
Lecture 11:
Isomorphisms
Dot product
Matrices as linear functions

Warmup.

1. Let f : X Ñ Y be a function. Recall/prove each of the following

statements.

(a) The function f is injective if and only if it has a left inverse, i.e. a function
g : Y Ñ X such that g ˝ f “ idX .

(b) The function f is surjective if and only if is has a right inverse, i.e. a
function h : Y Ñ X such that f ˝ h “ idY .

(c) If f has both a left inverse g : Y Ñ X and a right inverse h : Y Ñ X,
then g “ h. (In this case, we say f is invertible and write g “ h “ f´1.
From (a) and (b), we know that f is invertible if and only if it’s bijective.)

(d) Suppose f : X Ñ Y and g : Y Ñ Z are both bijective functions.
Then g ˝ f is also bijective.

2. Let f : U Ñ V and g : V Ñ W be linear functions (where U, V,W are all

vector spaces over F ). Prove that g ˝ f : U Ñ W is also linear.



Injective linear functions (Let U and V denote vector spaces over F .)

Very Useful Theorem 1.
A linear function h : U Ñ V is injective if and only if N phq “ 0.

Proof.

(ñ) Suppose h is injective. Compute N phq.

() Suppose N phq “ 0.
Suppose hpxq “ hpyq for some x,y P U .

Corollary 2. If h : U Ñ V is linear and V is finite-dimensional, then the

following are equivalent:

1. h is injective;

2. nullityphq “ 0;

3. rankphq “ dimpUq;

4. If B is a basis for V , then hpBq is a basis for Rphq (as a multiset).

Thm. 1

Rank-nullity: dimpUq “ rankphq ` nullityphq

(See our proof of Rank-Nullity/homework.)

Isomorphisms (Let U and V denote vector spaces over F .)

We call a bijective linear function an isomorphism.

Example. Given an ordered basis B “ xb1, . . . ,bny of a vector space V , the

representation RepB : V Ñ Fn
, given by

c1b1 ` ¨ ¨ ¨ ` cnbn fi›Ñ pc1, . . . , cnq,
is an isomorphism.

For example, using the standard ordered bases, we have the isomorphisms

PnpF q Ñ Fn`1
defined by c0 ` c1x ` ¨ ¨ ¨ ` cnx

n fiÑ pc0, c1, . . . , cnq;
and

M2pF q Ñ F 4
defined by

ˆ
a b
c d

˙
fiÑ pa, b, c, dq.

Lemma 3.
If h : U Ñ V is an isomorphism, then h´1 : V Ñ U is also an isomorphism.

Proof: Exercise! Hint: Similarly to the warmup,

f´1pv ` wq “ f´1pfpf´1pvqq ` fpf´1pwqqq. . .



Isomorphisms (Let U and V denote vector spaces over F .)

We say that U is isomorphic to V if there exists an isomorphism h : U Ñ V .

If so, we write U – V . (There might be lots of iso’s!)

Examples: We just saw that PnpF q – Fn`1
and M2pF q – F 4

.

Theorem 4. Isomorphism gives an equivalence relation on the set of vector

spaces over a field F . Namely, the relation

U „ V whenever U – V ,

is reflexive, symmetric, and transitive. (See warmup & Lemma 3.)

AMAZING Thm 5. For vector spaces U and V over a field F ,

U – V if and only if dimpUq “ dimpV q.
Proof. (ñ) Suppose there is an isomorphism h : U Ñ V . Let B be a basis of

U . Then by Cor. 2 #4, hpBq is a basis of V (as a multiset), and

dimpUq “ |B| “ |hpBq| “ dimpV q.

Isomorphisms (Let U and V denote vector spaces over F .)

We say that U is isomorphic to V if there exists an isomorphism h : U Ñ V .

If so, we write U – V .

AMAZING Thm 5. For vector spaces U and V over a field F ,

U – V if and only if dimpUq “ dimpV q.
Proof. (ñ) Suppose there is an isomorphism h : U Ñ V . Let B be a basis of

U . Then by Cor. 2 #4, hpBq is a basis of V (as a multiset), and

dimpUq “ |B| “ |hpBq| “ dimpV q.

() Suppose dimpUq “ dimpV q. Let A and B be bases of U and V ,

respectively. Namely, |A| “ |B| (i.e. there’s a bijective function f : A Ñ B).

Pf 1: If |A| “ |B| “ n, then both U and V are isomorphic to Fn
by RepA

and RepB, respectively. Hence U – V (by Thm. 4).

Pf 2: Since B Ñ V , we can linearly extend f : A Ñ B Ñ V to a linear function

h : U Ñ V that has hpaq “ fpaq P B for all a P A. By Cor. 2, h is an

isomorphism. Hence U – V .



