Dot product

Matrices as linear functions

Warmup.

1. Let $f: X \rightarrow Y$ be a function. Recall/prove each of the following statements.
(a) The function f is injective if and only if it has a left inverse, i.e. a function $g: Y \rightarrow X$ such that $g \circ f=\mathrm{id}_{X}$.
(b) The function f is surjective if and only if is has a right inverse, i.e. a function $h: Y \rightarrow X$ such that $f \circ h=\mathrm{id}_{Y}$.
(c) If f has both a left inverse $g: Y \rightarrow X$ and a right inverse $h: Y \rightarrow X$, then $g=h$. (In this case, we say f is invertible and write $g=h=f^{-1}$.
From (a) and (b), we know that f is invertible if and only if it's bijective.)
(d) Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both bijective functions.

Then $g \circ f$ is also bijective.
2. Let $f: U \rightarrow V$ and $g: V \rightarrow W$ be linear functions (where U, V, W are all vector spaces over F). Prove that $g \circ f: U \rightarrow W$ is also linear.

Injective linear functions (Let U and V denote vector spaces over F.)

Very Useful Theorem 1.

A linear function $h: U \rightarrow V$ is injective if and only if $\mathcal{N}(h)=0$.
Proof.
(\Rightarrow) Suppose h is injective. Compute $\mathcal{N}(h)$.
(\Leftarrow) Suppose $\mathcal{N}(h)=0$.
Suppose $h(\mathbf{x})=h(\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in U$.

Corollary 2. If $h: U \rightarrow V$ is linear and V is finite-dimensional, then the following are equivalent:

1. h is injective;
2. $\operatorname{nullity}(h)=0$;
3. $\operatorname{rank}(h)=\operatorname{dim}(U)$;

Rank-nullity: $\operatorname{dim}(U)=\operatorname{rank}(h)+\operatorname{nullity}(h)$
4. If \mathcal{B} is a basis for V, then $h(\mathcal{B})$ is a basis for $\mathcal{R}(h)$ (as a multiset).
(See our proof of Rank-Nullity/homework.)

Isomorphisms
(Let U and V denote vector spaces over F.)

We call a bijective linear function an isomorphism.

Example. Given an ordered basis $B=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\rangle$ of a vector space V, the representation $\operatorname{Rep}_{B}: V \rightarrow F^{n}$, given by

$$
c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \longmapsto\left(c_{1}, \ldots, c_{n}\right),
$$

is an isomorphism.
For example, using the standard ordered bases, we have the isomorphisms

$$
\begin{gathered}
\mathcal{P}_{n}(F) \rightarrow F^{n+1} \quad \text { defined by } c_{0}+c_{1} x+\cdots+c_{n} x^{n} \mapsto\left(c_{0}, c_{1}, \ldots, c_{n}\right) ; \\
\text { and } \\
M_{2}(F) \rightarrow F^{4} \quad \text { defined by } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto(a, b, c, d) .
\end{gathered}
$$

Lemma 3.
If $h: U \rightarrow V$ is an isomorphism, then $h^{-1}: V \rightarrow U$ is also an isomorphism.
Proof: Exercise! Hint: Similarly to the warmup,

$$
f^{-1}(\mathrm{v}+\mathrm{w})=f^{-1}\left(f\left(f^{-1}(\mathrm{v})\right)+f\left(f^{-1}(\mathrm{w})\right)\right) \ldots
$$

We say that U is isomorphic to V if there exists an isomorphism $h: U \rightarrow V$. If so, we write $U \cong V$.
(There might be lots of iso's!)
Examples: We just saw that $P_{n}(F) \cong F^{n+1}$ and $M_{2}(F) \cong F^{4}$.
Theorem 4. Isomorphism gives an equivalence relation on the set of vector spaces over a field F. Namely, the relation

$$
U \sim V \quad \text { whenever } \quad U \cong V
$$

is reflexive, symmetric, and transitive.
(See warmup \& Lemma 3.)

