Lecture 10:

## Linear extension <br> Rank/Nullity Theorem Isomorphisms

Linear extensions: concrete constructions of linear maps Question. Are there any linear functions $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that sends

$$
\binom{1}{0} \mapsto\left(\begin{array}{l}
3  \tag{*}\\
2 \\
0
\end{array}\right) \quad \text { and } \quad\binom{0}{1} \mapsto\left(\begin{array}{c}
-1 \\
1 \\
5
\end{array}\right) \text { ? }
$$

Answer. For any $(x, y) \in \mathbb{R}^{2}$, we know

$$
\binom{x}{y}=\binom{x}{0}+\binom{0}{y}=x\binom{1}{0}+y\binom{0}{1}
$$

Hence

$$
\begin{aligned}
h\left(\binom{x}{y}\right) & =h\left(x\binom{1}{0}+y\binom{0}{1}\right)=h\left(x\binom{1}{0}\right)+h\left(y\binom{0}{1}\right) \\
& =x h\left(\binom{1}{0}\right)+y h\left(\binom{0}{1}\right)=x\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)+y\left(\begin{array}{c}
-1 \\
1 \\
5
\end{array}\right) \\
& =\left(\begin{array}{l}
x \cdot 3 \\
x \cdot 2 \\
x \cdot 0
\end{array}\right)+\left(\begin{array}{c}
y \cdot(-1) \\
y \cdot 1 \\
y \cdot 5
\end{array}\right)=\left(\begin{array}{c}
x \cdot 3+y \cdot(-1) \\
x \cdot 2+y \cdot 1 \\
x \cdot 0+y \cdot 5
\end{array}\right) .
\end{aligned}
$$

So yes! There's a unique linear function that satisfies (*).

Any linear transformation is determined by the image of a basis of the domain!
Thm. Let $U$ and $V$ be vector spaces over a field $F$, and let $B$ be a basis of $U$. For each $\mathbf{b} \in B$, fix some $\mathbf{v}_{\mathbf{b}} \in V$. Then there exists a unique linear transformation $h: U \rightarrow V$ that satisfies

$$
h(\mathbf{b})=\mathbf{v}_{\mathbf{b}} \quad \text { for each } \mathbf{b} \in B
$$

In particular, for any $\mathbf{u} \in U$, there's a "unique" way to write $\mathbf{u}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$, where $c_{i} \in F, \mathbf{b}_{i} \in B$. Then we define

$$
h(\mathbf{u})=c_{1} \mathbf{v}_{\mathbf{b}_{1}}+\cdots+c_{n} \mathbf{v}_{\mathbf{b}_{n}} .
$$

Writing $h: B \rightarrow V$ defined by $H: \mathbf{b} \mapsto \mathbf{v}_{\mathbf{b}}$, we say $H$ extends linearly to $h: U \rightarrow V$, or that $h$ is a linear extension of $H$.

## See Book (Ch. Two, §II, Thm. 1.9) for proof.

Sketch: We have to check each of the following.

1. Existence. Check that the function above is
(a) Well-defined: The image is in the codomain (follows from closure) and is independent of representatives (doesn't depend on how you write $\mathbf{u}$ as a linear combination over $B$ ).
(b) Linear: similar to our examples, check that $h\left(\mathbf{u}+\mathbf{u}^{\prime}\right)=h(\mathbf{u})+h\left(\mathbf{u}^{\prime}\right)$ and $h(\lambda \mathbf{u})=\lambda h(\mathbf{u})$.
(c) Does what it says it does: $h(\mathbf{b})=\mathbf{v}_{\mathbf{b}}$ for all $\mathbf{b} \in B$.

## 2. Uniqueness.

If $g: U \rightarrow V$ also satisfies $g(\mathbf{b})=\mathbf{v}_{\mathbf{b}}$ for all $\mathbf{b} \in B$, then $g=h$.

Any linear transformation is determined by the image of a basis of the domain!
Thm. Let $U$ and $V$ be vector spaces over a field $F$, and let $B$ be a basis of $U$. For each $\mathbf{b} \in B$, fix some $\mathbf{v}_{\mathbf{b}} \in V$. Then there exists a unique linear transformation $h: U \rightarrow V$ that satisfies $h(\mathbf{b})=\mathbf{v}_{\mathbf{b}}$ for each $\mathbf{b} \in B$.
In particular, for any $\mathbf{u} \in U$, there's a "unique" way to write $\mathbf{u}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$, where $c_{i} \in F, \mathbf{b}_{i} \in B$. Then we define $h(\mathbf{u})=c_{1} \mathbf{v}_{\mathbf{b}_{1}}+\cdots+c_{n} \mathbf{v}_{\mathbf{b}_{n}}$.
Writing $H: B \rightarrow V$ defined by $H: \mathbf{b} \mapsto \mathbf{v}_{\mathbf{b}}$, we say $H$ extends linearly to $h: U \rightarrow V$, or that $h$ is a linear extension of $H$.
Note. This theorem says something very powerful:
Given vector spaces $U$ and $V$ over $F$, and a basis $B$ of $U$, the linear functions $\{h: U \rightarrow V \mid h$ is linear $\}$
are in bijection with functions