Isomorphisms (Let U and V denote vector spaces over F .)

Corollary 6. If V is a finite-dimensional vector space, and h : V Ñ V is

linear map from V to itself, then the following are equivalent:

1. h is injective;

2. h is surjective;

3. h is an isomorphism.

We call a homomorphism of the form h : V Ñ V an endomorphism.

Proof. Use dimension! Three BIG facts:

(I) The null space N phq and the range Rphq are both subspaces of V .

(II) If Y is a vector space and X Ñ Y is a subspace, then dimpXq § dimpY q. And
if Y is finite dimensional, then

dimpXq “ dimpY q if and only if X “ Y .

(III) Thm. 5: U – V if and only if dimpUq “ dimpV q.

Caution: If V is infinite-dimensional, there are linear maps that are injective

but not surjective, and vice versa.

Examples:

f : Rrxs Ñ Rrxs by ppxq fiÑ ppx2q
d : Rrxs Ñ Rrxs by ppxq fiÑ d

dxppxq
◆ : Rrxs Ñ Rrxs by ppxq fiÑ ≥x

0 pptq dt



Back to matrices! The augmented matrix¨

˝
3 2 ´1 0 b1
4 0 ´5 1 b2
0 1 2 3 b3

˛

‚

encodes the linear system¨

˝
3x1 ` 2 x2 ` p´1qx3 ` 0 x4

4x1 ` 0 x2 ` p´5qx3 ` p1qx4

0x1 ` p1qx2 ` 2 x3 ` 3 x4

˛

‚“
¨

˝
b1
b2
b3

˛

‚.

Define the dot product of two vectors in Fn
by ¨ : Fn ˆ Fn Ñ F

pc1, c2, . . . , cnq ¨ pd1, d2, . . . , dnq :“ c1d1 ` c2d2 ` ¨ ¨ ¨ ` cndn.

For example, for any x1, . . . , xn P F ,

p3, 2,´1, 0q ¨ px1, x2, x3, x4q “ 3x1 ` 2x2 ` p´1qx3 ` 0x4,

p4, 0,´5, 1q ¨ px1, x2, x3, x4q “ 4x1 ` 0x2 ` p´5qx3 ` p1qx4, and

p0, 1, 2, 3q ¨ px1, x2, x3, x4q “ 0x1 ` p1qx2 ` 2x3 ` 3x4.

So the above linear system is also encoded by¨

˝
p3, 2, ´1, 0q ¨ px1, x2, x3, x4q
p4, 0, ´5, 1q ¨ px1, x2, x3, x4q
p0, 1, 2, 3q ¨ px1, x2, x3, x4q

˛

‚“
¨

˝
b1
b2
b3

˛

‚

Notice ¨

˚̊
˝

x1

x2

x3

x4

˛

‹‹‚ fiÑ
¨

˝
p3, 2, ´1, 0q ¨ px1, x2, x3, x4q
p4, 0, ´5, 1q ¨ px1, x2, x3, x4q
p0, 1, 2, 3q ¨ px1, x2, x3, x4q

˛

‚

defines a function h : F 4 fiÑ F 3
! For example,

h

¨

˚̊
˝

¨

˚̊
˝

1
5

´2
0

˛

‹‹‚

˛

‹‹‚“
¨

˝
p3, 2, ´1, 0q ¨ p1, 5,´2, 0q
p4, 0, ´5, 1q ¨ p1, 5,´2, 0q
p0, 1, 2, 3q ¨ p1, 5,´2, 0q

˛

‚

“
¨

˝
3p1q ` 2 p5q ` p´1qp´2q ` 0 p0q
4p1q ` 0 p5q ` p´5qp´2q ` p1qp0q
0p1q ` p1qp5q ` 2 p´2q ` 3 p0q

˛

‚ “
¨

˝
15
14
1

˛

‚

It turns out that this is a linear function! [See HW 6 for properties of dot

product.] Specifically, h is the linear extension of the function¨

˚̊
˝

1
0
0
0

˛

‹‹‚ fiÑ
¨

˝
3
4
0

˛

‚,

¨

˚̊
˝

0
1
0
0

˛

‹‹‚ fiÑ
¨

˝
2
0
1

˛

‚,

¨

˚̊
˝

0
0
1
0

˛

‹‹‚ fiÑ
¨

˝
´1
´5
2

˛

‚,

¨

˚̊
˝

0
0
0
1

˛

‹‹‚ fiÑ
¨

˝
0
1
3

˛

‚.