AMAZING Thm 5. For vector spaces U and V over a field F, $U \cong V \quad$ if and only if $\quad \operatorname{dim}(U)=\operatorname{dim}(V)$.
Proof. (\Rightarrow) Suppose there is an isomorphism $h: U \rightarrow V$. Let \mathcal{B} be a basis of U. Then by Cor. $2 \# 4, h(\mathcal{B})$ is a basis of V (as a multiset), and

$$
\operatorname{dim}(U)=|\mathcal{B}|=|h(\mathcal{B})|=\operatorname{dim}(V)
$$

(\Leftarrow) Suppose $\operatorname{dim}(U)=\operatorname{dim}(V)$. Let \mathcal{A} and \mathcal{B} be bases of U and V, respectively. Namely, $|\mathcal{A}|=|\mathcal{B}|$ (i.e. there's a bijective function $f: \mathcal{A} \rightarrow \mathcal{B}$).

Pf 1: If $|\mathcal{A}|=|\mathcal{B}|=n$, then both U and V are isomorphic to F^{n} by $\operatorname{Rep}_{\mathcal{A}}$ and $\operatorname{Rep}_{\mathcal{B}}$, respectively. Hence $U \cong V$ (by Thm. 4).

Pf 2: Since $\mathcal{B} \subseteq V$, we can linearly extend $f: \mathcal{A} \rightarrow \mathcal{B} \subseteq V$ to a linear function $h: U \rightarrow V$ that has $h(\mathbf{a})=f(\mathbf{a}) \in \mathcal{B}$ for all $\mathbf{a} \in \mathcal{A}$. By Cor. $2, h$ is an isomorphism. Hence $U \cong V$.

Isomorphisms

(Let U and V denote vector spaces over F.)

Corollary 6. If V is a finite-dimensional vector space, and $h: V \rightarrow V$ is linear map from V to itself, then the following are equivalent:

1. h is injective;
2. h is surjective;
3. h is an isomorphism.

We call a homomorphism of the form $h: V \rightarrow V$ an endomorphism.
Proof. Use dimension! Three BIG facts:
(I) The null space $\mathcal{N}(h)$ and the range $\mathcal{R}(h)$ are both subspaces of V.
(II) If Y is a vector space and $X \subseteq Y$ is a subspace, then $\operatorname{dim}(X) \leqslant \operatorname{dim}(Y)$. And if Y is finite dimensional, then

$$
\operatorname{dim}(X)=\operatorname{dim}(Y) \quad \text { if and only if } \quad X=Y .
$$

(III) Thm. 5: $U \cong V$ if and only if $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Caution: If V is infinite-dimensional, there are linear maps that are injective but not surjective, and vice versa.
Examples:

$$
\begin{aligned}
& f: \mathbb{R}[x] \rightarrow \mathbb{R}[x] \text { by } p(x) \mapsto p\left(x^{2}\right) \\
& d: \mathbb{R}[x] \rightarrow \mathbb{R}[x] \text { by } p(x) \mapsto \frac{d}{d x} p(x) \\
& \iota: \mathbb{R}[x] \rightarrow \mathbb{R}[x] \text { by } p(x) \mapsto \int_{0}^{x} p(t) d t
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{cccc|c}
3 & 2 & -1 & 0 & b_{1} \\
4 & 0 & -5 & 1 & b_{2} \\
0 & 1 & 2 & 3 & b_{3}
\end{array}\right) \\
\text { encodes the linear system } \\
\left(\begin{array}{ccccc}
3 x_{1} & + & 2 x_{2} & + & (-1) x_{3} \\
4 x_{1} & + & 0 & x_{4} \\
0 x_{1} & + & x_{2} & + & (-5) x_{3} \\
(1) x_{2} & + & (1) x_{4} \\
2 & x_{3} & + & 3 x_{4}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
\end{gathered}
$$

Define the dot product of two vectors in F^{n} by $\quad: F^{n} \times F^{n} \rightarrow F$

$$
\left(c_{1}, c_{2}, \ldots, c_{n}\right) \cdot\left(d_{1}, d_{2}, \ldots, d_{n}\right):=c_{1} d_{1}+c_{2} d_{2}+\cdots+c_{n} d_{n}
$$

