Lecture 13 exercises

1. Let

$$A = \begin{pmatrix} -1 & 0 \\ 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 4 & -1 \end{pmatrix}.$$

- (a) For each of the following, decide whether or not the product is defined. If so, compute it; if not, say why not. (i) AB, (ii) BA, (iii) AC, (iv) CA, (v) BC, (vi) CB, (vii) CD, (viii) DC.
- (b) Compare (CA)B (multiply CA and B) and C(AB) (multiply C and AB).

 ℓ terms

- (c) For $n \in \mathbb{Z}_{\geq 1}$, we denote $A^{\ell} := \overrightarrow{AA \cdots A}$. For each of the following, decide whether or not the product is defined. If so, compute it; if not, say why not. (i) A^2 (ii) B^2 (iii) C^2 (iv) D^2
- 2. Recall $E_{i,j}$ denotes a matrix with a 1 in row *i*, col *j* and 0's elsewhere.
 - (a) Working in $M_3(F) = M_{3,3}(F)$, let

$$X = \begin{pmatrix} X_{1,1} & X_{1,2} & X_{1,3} \\ X_{2,1} & X_{2,2} & X_{2,3} \\ X_{3,1} & X_{3,2} & X_{3,3} \end{pmatrix}.$$

Compute (i) $E_{1,2}X$, (ii) $XE_{1,2}$, (iii) $E_{3,3}X$, (iv) $XE_{3,3}$.

- (b) Working more generally over $M_n(F) = M_{n,n}(F)$, let $X \in M_n(F)$ and let $1 \le i, j, k, \ell \le n$. Describe/conjecture the following.^[1] (i) $E_{i,j}X$, (ii) $XE_{i,j}$, (iii) $E_{i,j}XE_{k,\ell}$, (iv) $E_{i,j}E_{k,\ell}$.
- 3. The identity matrix I_n is the $n \times n$ matrix with 1 and (i, i)-entry for i = 1, ..., n, and 0's elsewhere. For example,

$$I_1 = (1), \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ and } I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) If $f: F^3 \to F^3$ is the function associated to I_3 , compute $f((x, y, z)^T)$.
- (b) Let V be a finite-dimensional vector space over F with $\dim(V) = n$. Let $\mathcal{B} = \langle \mathbf{b}_1, \dots, \mathbf{b}_n \rangle$ be an ordered basis of V. Compute $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(\operatorname{id})$, the matrix representation of the identity map $\operatorname{id} : V \to V$, and verify that it's equal to I_n . [See warmup #3.]
- (c) Use the fact that I_n is the encoding of the identity map in any ordered basis to explain why $XI_{\ell} = X$ and $I_k X = X$ for any $X \in M_{k,\ell}(F)$.
- (d) Verify 3c specifically for the following example, where B and D are from Problem 1.

Compute (i) I_2B , (ii) BI_1 , (iii) I_2D , (iv) DI_3 .

- (e) Note that $I_3 = E_{1,1} + E_{2,2} + E_{3,3}$. Reconcile your answers to 2b with the fact that $I_3X = X$ and $XI_3 = X$ for all $X \in M_3(F)$.
- (f) **CAUTION!!** The identity function is only represented by the identity matrix when the domain and codomain bases are the same.^[2] Consider the following ordered bases of \mathbb{R}^3 :

$$\mathcal{E} = \left\langle \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\rangle, \quad \mathcal{A} = \left\langle \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\rangle, \quad \text{and} \quad \mathcal{B} = \left\langle \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\rangle.$$
Compute the following: (i) $\operatorname{Pen}^{\mathcal{A}}(\operatorname{id})$, (ii) $\operatorname{Pen}^{\mathcal{B}}(\operatorname{id})$, (iii) $\operatorname{Pen}^{\mathcal{B}}(\operatorname{id})$, (iii) $\operatorname{Pen}^{\mathcal{B}}(\operatorname{id})$, (iii) $\operatorname{Pen}^{\mathcal{B}}(\operatorname{id})$.

Compute the following. (i) $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{A}}(\operatorname{id})$, (ii) $\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(\operatorname{id})$, (iii) $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\operatorname{id})$, (iv) $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\operatorname{id})$.

^[1]Your answers may depend on whether some of i, j, k, ℓ are equal or not. "Describe" might be something like "the $n \times n$ matrix whose *i*th column is..."

^[2]I promise that there will be good reasons to study the identity map expressed in mixed bases.