To a matrix A P Mk,`pF q,

A “

¨

˚̊
˚̋

a1,1 a1,2 ¨ ¨ ¨ a1,`
a2,1 a2,2 ¨ ¨ ¨ a2,`
.
.
.

.

.

.
. . .

.

.

.

ak,1 ak,2 ¨ ¨ ¨ ak,`

˛

‹‹‹‚,

we associate a function A : F ` Ñ F k
given by

A :

¨

˚̊
˚̋

v1
v2
.
.
.

v`

˛

‹‹‹‚ fiÑ

¨

˚̊
˚̋

pa1,1, . . . , a1,`q ¨ pv1, . . . , v`q
pa2,1, . . . , a2,`q ¨ pv1, . . . , v`q

.

.

.

pak,1, . . . , ak,`q ¨ pv1, . . . , v`q

˛

‹‹‹‚ i.e. A : v fiÑ

¨

˚̊
˚̋

r1 ¨ vT

r2 ¨ vT

.

.

.

rk ¨ vT

˛

‹‹‹‚,

where ri is the ith row vector of A, and vT
is the transpose of v (from

Homework 4). Notation: write Av to mean Apvq.
Example. Back to our example from before,

¨

˝
3 2 ´1 0 b1
4 0 ´5 1 b2
0 1 2 3 b3

˛

‚ and

¨

˝
3 2 ´1 0
4 0 ´5 1
0 1 2 3

˛

‚

¨

˚̊
˝

x1

x2

x3

x4

˛

‹‹‚“
¨

˝
b1
b2
b3

˛

‚

mean the same thing!

You try: Let

A “
ˆ

0 1 3
´1 2 ´1

˙
: F 3 fiÑ F 2.

(a) For v “
¨

˝
x
y
z

˛

‚P F 3
, compute Av.

(b) Recall that the standard (ordered) basis of F 3
is

E “ xe1, e2, e3y, where e1 “
¨

˝
1
0
0

˛

‚, e2 “
¨

˝
0
1
0

˛

‚, e3 “
¨

˝
0
0
1

˛

‚.

Compute Ae for each e P E .
(c) Compute N pAq (the vectors v P F 3

for which Av “ 0F 2).

(d) What did you notice about your answer to part (b)? Can you prove your

answer for a general matrix?

(e) How does the range of the function A relate to spaces we’ve studied

before having to do with matrices?

(f) How does the rank of the function A relate to statistics we’ve studied

before having to do with matrices?

(g) How does the nullspace of A relate spaces we’ve studied before having to

do with matrices? nullity?



Warmup. See last page of notes for solution sketches.

1. Let f : X Ñ Y be a function. Recall/prove each of the following

statements.

(a) The function f is injective if and only if it has a left inverse, i.e. a function
g : Y Ñ X such that g ˝ f “ idX .

(ñ) Build g! For each y P fpXq, there is exactly on xy P X w/
fpxyq “ y; define gpyq “ xy. And for y P Y ´ fpY q, define gpyq
arbitrarily.
() If fpxq “ fpx1q, then x “ gpfpxqq “ gpfpx1qq “ x1.

(b) The function f is surjective if and only if is has a right inverse, i.e. a
function h : Y Ñ X such that f ˝ h “ idY .

(ñ) Build h! For each y P Y , choose one xy P f´1pyq, and define
hpyq “ xy.
() If y P Y , then fphpyqq “ y, so y P fpXq.

(c) If f has both a left inverse g : Y Ñ X and a right inverse h : Y Ñ X,
then g “ h. (In this case, we say f is invertible and write g “ h “ f´1.
From (a) and (b), we know that f is invertible if and only if it’s bijective.)

Pf. We have h “ idY ˝ h “ pg ˝ fq ˝ h “ g ˝ pf ˝ hq “ g ˝ idY “ g.

(d) Suppose f : X Ñ Y and g : Y Ñ Z are both bijective functions.
Then g ˝ f is also bijective.

Pf. Since f and g are bijective, they have two-sided inverses f´1 and g´1.
Then f´1 ˝ g´1 is a two-sided inverse for g ˝ f .

Solutions to warmup

2. Let f : U Ñ V and g : V Ñ W be linear functions (where U, V,W are all

vector spaces over F ). Prove that g ˝ f : U Ñ W is also linear.

Pf. For all u,v P U and � P F , we have

pg ˝ fqpu ` vq “ gpfpu ` vqq
“ gpfpuq ` fpvqq
“ gpfpuqq ` gpfpvqq
“ pg ˝ fqpuq ` pg ˝ fqpvq

and

pg ˝ fqp�uq “ gpfp�uqq
“ gp�fpuqq
“ �gpfpuqq
“ �pg ˝ fqpuq.