For example, for any $x_{1}, \ldots, x_{n} \in F$,

$$
\begin{aligned}
& (3,2,-1,0) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=3 x_{1}+2 x_{2}+(-1) x_{3}+0 x_{4}, \\
& (4,0,-5,1) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=4 x_{1}+0 x_{2}+(-5) x_{3}+(1) x_{4}, \text { and } \\
& (0,1,2,3) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0 x_{1}+(1) x_{2}+2 x_{3}+3 x_{4} .
\end{aligned}
$$

So the above linear system is also encoded by

$$
\left(\begin{array}{c}
(3,2,-1,0) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
(4,0,-5,1) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
(0,1,2,3) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

Notice

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \mapsto\left(\begin{array}{c}
(3,2,-1,0) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
(4,0,-5,1) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
(0,1,2,3) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right)
$$

defines a function $h: F^{4} \mapsto F^{3}$! For example,

$$
\begin{aligned}
h\left(\left(\begin{array}{c}
1 \\
5 \\
-2 \\
0
\end{array}\right)\right) & =\left(\begin{array}{c}
(3,2,-1,0) \cdot(1,5,-2,0) \\
(4,0,-5,1) \cdot(1,5,-2,0) \\
(0,1,2,3) \cdot(1,5,-2,0)
\end{array}\right) \\
& =\left(\begin{array}{c}
3(1)+2(5)+(-1)(-2)+0(0) \\
4(1)+0(5)+(-5)(-2)+(1)(0) \\
0(1)+(1)(5)+2(-2)+3(0)
\end{array}\right)=\left(\begin{array}{c}
15 \\
14 \\
1
\end{array}\right)
\end{aligned}
$$

It turns out that this is a linear function! [See HW 6 for properties of dot product.] Specifically, h is the linear extension of the function

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \mapsto\left(\begin{array}{l}
3 \\
4 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \mapsto\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) \mapsto\left(\begin{array}{c}
-1 \\
-5 \\
2
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \mapsto\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)
$$

To a matrix $A \in M_{k, \ell}(F)$,

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, \ell} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, \ell} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k, 1} & a_{k, 2} & \cdots & a_{k, \ell}
\end{array}\right)
$$

we associate a function $A: F^{\ell} \rightarrow F^{k}$ given by

$$
A:\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{\ell}
\end{array}\right) \mapsto\left(\begin{array}{c}
\left(a_{1,1}, \ldots, a_{1, \ell}\right) \cdot\left(v_{1}, \ldots, v_{\ell}\right) \\
\left(a_{2,1}, \ldots, a_{2, \ell}\right) \cdot\left(v_{1}, \ldots, v_{\ell}\right) \\
\vdots \\
\left(a_{k, 1}, \ldots, a_{k, \ell}\right) \cdot\left(v_{1}, \ldots, v_{\ell}\right)
\end{array}\right) \quad \text { i.e. } \quad A: \mathbf{v} \mapsto\left(\begin{array}{c}
\mathbf{r}_{1} \cdot \mathbf{v}^{T} \\
\mathbf{r}_{2} \cdot \mathbf{v}^{T} \\
\vdots \\
\mathbf{r}_{k} \cdot \mathbf{v}^{T}
\end{array}\right) \text {, }
$$

where \mathbf{r}_{i} is the i th row vector of A, and \mathbf{v}^{T} is the transpose of \mathbf{v} (from Homework 4). Notation: write $A v$ to mean $A(\mathbf{v})$.
Example. Back to our example from before,

$$
\left(\begin{array}{cccc|c}
3 & 2 & -1 & 0 & b_{1} \\
4 & 0 & -5 & 1 & b_{2} \\
0 & 1 & 2 & 3 & b_{3}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
3 & 2 & -1 & 0 \\
4 & 0 & -5 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

mean the same thing!

