Warmup:
Finish up Lecture 13 Exercises
(See end of packet.)

Selected answers and hints also on Moodle

Lecture 14:

Row operations as matrices Inverses

Homework 6 extension coming. . . BUT tonight is still the last day to get help.

Recall: A function $f: X \to Y$ is invertible if and only if it's bijective. What does that mean in terms of matrices?

Let X and Y be finite-dimensional vector spaces over a field F, and let $\varphi:X\to Y$ be a bijective linear function, a.k.a. an **isomorphism**. Since φ is bijective, there exists a (two-sided) inverse $\varphi^{-1}: Y \to X$ such that

$$\varphi^{-1} \circ \varphi = \mathrm{id}_X \qquad \text{and} \qquad \varphi \circ \varphi^{-1} = \mathrm{id}_Y.$$

$$X \biguplus \varphi^{-1} \qquad Y \biguplus \varphi \qquad \qquad Y \biguplus \varphi^{-1} \qquad Y \qquad \qquad \downarrow \varphi \qquad \qquad \downarrow Y \qquad \qquad \downarrow$$

- Q. Given an isomorphism $\varphi: X \to Y$, how can I compute φ^{-1} ?
- Q. If φ is defined by a matrix A (i.e. defined on an ordered basis), what is the matrix A^{-1} associated to φ^{-1} ? (A^{-1} is called the **inverse** of A.)

Some things we know:

Rank-nullity says $\dim(X) = \operatorname{rank}(\varphi) + \operatorname{nullity}(\varphi)$.

But φ injective implies $\operatorname{nullity}(\varphi) = 0$; and

 φ surjective implies that $rank(\varphi) = dim(Y)$.

So

$$\dim(X) = \dim(Y) = \operatorname{rank}(\varphi)$$

"Isomorphisms preserve dimension."

"Isomorphisms have full rank."

In terms of the associated matrices:

If $A = \operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}'}(\varphi)$ (with respect to fixed ordered bases $\mathcal{B} \subseteq X$ and $\mathcal{B}' \subseteq Y$), then

1. $A \in M_n(F)$, where $n = \dim(X) = \dim(Y)$; and

 $2. \operatorname{rank}(A) = n.$

"A is nonsingular"

Conversely, suppose $A \in M_n(F)$ encodes a function $\varphi : X \to Y$ (i.e. $\dim(X)$ and $\dim(Y)$ are both n, and $A = \operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}'}(\varphi)$ w.r.t. some ordered bases $\mathcal{B} \subseteq X$ and $\mathcal{B}' \subseteq Y$). If, additionally, we know that rank(A) = n...

- First, $n = \operatorname{rank}(A) = \operatorname{rank}(\varphi) = \dim(Y)$. So since Y is finite-dimensional and $\mathcal{R}(\varphi) \subseteq Y$ is a subspace, we know $\mathcal{R}(\varphi) = Y$. So φ is surjective.
- Rank-nullity says

$$n = \overbrace{\dim(X) = \operatorname{rank}(\varphi) + \operatorname{nullity}(\varphi)}^{\text{Rank-nullity Theorem}} = n + \operatorname{nullity}(\varphi).$$

So $\operatorname{nullity}(\varphi) = 0$; and hence φ is also injective.

So φ is an isomorphism.

Theorem. Let X and Y be finite-dimensional vector spaces over F, and let $\varphi: X \to Y$ be a linear function.

Then φ is an isomorphism if any only if

any associated matrix A is square and has full rank.

(*)

(*) More precisely:

For any ordered bases $\mathcal{B} \subseteq X$ and $\mathcal{B}' \subseteq Y$, we have

- (1) $|\mathcal{B}| = |\mathcal{B}'|$;
- (2) $A = \operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}'}(\varphi) \in M_n(F)$, where $n = |\mathcal{B}|$; and
- (3) $\operatorname{rank}(A) = n$.

