Lecture 11:

Isomorphisms

Dot product

Matrices as linear functions

Warmup.

1. Let f: X — Y be a function. Recall /prove each of the following
statements.

(a) The function f is injective if and only if it has a left inverse, i.e. a function
g:Y — X such that go f = idx.

(b) The function f is surjective if and only if is has a right inverse, i.e. a
function h : Y — X such that f o h = idy.

(c) If f has both a left inverse g : Y — X and a right inverse h : Y — X,
then g = h. (In this case, we say f is invertible and write g = h = .
From (a) and (b), we know that f is invertible if and only if it's bijective.)

(d) Suppose f: X — Y and g: Y — Z are both bijective functions.

Then go f is also bijective.

2. Let f:U —V and g: V — W be linear functions (where U, V, W are all
vector spaces over F'). Prove that go f : U — W is also linear.



Injective linear functions (Let U and V denote vector spaces over F'.)

Very Useful Theorem 1.
A linear function h : U — V is injective if and only if V'(h) = 0.

Proof.
(=) Suppose h is injective. Compute N'(h).

(<) Suppose N'(h) = 0.
Suppose h(x) = h(y) for some x,y € U.

Corollary 2. If h: U — V is linear and V is finite-dimensional, then the
following are equivalent:

1. h is injective; 3
Thm. 1
2. nullity(h) = 0;
? Rank-nullity: dim(U) = rank(h) + nullity(h)
3. rank(h) = dim(U);

4. If B is a basis for V, then h(B) is a basis for R(h) (as a multiset).
(See our proof of Rank-Nullity/homework.)

|Somorphisms (Let U and V denote vector spaces over F'.)

We call a bijective linear function an isomorphism.

Example. Given an ordered basis B = (by,...,b,) of a vector space V, the
representation Repg : V — I, given by

by + -+ epby — (e1,...,¢n),

is an isomorphism.
For example, using the standard ordered bases, we have the isomorphisms

Pn(F) — F""1 defined by co+ ciz+ - + cpxz™ — (co,c1,. .., ¢n);
and
My(F) — F*  defined by (Z Z) — (a,b,c,d).
Lemma 3.
If h: U — V is an isomorphism, then h=1 : V' — U is also an isomorphism.

Proof: Exercise! Hint: Similarly to the warmup,

A +w) =) + (W)



|somorphisms (Let U and V denote vector spaces over F'.)

We say that U is isomorphic to V if there exists an isomorphism h: U — V.

If so, we write [ =~ V] (There might be lots of iso’s!)
Examples: We just saw that P, (F) =~ F" ™! and My(F) =~ F*.

Theorem 4. Isomorphism gives an equivalence relation on the set of vector
spaces over a field F'. Namely, the relation

U~V whenever U=V,

is reflexive, symmetric, and transitive. (See warmup & Lemma 3.)

AMAZING Thm 5. For vector spaces U and V over a field F,
U=V ifandonlyif dim(U) = dim(V).
Proof. (=) Suppose there is an isomorphism h : U — V. Let B be a basis of
U. Then by Cor. 2 #4, h(B) is a basis of V' (as a multiset), and
dim(U) = |B| = |h(B)| = dim(V).

(<) Suppose dim(U) = dim(V'). Let A and B be bases of U and V,
respectively. Namely, |A| = |B| (i.e. there's a bijective function f : A — B).

Pf 1: If |A| = |B| = n, then both U and V' are isomorphic to F'" by Rep 4
and Repp, respectively. Hence U =~ V' (by Thm. 4).

Pf 2: Since B < V, we can linearly extend f : A — B < V to a linear function
h:U — V that has h(a) = f(a) € B for all ae A. By Cor. 2, his an
isomorphism. Hence U = V. [



|somorphisms (Let U and V denote vector spaces over F'.)
Corollary 6. If V is a finite-dimensional vector space, and h: V — V' is
linear map from V to itself, then the following are equivalent:

1. h is injective;

2. h is surjective;

3. h is an isomorphism.
We call a homomorphism of the form h : V' — V an endomorphism.
Proof. Use dimension! Three BIG facts:

(I) The null space N/(h) and the range R(h) are both subspaces of V.

(I) If Y is a vector space and X C Y is a subspace, then dim(X) < dim(Y’). And
if Y is finite dimensional, then

dim(X) =dim(Y) ifandonlyif X =Y.
(1) Thm. 5: U =~ V if and only if dim(U) = dim(V').

Caution: If V' is infinite-dimensional, there are linear maps that are injective
but not surjective, and vice versa.

