Lecture 11:

Isomorphisms

Dot product

Matrices as linear functions

Warmup.

- 1. Let $f: X \to Y$ be a function. Recall/prove each of the following statements.
 - (a) The function f is injective if and only if it has a left inverse, i.e. a function $g: Y \to X$ such that $g \circ f = id_X$.
 - (b) The function f is surjective if and only if is has a right inverse, i.e. a function $h: Y \to X$ such that $f \circ h = id_Y$.
 - (c) If f has both a left inverse $g: Y \to X$ and a right inverse $h: Y \to X$, then g = h. (In this case, we say f is invertible and write $g = h = f^{-1}$. From (a) and (b), we know that f is invertible if and only if it's bijective.)
 - (d) Suppose $f: X \to Y$ and $g: Y \to Z$ are both bijective functions. Then $g \circ f$ is also bijective.
- 2. Let $f: U \to V$ and $g: V \to W$ be linear functions (where U, V, W are all vector spaces over F). Prove that $g \circ f: U \to W$ is also linear.

Injective linear functions (Let U and V denote vector spaces over F.)

Very Useful Theorem 1.

A linear function $h: U \to V$ is injective if and only if $\mathcal{N}(h) = 0$. Proof. (\Rightarrow) Suppose h is injective. Compute $\mathcal{N}(h)$.

(\Leftarrow) Suppose $\mathcal{N}(h) = 0$. Suppose $h(\mathbf{x}) = h(\mathbf{y})$ for some $\mathbf{x}, \mathbf{y} \in U$.

Corollary 2. If $h: U \to V$ is linear and V is finite-dimensional, then the following are equivalent:

- 1. *h* is injective;
- 1. *n* is injective, 2. nullity(h) = 0; Thm. 1 3. rank(h) = dim(U); Rank-nullity: dim(U) = rank(h) + nullity(h)
- 4. If \mathcal{B} is a basis for V, then $h(\mathcal{B})$ is a basis for $\mathcal{R}(h)$ (as a multiset). (See our proof of Rank-Nullity/homework.)

Isomorphisms (Let U and V denote vector spaces over F.)

We call a bijective linear function an isomorphism.

Example. Given an ordered basis $B = \langle \mathbf{b}_1, \dots, \mathbf{b}_n \rangle$ of a vector space V, the representation $\operatorname{Rep}_B: V \to F^n$, given by

$$c_1\mathbf{b}_1 + \cdots + c_n\mathbf{b}_n \longmapsto (c_1, \ldots, c_n),$$

is an isomorphism.

For example, using the standard ordered bases, we have the isomorphisms

$$\mathcal{P}_n(F) \to F^{n+1} \quad \text{defined by} \quad c_0 + c_1 x + \dots + c_n x^n \mapsto (c_0, c_1, \dots, c_n);$$

and
$$M_2(F) \to F^4 \quad \text{defined by} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c, d).$$

Lemma 3.

If $h: U \to V$ is an isomorphism, then $h^{-1}: V \to U$ is also an isomorphism.

Proof: Exercise! *Hint:* Similarly to the warmup,

$$f^{-1}(\mathbf{v} + \mathbf{w}) = f^{-1}(f(f^{-1}(\mathbf{v})) + f(f^{-1}(\mathbf{w}))).$$

Isomorphisms

We say that U is isomorphic to V if there exists an isomorphism $h: U \to V$. If so, we write $U \cong V$. (There might be lots of iso's!)

Examples: We just saw that $P_n(F) \cong F^{n+1}$ and $M_2(F) \cong F^4$.

Theorem 4. Isomorphism gives an equivalence relation on the set of vector spaces over a field F. Namely, the relation

 $U \sim V$ whenever $U \cong V$,

is reflexive, symmetric, and transitive.

(See warmup & Lemma 3.)

AMAZING Thm 5. For vector spaces U and V over a field F, $U \cong V$ if and only if $\dim(U) = \dim(V)$.