$$
\{H: B \rightarrow V\} .
$$

Every linear map $h: U \rightarrow V$ restricts uniquely to a function $H: B \rightarrow V$; and every function $H: B \rightarrow V$ extends uniquely to a linear map $h: U \rightarrow V$.

Next week: Use this fact to encode linear functions as matrices.

## Caution!

Things can go wrong when we try to do this with a set that is not a basis!
Exercise: Try to extend the function

$$
H:(1,0) \mapsto(1,1), \quad(0,1) \mapsto(0,2), \quad \text { and } \quad(1,1) \mapsto(3,-1)
$$

to a linear function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. What goes wrong?

## Rank and nullity

Recall from last time: Let $U, V$ be vector spaces over a field $F$, and let $h: U \rightarrow V$ be a linear function (a.k.a. homomorphism).

The range space of $h$ is

$$
\mathcal{R}(h)=h(U)=\{h(\mathbf{u}) \mid \mathbf{u} \in U\}
$$

and the null space of $f$ is

$$
\mathcal{N}(h)=h^{-1}\left(\mathbf{0}_{V}\right)=\left\{\mathbf{u} \in U \mid h(\mathbf{u})=\mathbf{0}_{V}\right\} .
$$

Both are vector spaces (prove using subspace criterion), and hence we can talk about their dimensions.
In particular, the rank of $h$ is $\operatorname{rank}(h)=\operatorname{dim}(\mathcal{R}(h))$; and the nullity of $h$ is nullity $(h)=\operatorname{dim}(\mathcal{N}(h))$.

Example. Last time, we considered $h: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ defined by $(s, t, x, y, z) \mapsto(4 x, x-y)$, we computed that

$$
\mathcal{R}(f)=\mathbb{R}^{2} \quad \text { and } \quad \mathcal{N}(f)=\{(s, t, 0,0, z) \mid s, t, z \in \mathbb{R}\}=\mathbb{R}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{5}\right\}
$$

So $\operatorname{rank}(f)=2$ and nullity $(f)=3$. [Notice that $2+3=\operatorname{dim}\left(\mathbb{R}^{5}\right)$ ]

## Rank-nullity theorem

Theorem. Let $U, V$ be vector spaces over a field $F$, and let $h: U \rightarrow V$ be a linear function. Then

$$
\operatorname{dim}(U)=\operatorname{nullity}(h)+\operatorname{rank}(h)
$$

Proof. Let $\mathcal{A}$ be a basis of $\mathcal{N}(\mathrm{h})$. In particular, $\mathcal{A}$ is a linearly independent subset of $U$, and hence there is some basis $\mathcal{X}$ of $U$ that contains $\mathcal{A}$.
[Lecture 7: Every independent set extends to a basis].
Let $\mathcal{B}=\mathcal{X}-\mathcal{A}$, so that $\mathcal{X}=\mathcal{A} \sqcup \mathcal{B}$ (the disjoint union), and hence


We will show that
(1) $h(\mathcal{B})$ is in bijection with $\mathcal{B}$ (so that $|\mathcal{B}|=|h(\mathcal{B})|$ ); and
(2) $h(\mathcal{B})$ is a basis of $\mathcal{R}(h)$ (so that $\operatorname{dim}(\mathcal{R}(h))=|h(\mathcal{B})|)$.

Hence, we will be able to conclude that

$$
\operatorname{rank}(h)=\operatorname{dim}(\mathcal{R}(h))=|h(\mathcal{B})|=|\mathcal{B}|,
$$

which will prove our theorem.

