## Lecture 13 exercises

1. Let

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
3 & 2
\end{array}\right), \quad B=\binom{5}{2}, \quad C=\left(\begin{array}{ll}
1 & 1
\end{array}\right), \quad D=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 4 & -1
\end{array}\right) .
$$

(a) For each of the following, decide whether or not the product is defined. If so, compute it; if not, say why not. (i) $A B$, (ii) $B A$, (iii) $A C$, (iv) $C A$, (v) $B C$, (vi) $C B$, (vii) $C D$, (viii) $D C$.
(b) Compare $(C A) B$ (multiply $C A$ and $B$ ) and $C(A B)$ (multiply $C$ and $A B$ ).
(c) For $n \in \mathbb{Z}_{\geq 1}$, we denote $A^{\ell}:=\overbrace{A A \cdots A}^{\ell \text { terms }}$. For each of the following, decide whether or not the product is defined. If so, compute it; if not, say why not.
(i) $A^{2}$
(ii) $B^{2}$
(iii) $C^{2}$
(iv) $D^{2}$
2. Recall $E_{i, j}$ denotes a matrix with a 1 in row $i, \operatorname{col} j$ and 0 's elsewhere.
(a) Working in $M_{3}(F)=M_{3,3}(F)$, let

$$
X=\left(\begin{array}{lll}
X_{1,1} & X_{1,2} & X_{1,3} \\
X_{2,1} & X_{2,2} & X_{2,3} \\
X_{3,1} & X_{3,2} & X_{3,3}
\end{array}\right)
$$

Compute (i) $E_{1,2} X$, (ii) $X E_{1,2}$, (iii) $E_{3,3} X$, (iv) $X E_{3,3}$.
(b) Working more generally over $M_{n}(F)=M_{n, n}(F)$, let $X \in M_{n}(F)$ and let $1 \leq i, j, k, \ell \leq n$.

Describe/conjecture the following [1] $\quad$ (i) $E_{i, j} X, \quad$ (ii) $X E_{i, j}, \quad$ (iii) $E_{i, j} X E_{k, \ell,} \quad$ (iv) $E_{i, j} E_{k, \ell}$.
3. The identity matrix $I_{n}$ is the $n \times n$ matrix with 1 and $(i, i)$-entry for $i=1, \ldots, n$, and 0 's elsewhere. For example,

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \text { and } \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

(a) If $f: F^{3} \rightarrow F^{3}$ is the function associated to $I_{3}$, compute $f\left((x, y, z)^{T}\right)$.
(b) Let $V$ be a finite-dimensional vector space over $F$ with $\operatorname{dim}(V)=n$. Let $\mathcal{B}=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\rangle$ be an ordered basis of $V$. Compute $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{B}}(\mathrm{id})$, the matrix representation of the identity map id : $V \rightarrow V$, and verify that it's equal to $I_{n}$.
[See warmup \#3.]
(c) Use the fact that $I_{n}$ is the encoding of the identity map in any ordered basis to explain why $X I_{\ell}=X$ and $I_{k} X=X$ for any $X \in M_{k, \ell}(F)$.
(d) Verify 3 s specifically for the following example, where $B$ and $D$ are from Problem 1 . Compute (i) $I_{2} B$, (ii) $B I_{1}$, (iii) $I_{2} D$, (iv) $D I_{3}$.
(e) Note that $I_{3}=E_{1,1}+E_{2,2}+E_{3,3}$. Reconcile your answers to 2b with the fact that $I_{3} X=X$ and $X I_{3}=X$ for all $X \in M_{3}(F)$.
(f) CAUTION!! The identity function is only represented by the identity matrix when the domain and codomain bases are the same ${ }^{[2]}$ Consider the following ordered bases of $\mathbb{R}^{3}$ :

$$
\mathcal{E}=\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle, \quad \mathcal{A}=\left\langle\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle, \quad \text { and } \quad \mathcal{B}=\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\rangle .
$$

Compute the following. (i) $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{A}}(\mathrm{id})$, (ii) $\operatorname{Rep}_{\mathcal{A}}^{\mathcal{B}}(\mathrm{id})$, (iii) $\operatorname{Rep}_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id})$, (iv) $\operatorname{Rep}_{\mathcal{B}}^{\mathcal{E}}(\mathrm{id})$.

[^0]
[^0]:    ${ }^{[1]}$ Your answers may depend on whether some of $i, j, k, \ell$ are equal or not. "Describe" might be something like "the $n \times n$ matrix whose $i$ th column is...."
    ${ }^{[2]}$ I promise that there will be good reasons to study the identity map expressed in mixed bases.