"A is nonsingular"

Proof. See above; use Rank-Nullity theorem.

[CAUTION: This whole theorem makes less sense (and is false) if X is not finite-dimensional. See Homework 6.]

Corollary. A linear function φ associated to a matrix $A \in M_{k,\ell}(F)$ is an isomorphism if and only if A row reduces to an identity matrix.

Example. At the end of Lecture 12, we computed that with respect to the standard ordered bases

$$\mathcal{A}=\langle 1,x,x^2,x^3\rangle\subseteq \mathcal{P}_3(\mathbb{R})$$
 and $\mathcal{B}=\langle E_{1,1},E_{1,2},E_{2,1},E_{2,2}\rangle\subseteq M_2(\mathbb{R}),$ the function

$$f:\mathcal{P}_3(\mathbb{R}) o M_2(\mathbb{R})$$
 defined by $f(p(x)) = egin{pmatrix} p(0) & p(1) \\ p(2) & p(3) \end{pmatrix}$.

has matrix representation

$$A = \operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix}.$$

Now, A row reduces as

$$A \stackrel{\cdots}{\longmapsto} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 8 \\ 0 & 3 & 9 & 27 \end{pmatrix} \stackrel{\cdots}{\longmapsto} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 6 & 24 \end{pmatrix} \stackrel{\cdots}{\longmapsto} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \stackrel{\cdots}{\longmapsto} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = I_4.$$

So f is an isomorphism. But what is its inverse???

Row reduction operators

Goal: Use the row reduction algorithm to compute A^{-1}/φ^{-1} .

Recall that the three row operations were

$$row_i \leftrightarrow row_i$$
, $row_i \mapsto \lambda row_i$, $row_i \mapsto row_i + \mu row_i$,

where $\lambda, \mu \in F$ with $\lambda \neq 0$.

Key insight: On the Lecture 13 exercises, you saw that $E_{i,j}X$ takes the jth row of X and inserts it into the ith row of a matrix that's elsewhere all 0. For example, in $M_3(F)$,

$$E_{1,2}X = \begin{pmatrix} 0 & \mathbf{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} X_{1,1} & X_{1,2} & X_{1,3} \\ X_{2,1} & X_{2,2} & X_{2,3} \\ X_{3,1} & X_{3,2} & X_{3,3} \end{pmatrix} = \begin{pmatrix} X_{2,1} & X_{2,2} & X_{2,3} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

So we can build row operations by taking the right linear combinations of $E_{i,j}$'s acting on the left!

- 1. Row swapping. To swap row_i and row_j , add up:
 - insert row_i into row j;

 $E_{j,i}$

• insert \mathbf{row}_i into row i;

 $E_{i,j}$

▶ insert \mathbf{row}_k into into row k for all $k \neq i, j$.

 $E_{k,k}$

Define

$$P_{i,j} = E_{i,j} + E_{j,i} + \sum_{\substack{k=1,\ldots,n\\k\neq i,j}} E_{k,k}.$$

- **2.** Row scaling. To scale \mathbf{row}_i by λ , add up:
 - insert \mathbf{row}_i into row i and scale by λ ;

 $\lambda E_{i,i}$

▶ insert \mathbf{row}_k into into row k for all $k \neq i$.

 $E_{k,k}$

Define

$$S_i(\lambda) = \lambda E_{i,i} + \sum_{\substack{k=1,\ldots,n\\k\neq i}} E_{k,k}.$$
 [Book: $M_i(\lambda)$]

- **3. Row Combination.** To replace \mathbf{row}_i by $\mathbf{row}_i + \lambda \mathbf{row}_j$, add up:
 - insert \mathbf{row}_j into row i and scale by λ ;

 $\lambda E_{i,j}$

ightharpoonup insert \mathbf{row}_i into row i;

 $E_{i,i}$

• insert \mathbf{row}_k into into row k for all $k \neq i$.

