 1 4
1 0 0 0 1 0 0 O 1 0 0 0
Csa(=1) [0 1 0 =2 C12(2) |0 1 0 0f Cas(=3) |0 1 0 0O
| —_—
0 0 1 3 0 0 1 3 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

C4,3(-3)C4,2(2)C3,4(-1)C3 2(*1)54(é)53(%)C2,4(*3)CQ,3(*2)CI./1(*1)01,3(*1)01,2(*1) A=1y

A—1



To check, compute

Ca1,3(-3)C4,2(2)C5,4(-1)C3,2(-1)S4(1/6)S3(1/2)C2,4(- 5)02 3 )61 4(-1)C1,3(-1)C1,2(-1)
1 0 0 O 1 0 0 O 1 0 O 0 O
{0 1.0 0 0O 1 0 2 0O 1 O () () 1 -1 0
o o 1 -3 0O 0 1 0 0O 0 1 0 O 0 1 0
0O 0 O 1 0O 0 0 1 0O 0 -1 1 0O 0 O 1
1 0 O 0 1 0 0 0 1 0 0O O 1 0 0 O
0O 1 0 0 0 1 0 0 0 1 0 O 0 1 0 O
0O 0 1 0 0 O 1/2 0 O 0 1 0 0O -2 1 0
0O 0 O 1/6 0 O 0 1 0O -3 0 1 0O 0O 0 1
1 0O 0 O 1 0O 0 O 1 0O 0 O
0 1 0 O 0 1 0 O -1 1 0 0
0 0O 1 0 -1 0 1 0 0 0O 1 O
-1 0 0 1 0O 0 0 1 O 0 0 1
0 0
—11/6 3 -3/2 1/3 .
1 52 2 -2 and verify
16 1/2 -1/2 1/6
1 0 1 0 0 O 1 0 0 O
-11/6 3 -3/2 13101 11 1] [0 1 0 0
1 52 2 -12)|l1 2 4 8| o o0 1 0
16 1/2 -1/2 1/6)\1 3 9 27 00 0 1

You try:

1. Row reduce A = <_31 (1)) ONE step at a time, and use that process to

build the inverse of A. Actually compute the result, and then multiply it by A
to check your answer.

0
2. Repeat #1 for A = |1
2

=

)
0.
0
3. What is the inverse of P; ;7 of Si(A)? of Cp ()7

[Hint: How do you undo each corresponding row operation?]



LECTURE 13 EXERCISES

A:<? 9,1&:@» C=(1 U,D:(éi i).

(a) For each of the following, decide whether or not the product is defined. If so, compute it; if not, say
why not. (i) AB, (ii) BA, (iii) AC, (iv) CA, (v) BC, (vi) CB, (vii) CD, (viii) DC.

(b) Compare (CA)B (multiply CA and B) and C(AB) (multiply C' and AB).

¢ terms

—
(c) For ¢ € Z>1, we denote Al :="AA- .. A. For each of the following, decide whether or not the product
is defined. If so, compute it; if not, say why not. (i) A? (ii) B2 (iii) C? (iv) D?

2. Recall E; ; denotes a matrix with a 1 in row ¢, col j and 0’s elsewhere.
(a) Working in M3(F) = M33(F), let

X1 X2 X3
X=|Xo1 Xoo Xs3
X31 X3z2 X33

Compute (1) ELQX, (11) XELQ, (lli) E373X, (iV) XE373.

(b) Working more generally over M, (F) = M, ,(F), let X € M, (F) and let 1 <4,j,k, ¢ <n.
Describe/conjecture the following (i) B ; X, (i) XE;;, (iii) E;;XEye, (iv) E;jEpy.

3. The identity matrix I, is the n x n matrix with 1 and (¢,7)-entry for i = 1,...,n, and 0’s elsewhere.
For example,

1 0 100
L=(), L= , and I3=|0 1 0
01 001

(a) If f: F® — F3 is the function associated to I3, compute f((z,y,2)7).

(b) Let V be a finite-dimensional vector space over F' with dim(V) = n. Let B = (by,...,b,) be an
ordered basis of V. Compute Repg(id)7 the matrix representation of the identity map id : V — V,
and verify that it’s equal to I,,. [See Lecture 13 Warmup #3.]

(c¢) Use the fact that I, is the encoding of the identity map in any ordered basis to explain why X1, = X
and I; X = X for any X € My ((F).

(d) Verify [3¢| specifically for the following example, where B and D are from Problem
Compute (i) IQB, (li) BIl, (iii) IQD, (iV) DIg

(e) Note that I3 = Ey 1 + Ez2 + E33. Reconcile your answers to with the fact that I3X = X and
X3 = X for all X € M3(F).

(f) CAUTION!! The identity function is only represented by the identity matrix when the domain
and codomain bases are the same Consider the following ordered bases of R3:

1 0 0 0 0 1 1 1 1
5:< O),11],160 >, A=< 11,101,10 >, and B:< oj,11],11 >
0 0 1 0 1 0 0 0 1
Compute the following. (i) Repg(id), (ii) Rep5(id), (iii) RepZ(id), (iv) Repg(id).
(UYour answers may depend on whether some of i, j, k, ¢ are equal or not. “Describe” might be something like “the n x n

matrix whose ¢th column is....”

[2]1 promise that there will be good reasons to study the identity map expressed in mixed bases.