Proof. (\Rightarrow) Suppose there is an isomorphism $h : U \to V$. Let \mathcal{B} be a basis of U. Then by Cor. 2 #4, $h(\mathcal{B})$ is a basis of V (as a multiset), and

$$\dim(U) = |\mathcal{B}| = |h(\mathcal{B})| = \dim(V).$$

(\Leftarrow) Suppose dim(U) = dim(V). Let \mathcal{A} and \mathcal{B} be bases of U and V, respectively. Namely, $|\mathcal{A}| = |\mathcal{B}|$ (i.e. there's a bijective function $f : \mathcal{A} \to \mathcal{B}$).

Pf 1: If $|\mathcal{A}| = |\mathcal{B}| = n$, then both U and V are isomorphic to F^n by $\operatorname{Rep}_{\mathcal{A}}$ and $\operatorname{Rep}_{\mathcal{B}}$, respectively. Hence $U \cong V$ (by Thm. 4).

Pf 2: Since $\mathcal{B} \subseteq V$, we can linearly extend $f : \mathcal{A} \to \mathcal{B} \subseteq V$ to a linear function $h : U \to V$ that has $h(\mathbf{a}) = f(\mathbf{a}) \in \mathcal{B}$ for all $\mathbf{a} \in \mathcal{A}$. By Cor. 2, h is an isomorphism. Hence $U \cong V$.

Isomorphisms (Let U and V denote vector spaces over F.) Corollary 6. If V is a finite-dimensional vector space, and $h: V \rightarrow V$ is

linear map from V to itself, then the following are equivalent:

- **1**. h is injective;
- **2**. h is surjective;
- 3. h is an isomorphism.

We call a homomorphism of the form $h: V \rightarrow V$ an endomorphism.

Proof. Use dimension! Three BIG facts:

- (1) The null space $\mathcal{N}(h)$ and the range $\mathcal{R}(h)$ are both subspaces of V.
- (II) If Y is a vector space and $X \subseteq Y$ is a subspace, then $\dim(X) \leq \dim(Y)$. And if Y is *finite dimensional*, then

 $\dim(X) = \dim(Y)$ if and only if X = Y.

(III) Thm. 5: $U \cong V$ if and only if $\dim(U) = \dim(V)$.

Caution: If V is infinite-dimensional, there are linear maps that are injective but not surjective, and vice versa.

Examples:

$$\begin{split} f &: \mathbb{R}[x] \to \mathbb{R}[x] \text{ by } p(x) \mapsto p(x^2) \\ d &: \mathbb{R}[x] \to \mathbb{R}[x] \text{ by } p(x) \mapsto \frac{d}{dx} p(x) \\ \iota &: \mathbb{R}[x] \to \mathbb{R}[x] \text{ by } p(x) \mapsto \int_0^x p(t) \ dt \end{split}$$

Back to matrices!

The augmented matrix

$$\begin{pmatrix} 3 & 2 & -1 & 0 & | & b_1 \\ 4 & 0 & -5 & 1 & | & b_2 \\ 0 & 1 & 2 & 3 & | & b_3 \end{pmatrix}$$

encodes the linear system

$$\begin{pmatrix} 3x_1 & + & 2 & x_2 & + & (-1)x_3 & + & 0 & x_4 \\ 4x_1 & + & 0 & x_2 & + & (-5)x_3 & + & (1)x_4 \\ 0x_1 & + & (1)x_2 & + & 2 & x_3 & + & 3 & x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Define the dot product of two vectors in F^n by

$$\cdot: F^n \times F^n \to F$$

$$(c_1, c_2, \dots, c_n) \cdot (d_1, d_2, \dots, d_n) := c_1 d_1 + c_2 d_2 + \dots + c_n d_n.$$