 $E_{k,k}$

Define

$$C_{j,i}(\lambda) = \lambda E_{i,j} + I_n.$$

For example, in $M_4(F)$,

which is exactly the result of swapping $\mathbf{row}_1 \leftrightarrow \mathbf{row}_1$

For example, in $M_4(F)$,

which is exactly the result of scaling \mathbf{row}_1 by $\lambda!$

Permute
$$\mathbf{row}_i \leftrightarrow \mathbf{row}_j$$
: $P_{i,j} = E_{i,j} + E_{j,i} + \sum_{\substack{k=1,\dots,n \ k \neq i,j}} E_{k,k}$
Scale $\mathbf{row}_i \mapsto \lambda \mathbf{row}_i$: $S_i(\lambda) = \lambda E_{i,i} + \sum_{\substack{k=1,\dots,n \ k \neq i}} E_{k,k}$
Combine $\mathbf{row}_j \mapsto \lambda \mathbf{row}_i + \mathbf{row}_j$: $C_{i,j}(\lambda) = \lambda E_{j,i} + I_n$

Back to our example from Lecture 12:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{\mathbf{row}_2 \mapsto \mathbf{row}_2 - \mathbf{row}_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} = C_{1,2}(-1)A$$

$$\xrightarrow{\mathbf{row}_3 \mapsto \mathbf{row}_3 - \mathbf{row}_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} = C_{1,3}(-1)(C_{1,2}(-1)A)$$

$$\xrightarrow{\mathbf{row}_4 \mapsto \mathbf{row}_4 - \mathbf{row}_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 8 \\ 0 & 3 & 9 & 27 \end{pmatrix}$$

$$= C_{1,4}(-1)(C_{1,3}(-1)(C_{1,2}(-1)A))$$

:

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{C_{1,2}(-1)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{C_{1,3}(-1)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix}$$

$$\xrightarrow{C_{1,4}(-1)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 4 & 8 \\ 0 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{C_{2,3}(-2)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 6 \\ 0 & 3 & 9 & 27 \end{pmatrix} \xrightarrow{C_{2,4}(-3)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 6 & 24 \end{pmatrix}$$

$$\xrightarrow{S_3(1/2)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 6 & 24 \end{pmatrix} \xrightarrow{S_4(1/6)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 \end{pmatrix} \xrightarrow{C_{3,2}(-1)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

$$\xrightarrow{C_{3,4}(-1)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_{4,2}(2)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{C_{4,3}(-3)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

To check, compute

 $C_{4,3}(-3)C_{4,2}(2)C_{3,4}(-1)C_{3,2}(-1)S_{4}(1/6)S_{3}(1/2)C_{2,4}(-3)C_{2,3}(-2)C_{1,4}(-1)C_{1,3}(-1)C_{1,2}(-1)$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ -11/6 & 3 & -3/2 & 1/3 \\ 1 & -5/2 & 2 & -1/2 \\ -1/6 & 1/2 & -1/2 & 1/6 \end{pmatrix}, \text{ and verify}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/6 & 1/2 & -1/2 & 1/6 \end{pmatrix}, \text{ and verify}$$

$$\begin{pmatrix} -1/6 & 1/2 & -1/2 & 1/6 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -11/6 & 3 & -3/2 & 1/3 \\ 1 & -5/2 & 2 & -1/2 \\ -1/6 & 1/2 & -1/2 & 1/6 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

You try:

- **1.** Row reduce $A = \begin{pmatrix} -1 & 1 \\ 3 & 0 \end{pmatrix}$ **ONE** step at a time, and use that process to build the inverse of A. Actually compute the result, and then multiply it by A to check your answer.
- 2. Repeat #1 for $A = \begin{pmatrix} 0 & 1 & 5 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix}$.
- **3.** What is the inverse of $P_{i,j}$? of $S_k(\lambda)$? of $C_{\ell,m}(\lambda)$?

[Hint: How do you undo each corresponding row operation?]