Examples:

—
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R[z] by p(x) — p(z?)
d: R[z] — R[z] by p(z) — ‘Lp(x)
R[z] by p(z) — §; p(t) dt

=
&
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Back to matrices! The augmented matrix
3 2 =1 0]b
4 0 =5 1]bg
0 1 2 3|bs
encodes the linear system

3r1  + 2 x9 + (—1)333 + 0 x4 by
dzy + Oxo + (=Hzs + (Lzg |=| b2
Ozy + (1)%2 + 2 x3 + 3 T4 b3
Define the dot product of two vectors in F'™ by S F" X F" > F

(61,62, .. .,Cn) . (dl,dg, .. ,dn) = c1dy + cado + - - + ¢ d,,.
For example, for any z1,...,x, € F,

(3,2,—1,0) - (z1, 22,23, 74) = 321 + 222 + (—1)x3 + Oy,
(4,0,=5,1) - (z1, 22,23, 4) = 421 + Ox2 + (—=5)x3 + (1)z4, and
(0,1, 2,3)(z1,22,23,24) = 0x1 + (1)z2 + 223 + 3z4.

So the above linear system is also encoded by

(37 27 _17 ()) ' (xl,x2,$3,334) bl
(4a 07 _57 1) ' (x1,$2,$3,$4) = b2
(07 17 27 '5) ' ($1,$2,$3,$4) b3
Notice
i; (37 27 _17 (]) : ($1,$2,$3,I4)
T3 — (47 07 _57 1) ' ('7/117:1:27'7;37'734)
T4 (07 17 27 3) : (371,332,[173,[[’4)

defines a function h : F* — F3! For example,

. (3,2, —1,0) - (1,5,—-2,0)
| )= (4,0, =5, 1) - (1,5,-2,0)
0 0,1, 2,3)-(1,5,-2,0)

3(1) + 2 (5) + (=1)(=2) + 0 (0) 15

= 4)+ 00B)+ (=5)(=2)+ (1)) | =114

01 + (H)(B)+ 2 (—=2)+ 3 (0) 1

It turns out that this is a linear function! [See HW 6 for properties of dot
product.] Specifically, h is the linear extension of the function

1 3 0 2 0 1 0 0
0 1 0 0 ,

— | 4], — (0], — [ =51, — |1
0 0 0 | 1 ) 0 ;
0 0 0 1 ‘



To a matrix A € My, o(F),

a1 air2 - Qiy

a1 G222 -+ G2y
A= ,

ap1 Qg2 - Gy

we associate a function A : F* — F* given by

(% (a171,...,a1,g) : (/Ul,...,/Ug) I 'VT

V9 (@21, a24¢) (V1,...,0¢) _ ro-v?%
Al | — e, A:ve ,

Vg (ak1,---sake) - (v1,...,00) ry - v’

where r; is the ith row vector of A4, and v’ is the transpose of v (from
Homework 4). Notation: write Av to mean A(v).

Example. Back to our example from before,

3 2 -1 0|b 3 2 —1 0\ (™ by

4 0 -5 1|by| and 40—51i2=b2

0 1 2 3|bs 0123x3 bs
4

mean the same thing!

You try: Let

(0 1 3\ .3 9
() )i

e
(a) Forv = (y) € F3, compute Av.

z

(b) Recall that the standard (ordered) basis of F*3 is

1 0 0
E ={(ej,eq,e3), where eg= (0], ea= |1 es=1[0]
0 0 1

Compute Ae for each e e £.
(c) Compute N(A) (the vectors v € F3 for which Av = 0p2).

(d) What did you notice about your answer to part (b)? Can you prove your
answer for a general matrix?

(e) How does the range of the function A relate to spaces we've studied
before having to do with matrices?

(f) How does the rank of the function A relate to statistics we've studied
before having to do with matrices?

(g) How does the nullspace of A relate spaces we've studied before having to
do with matrices? nullity?



Solutions to warmup

1. Let f: X — Y be a function. Recall/prove each of the following

statements.

(a) The function f is injective if and only if it has a left inverse, i.e. a function
g:Y — X such that go f = idx.
(=) Build g! For each y € f(X), there is exactly on z, € X w/
f(xy) = y; define g(y) = z,. And for y € Y — f(Y'), define g(y)
arbitrarily.
(=) If f(z) = f(2'), then z = g(f(x)) = g(f(z")) ="

(b) The function f is surjective if and only if is has a right inverse, i.e. a
function A : Y — X such that foh =idy.

(=) Build h! For each y € Y, choose one x, € f~*(y), and define
h(y) = zy.
(<) IfyeY, then f(h(y)) =y, soye f(X).

(c) If f has both a left inverse g : Y — X and a right inverse h: Y — X,
then g = h. (In this case, we say f is invertible and write g = h = .
From (a) and (b), we know that f is invertible if and only if it's bijective.)
Pf. We have h =idy oh = (go f)oh=go(foh) =goidy =g.

(d) Suppose f: X — Y and g: Y — Z are both bijective functions.

Then g o f is also bijective.

-1 -1

Pf. Since f and g are bijective, they have two-sided inverses f
Then f~* o g~ ! is a two-sided inverse for g o f.

and g

2. Let f:U -V and g:V — W be linear functions (where U, V, W are all
vector spaces over F'). Prove that go f : U — W is also linear.

Pf. For all u,v e U and X € F', we have

~—
~—

(QOf)(u+V)—g f(U+V

and