So far: Let $U, V$ be vector spaces over a field $F$, and let $h: U \rightarrow V$ be a linear function. Let

- $\mathcal{A}$ be a basis of $\mathcal{N}(h)=\{\mathbf{u} \in U \mid h(\mathbf{u})=\mathbf{0}\}$ (the null space of $h$ );
- $\mathcal{X}$ be a basis of $U$ that contains $\mathcal{A}$; and
[guaranteed to exists because $\mathcal{A}$ is linearly independent]
- $\mathcal{B}=\mathcal{X}-\mathcal{A}$.
(1) Show $|\mathcal{B}|=|h(\mathcal{B})|$.
[Recall $h(\mathcal{B})=\{h(\mathbf{b}) \mid \mathbf{b} \in \mathcal{B}\}]$
Specifically, we'll show that $h: \mathcal{B} \rightarrow h(\mathcal{B})$ is a bijection.
It's surjective by definition, so we really just need to check that it's injective!
Let $\mathbf{b}, \mathbf{b}^{\prime} \in \mathcal{B}$, and suppose that $h(\mathbf{b})=h\left(\mathbf{b}^{\prime}\right)$. Then

$$
\mathbf{0}=h(\mathbf{b})-h\left(\mathbf{b}^{\prime}\right)=h\left(\mathbf{b}-\mathbf{b}^{\prime}\right) ;
$$

so that $\mathbf{b}-\mathbf{b}^{\prime} \in \mathcal{N}(h)$. Expanding $\mathbf{b}-\mathbf{b}^{\prime}$ in the basis $\mathcal{A}$ (of $\mathcal{N}(h)$ ),

$$
\mathbf{b}-\mathbf{b}^{\prime}=c_{1} \mathbf{a}_{1}+\cdots+c_{n} \mathbf{a}_{n}
$$

we can see that either $\mathbf{b}=\mathbf{b}^{\prime}$ or (since $\mathbf{b}, \mathbf{b}^{\prime} \in \mathcal{X}-\mathcal{A}$ ) we have a contradiction of $\mathcal{X}$ 's linear independence! Hence $h: \mathcal{B} \rightarrow h(\mathcal{B})$ is injective.

$$
\text { Thus }|\mathcal{B}|=|h(\mathcal{B})| \text {. }
$$

So far: Let $U, V$ be vector spaces over a field $F$, and let $h: U \rightarrow V$ be a linear function. Let

- $\mathcal{A}$ be a basis of $\mathcal{N}(h)=\{\mathbf{u} \in U \mid h(\mathbf{u})=\mathbf{0}\}$ (the null space of $h$ );
- $\mathcal{X}$ be a basis of $U$ that contains $\mathcal{A}$; and
[guaranteed to exists because $\mathcal{A}$ is linearly independent]
- $\mathcal{B}=\mathcal{X}-\mathcal{A}$.
(2) Show $h(\mathcal{B})$ is a basis of $\mathcal{R}(h)=\{h(\mathbf{u}) \mid \mathbf{u} \in U\}$.

Spanning: Let $\mathbf{v} \in \mathcal{R}(h)$ (Goal: show $\mathbf{v} \in \operatorname{span}(h(\mathcal{B}))$ ).
Let $\mathbf{u} \in h^{-1}(\mathbf{v})$, meaning that $h(\mathbf{u})=\mathbf{v}$. Since $\mathbf{u} \in U$, we can expand it in the basis $\mathcal{X}=\mathcal{A} \sqcup \mathcal{B}$; writing

$$
\mathbf{u}=c_{1} \mathbf{a}_{1}+\cdots+c_{k} \mathbf{a}_{k}+d_{1} \mathbf{b}_{1}+\cdots+d_{\ell} \mathbf{b}_{\ell}
$$

for some $c_{i}, d_{i} \in F, \mathbf{a}_{i} \in \mathcal{A}$, and $\mathbf{b}_{i} \in \mathcal{B}$. But then

$$
\begin{aligned}
\mathbf{v} & =h(\mathbf{u})=h\left(c_{1} \mathbf{a}_{1}+\cdots+c_{k} \mathbf{a}_{k}+d_{1} \mathbf{b}_{1}+\cdots+d_{\ell} \mathbf{b}_{\ell}\right) & & \\
& =c_{1} h\left(\mathbf{a}_{1}\right)+\cdots+c_{k} h\left(\mathbf{a}_{k}\right)+d_{1} h\left(\mathbf{b}_{1}\right)+\cdots+d_{\ell} h\left(\mathbf{b}_{\ell}\right) & & (h \text { is linear }) \\
& =c_{1} 0+\cdots+c_{k} 0+d_{1} h\left(\mathbf{b}_{1}\right)+\cdots+d_{\ell} h\left(\mathbf{b}_{\ell}\right) & & \left(\mathbf{a}_{i} \in \mathcal{N}(h)\right) \\
& =d_{1} h\left(\mathbf{b}_{1}\right)+\cdots+d_{\ell} h\left(\mathbf{b}_{\ell}\right) \in \operatorname{span}(h(\mathcal{B})) . \checkmark & &
\end{aligned}
$$

So far: Let $U, V$ be vector spaces over a field $F$, and let $h: U \rightarrow V$ be a linear function. Let

- $\mathcal{A}$ be a basis of $\mathcal{N}(h)=\{\mathbf{u} \in U \mid h(\mathbf{u})=0\}$ (the null space of $h$ );
- $\mathcal{X}$ be a basis of $U$ that contains $\mathcal{A}$; and
[guaranteed to exists because $\mathcal{A}$ is linearly independent]
- $\mathcal{B}=\mathcal{X}-\mathcal{A}$.
(2) Show $h(\mathcal{B})$ is a basis of $\mathcal{R}(h)=\{h(\mathbf{u}) \mid \mathbf{u} \in U\}$.