You try: Let

$$
A=\left(\begin{array}{ccc}
0 & 1 & 3 \\
-1 & 2 & -1
\end{array}\right): F^{3} \mapsto F^{2}
$$

(a) For $\mathbf{v}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in F^{3}$, compute $A \mathbf{v}$.
(b) Recall that the standard (ordered) basis of F^{3} is

$$
\mathcal{E}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle, \quad \text { where } \quad \mathbf{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \mathbf{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Compute $A \mathbf{e}$ for each $\mathbf{e} \in \mathcal{E}$.
(c) Compute $\mathcal{N}(A)$ (the vectors $\mathbf{v} \in F^{3}$ for which $A \mathbf{v}=\mathbf{0}_{F^{2}}$).
(d) What did you notice about your answer to part (b)? Can you prove your answer for a general matrix?
(e) How does the range of the function A relate to spaces we've studied before having to do with matrices?
(f) How does the rank of the function A relate to statistics we've studied before having to do with matrices?
(g) How does the nullspace of A relate spaces we've studied before having to do with matrices? nullity?

Solutions to warmup

1. Let $f: X \rightarrow Y$ be a function. Recall/prove each of the following statements.
(a) The function f is injective if and only if it has a left inverse, i.e. a function $g: Y \rightarrow X$ such that $g \circ f=\mathrm{id}_{X}$.
(\Rightarrow) Build g ! For each $y \in f(X)$, there is exactly on $x_{y} \in X \mathrm{w} /$ $f\left(x_{y}\right)=y$; define $g(y)=x_{y}$. And for $y \in Y-f(Y)$, define $g(y)$ arbitrarily.
(\Leftarrow) If $f(x)=f\left(x^{\prime}\right)$, then $x=g(f(x))=g\left(f\left(x^{\prime}\right)\right)=x^{\prime}$.
(b) The function f is surjective if and only if is has a right inverse, i.e. a function $h: Y \rightarrow X$ such that $f \circ h=\mathrm{id}_{Y}$.
(\Rightarrow) Build h ! For each $y \in Y$, choose one $x_{y} \in f^{-1}(y)$, and define $h(y)=x_{y}$.
(\Leftarrow) If $y \in Y$, then $f(h(y))=y$, so $y \in f(X)$.
(c) If f has both a left inverse $g: Y \rightarrow X$ and a right inverse $h: Y \rightarrow X$, then $g=h$. (In this case, we say f is invertible and write $g=h=f^{-1}$.
From (a) and (b), we know that f is invertible if and only if it's bijective.)
Pf. We have $h=\operatorname{id}_{Y} \circ h=(g \circ f) \circ h=g \circ(f \circ h)=g \circ \mathrm{id}_{Y}=g$.
(d) Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both bijective functions.

Then $g \circ f$ is also bijective.
Pf. Since f and g are bijective, they have two-sided inverses f^{-1} and g^{-1}. Then $f^{-1} \circ g^{-1}$ is a two-sided inverse for $g \circ f$.
2. Let $f: U \rightarrow V$ and $g: V \rightarrow W$ be linear functions (where U, V, W are all vector spaces over F). Prove that $g \circ f: U \rightarrow W$ is also linear.
Pf. For all $\mathbf{u}, \mathbf{v} \in U$ and $\lambda \in F$, we have

$$
\begin{aligned}
(g \circ f)(\mathbf{u}+\mathbf{v}) & =g(f(\mathbf{u}+\mathbf{v})) \\
& =g(f(\mathbf{u})+f(\mathbf{v})) \\
& =g(f(\mathbf{u}))+g(f(\mathbf{v})) \\
& =(g \circ f)(\mathbf{u})+(g \circ f)(\mathbf{v})
\end{aligned}
$$

and

$$
\begin{aligned}
(g \circ f)(\lambda \mathbf{u}) & =g(f(\lambda \mathbf{u})) \\
& =g(\lambda f(\mathbf{u})) \\
& =\lambda g(f(\mathbf{u})) \\
& =\lambda(g \circ f)(\mathbf{u}) .
\end{aligned}
$$