1. Let

$$A = \begin{pmatrix} -1 & 0 \\ 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 4 & -1 \end{pmatrix}.$$

- (a) For each of the following, decide whether or not the product is defined. If so, compute it; if not, say why not. (i) AB, (ii) BA, (iii) AC, (iv) CA, (v) BC, (vi) CB, (vii) CD, (viii) DC.
- (b) Compare (CA)B (multiply CA and B) and C(AB) (multiply C and AB).

$$\ell$$
 terms

- (c) For $\ell \in \mathbb{Z}_{\geq 1}$, we denote $A^{\ell} := \overbrace{AA \cdots A}$. For each of the following, decide whether or not the product is defined. If so, compute it; if not, say why not. (i) A^2 (ii) B^2 (iii) C^2 (iv) D^2
- 2. Recall $E_{i,j}$ denotes a matrix with a 1 in row i, col j and 0's elsewhere.
 - (a) Working in $M_3(F) = M_{3,3}(F)$, let

$$X = \begin{pmatrix} X_{1,1} & X_{1,2} & X_{1,3} \\ X_{2,1} & X_{2,2} & X_{2,3} \\ X_{3,1} & X_{3,2} & X_{3,3} \end{pmatrix}.$$

Compute (i) $E_{1,2}X$, (ii) $XE_{1,2}$, (iii) $E_{3,3}X$, (iv) $XE_{3,3}$.

- (b) Working more generally over $M_n(F) = M_{n,n}(F)$, let $X \in M_n(F)$ and let $1 \le i, j, k, \ell \le n$. Describe/conjecture the following.^[1] (i) $E_{i,j}X$, (ii) $XE_{i,j}$, (iii) $E_{i,j}XE_{k,\ell}$, (iv) $E_{i,j}E_{k,\ell}$.
- 3. The **identity matrix** I_n is the $n \times n$ matrix with 1 and (i, i)-entry for i = 1, ..., n, and 0's elsewhere. For example,

$$I_1 = \begin{pmatrix} 1 \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{and} \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) If $f: F^3 \to F^3$ is the function associated to I_3 , compute $f((x, y, z)^T)$.
- (b) Let V be a finite-dimensional vector space over F with $\dim(V) = n$. Let $\mathcal{B} = \langle \mathbf{b}_1, \dots, \mathbf{b}_n \rangle$ be an ordered basis of V. Compute $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(\operatorname{id})$, the matrix representation of the identity map $\operatorname{id}: V \to V$, and verify that it's equal to I_n . [See Lecture 13 Warmup #3.]
- (c) Use the fact that I_n is the encoding of the identity map in any ordered basis to explain why $XI_{\ell} = X$ and $I_k X = X$ for any $X \in M_{k,\ell}(F)$.
- (d) Verify 3c specifically for the following example, where B and D are from Problem 1.

Compute (i) I_2B , (ii) BI_1 , (iii) I_2D , (iv) DI_3 .

- (e) Note that $I_3 = E_{1,1} + E_{2,2} + E_{3,3}$. Reconcile your answers to 2b with the fact that $I_3X = X$ and $XI_3 = X$ for all $X \in M_3(F)$.
- (f) **CAUTION!!** The identity function is only represented by the identity matrix when the domain and codomain bases are the same. [2] Consider the following ordered bases of \mathbb{R}^3 :

$$\mathcal{E} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \quad \mathcal{A} = \left\langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\rangle, \quad \text{and} \quad \mathcal{B} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle.$$

Compute the following. (i) $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{A}}(\operatorname{id})$, (ii) $\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(\operatorname{id})$, (iii) $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\operatorname{id})$, (iv) $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\operatorname{id})$.

^[1] Your answers may depend on whether some of i, j, k, ℓ are equal or not. "Describe" might be something like "the $n \times n$ matrix whose ith column is...."

^[2]I promise that there will be good reasons to study the identity map expressed in mixed bases.