For example, for any $x_1, \ldots, x_n \in F$,

$$(3, 2, -1, 0) \cdot (x_1, x_2, x_3, x_4) = 3x_1 + 2x_2 + (-1)x_3 + 0x_4, (4, 0, -5, 1) \cdot (x_1, x_2, x_3, x_4) = 4x_1 + 0x_2 + (-5)x_3 + (1)x_4, \text{ and} (0, 1, 2, 3) \cdot (x_1, x_2, x_3, x_4) = 0x_1 + (1)x_2 + 2x_3 + 3x_4.$$

So the above linear system is *also* encoded by

$$\begin{pmatrix} (3, 2, -1, 0) \cdot (x_1, x_2, x_3, x_4) \\ (4, 0, -5, 1) \cdot (x_1, x_2, x_3, x_4) \\ (0, 1, 2, 3) \cdot (x_1, x_2, x_3, x_4) \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Notice

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \mapsto \begin{pmatrix} (3, 2, -1, 0) \cdot (x_1, x_2, x_3, x_4) \\ (4, 0, -5, 1) \cdot (x_1, x_2, x_3, x_4) \\ (0, 1, 2, 3) \cdot (x_1, x_2, x_3, x_4) \end{pmatrix}$$

defines a function $h: F^4 \mapsto F^3!$ For example,

$$h\left(\begin{pmatrix}1\\5\\-2\\0\end{pmatrix}\right) = \begin{pmatrix}(3, 2, -1, 0) \cdot (1, 5, -2, 0)\\(4, 0, -5, 1) \cdot (1, 5, -2, 0)\\(0, 1, 2, 3) \cdot (1, 5, -2, 0)\end{pmatrix}$$
$$= \begin{pmatrix}3(1) + 2 (5) + (-1)(-2) + 0 (0)\\4(1) + 0 (5) + (-5)(-2) + (1)(0)\\0(1) + (1)(5) + 2 (-2) + 3 (0)\end{pmatrix} = \begin{pmatrix}15\\14\\1\end{pmatrix}$$

It turns out that this is a linear function! [See HW 6 for properties of dot product.] Specifically, h is the linear extension of the function

$$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \mapsto \begin{pmatrix} 3\\4\\0 \end{pmatrix}, \qquad \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \mapsto \begin{pmatrix} 2\\0\\1 \end{pmatrix}, \qquad \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \mapsto \begin{pmatrix} -1\\-5\\2 \end{pmatrix}, \qquad \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \mapsto \begin{pmatrix} 0\\1\\3 \end{pmatrix}.$$

To a matrix $A \in M_{k,\ell}(F)$,

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,\ell} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,\ell} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & a_{k,2} & \cdots & a_{k,\ell} \end{pmatrix},$$

we associate a function $A:F^\ell\to F^k$ given by

$$A: \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_\ell \end{pmatrix} \mapsto \begin{pmatrix} (a_{1,1}, \dots, a_{1,\ell}) \cdot (v_1, \dots, v_\ell) \\ (a_{2,1}, \dots, a_{2,\ell}) \cdot (v_1, \dots, v_\ell) \\ \vdots \\ (a_{k,1}, \dots, a_{k,\ell}) \cdot (v_1, \dots, v_\ell) \end{pmatrix} \quad \text{i.e.} \quad A: \mathbf{v} \mapsto \begin{pmatrix} \mathbf{r}_1 \cdot \mathbf{v}^T \\ \mathbf{r}_2 \cdot \mathbf{v}^T \\ \vdots \\ \mathbf{r}_k \cdot \mathbf{v}^T \end{pmatrix},$$

where \mathbf{r}_i is the *i*th row vector of A, and \mathbf{v}^T is the transpose of \mathbf{v} (from Homework 4). Notation: write $A\mathbf{v}$ to mean $A(\mathbf{v})$.

Example. Back to our example from before,

$$\begin{pmatrix} 3 & 2 & -1 & 0 & | & b_1 \\ 4 & 0 & -5 & 1 & | & b_2 \\ 0 & 1 & 2 & 3 & | & b_3 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 3 & 2 & -1 & 0 \\ 4 & 0 & -5 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

mean the same thing!

You try: Let

$$A = \begin{pmatrix} 0 & 1 & 3 \\ -1 & 2 & -1 \end{pmatrix} : F^3 \mapsto F^2.$$

(a) For
$$\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in F^3$$
, compute $A\mathbf{v}$.

(b) Recall that the standard (ordered) basis of F^3 is

$$\mathcal{E} = \langle \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \rangle, \quad \text{where} \quad \mathbf{e}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \ \mathbf{e}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Compute Ae for each $e \in \mathcal{E}$.

- (c) Compute $\mathcal{N}(A)$ (the vectors $\mathbf{v} \in F^3$ for which $A\mathbf{v} = \mathbf{0}_{F^2}$).
- (d) What did you notice about your answer to part (b)? Can you prove your answer for a general matrix?
- (e) How does the range of the function A relate to spaces we've studied before having to do with matrices?
- (f) How does the rank of the function A relate to statistics we've studied before having to do with matrices?
- (g) How does the nullspace of A relate spaces we've studied before having to do with matrices? nullity?

Solutions to warmup

- 1. Let $f: X \to Y$ be a function. Recall/prove each of the following statements.
 - (a) The function f is injective if and only if it has a left inverse, i.e. a function $g: Y \to X$ such that $g \circ f = id_X$.

(⇒) Build g! For each $y \in f(X)$, there is exactly on $x_y \in X$ w/ $f(x_y) = y$; define $g(y) = x_y$. And for $y \in Y - f(Y)$, define g(y) arbitrarily.

(\Leftarrow) If f(x) = f(x'), then x = g(f(x)) = g(f(x')) = x'.

(b) The function f is surjective if and only if is has a right inverse, i.e. a function $h: Y \to X$ such that $f \circ h = id_Y$.

(⇒) Build *h*! For each $y \in Y$, choose one $x_y \in f^{-1}(y)$, and define $h(y) = x_y$.

- (\Leftarrow) If $y \in Y$, then f(h(y)) = y, so $y \in f(X)$.
- (c) If f has both a left inverse $g: Y \to X$ and a right inverse $h: Y \to X$, then g = h. (In this case, we say f is invertible and write $g = h = f^{-1}$. From (a) and (b), we know that f is invertible if and only if it's bijective.) Pf. We have $h = id_Y \circ h = (g \circ f) \circ h = g \circ (f \circ h) = g \circ id_Y = g$.
- (d) Suppose $f: X \to Y$ and $g: Y \to Z$ are both bijective functions. Then $g \circ f$ is also bijective.

Pf. Since f and g are bijective, they have two-sided inverses f^{-1} and g^{-1} . Then $f^{-1} \circ g^{-1}$ is a two-sided inverse for $g \circ f$.

2. Let $f: U \to V$ and $g: V \to W$ be linear functions (where U, V, W are all vector spaces over F). Prove that $g \circ f: U \to W$ is also linear.

Pf. For all $\mathbf{u}, \mathbf{v} \in U$ and $\lambda \in F$, we have

$$(g \circ f)(\mathbf{u} + \mathbf{v}) = g(f(\mathbf{u} + \mathbf{v}))$$

= $g(f(\mathbf{u}) + f(\mathbf{v}))$
= $g(f(\mathbf{u})) + g(f(\mathbf{v}))$
= $(g \circ f)(\mathbf{u}) + (g \circ f)(\mathbf{v})$

and

$$(g \circ f)(\lambda \mathbf{u}) = g(f(\lambda \mathbf{u}))$$
$$= g(\lambda f(\mathbf{u}))$$
$$= \lambda g(f(\mathbf{u}))$$
$$= \lambda (g \circ f)(\mathbf{u}).$$