Independent: [Similarly to showing that $|h(\mathcal{B})|=|\mathcal{B}|$, we'll see that $h(\mathcal{B})$ is independent because its preimage is independent from itself and from $\mathcal{A}$.] Let $d_{1}, \ldots, d_{\ell} \in F$ and $h\left(\mathbf{b}_{1}\right), \ldots, h\left(\mathbf{b}_{\ell}\right) \in h(\mathcal{B})$ such that

$$
\begin{aligned}
\mathbf{0} & =d_{1} h\left(\mathbf{b}_{1}\right)+\cdots+d_{\ell} h\left(\mathbf{b}_{\ell}\right) \\
& =h\left(d_{1} \mathbf{b}_{1}+\cdots+d_{\ell} \mathbf{b}_{\ell}\right) . \quad(h \text { is linear }) .
\end{aligned}
$$

Hence, $d_{1} \mathbf{b}_{1}+\cdots+d_{\ell} \mathbf{b}_{\ell} \in \mathcal{N}(h)=\operatorname{span}(\mathcal{A})$. But again, either

$$
d_{1} \mathbf{b}_{1}+\cdots+d_{\ell} \mathbf{b}_{\ell}=\mathbf{0}
$$

or we have a contradiction of $\mathcal{X}$ being linearly independent. And if it is $\mathbf{0}$, then by $\mathcal{B}$ 's independence, we know $d_{1}=\cdots=d_{\ell}=0$.
Hence $h(\mathcal{B})$ is linearly independent. $\checkmark$ [Concluding our proof of the Theorem.]

You try. Define $h: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ by linearly extending

$$
\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \mapsto\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \mapsto\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \mapsto\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) .
$$

1. What exactly is $h$ ? Compute $h\left(\left(\begin{array}{l}a \\ b \\ c\end{array}\right)\right)$ (in terms of $a, b, c \in \mathbb{R}$ ).
2. Compute $\mathcal{N}(h)$.
3. Compute $\mathcal{R}(h)$.
4. Give a basis $\mathcal{A}$ of $\mathcal{N}(h)$ (there are lots of examples—pick the easiest one you can think of).
5. Give a basis $\mathcal{X}$ of $\mathbb{R}^{3}$ that contains $\mathcal{A}$ (there are lots of examples—pick the easiest one you can think of).
6. Let $\mathcal{B}=\mathcal{X}-\mathcal{A}$. For each $\mathbf{b} \in \mathcal{B}$, compute $h(\mathbf{b})$.
7. Verify that $|h(\mathcal{B})|=|\mathcal{B}|$ and that the set $h(\mathcal{B})$ is a basis for $\mathcal{R}(h)$.

## Injective linear functions

Theorem. A linear function $h: U \rightarrow V$ is injective if and only if $\mathcal{N}(h)=0$.

Corollary. If $h: U \rightarrow V$ is linear and $V$ is finite-dimensional, then the following are equivalent:

1. $h$ is injective;
2. nullity $(h)=0$;
3. $\operatorname{rank}(h)=\operatorname{dim}(\mathbf{U})$;
4. If $\mathcal{B}$ is a basis for $V$, then $h(\mathcal{B})$ is a basis for $\mathcal{R}(h)$.

## Isomorphisms

We call a bijective linear function an isomorphism.
Note: For any $h: U \rightarrow V$, the function $h: U \rightarrow \mathcal{R}(h)$ is surjective by definition. So $h: U \rightarrow \mathcal{R}(h)$ is an isomorphism if and only if nullity $(h)=0$.

Recall that a function $f: X \rightarrow Y$ is bijective if and only if it has a two-sided inverse, i.e. a function $g: Y \rightarrow X$ such that

$$
f \circ g=\operatorname{id}_{Y} \quad \text { and } \quad g \circ f=\operatorname{id}_{X} .
$$

## Lemma.

If $h: U \rightarrow V$ is an isomorphism, then $h^{-1}: V \rightarrow U$ is also an isomorphism.
Proof: Exercise.
Example. Given an ordered basis $B=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\rangle$ of a vector space $V$, the representation $\operatorname{Rep}_{B}: V \rightarrow F^{n}$ is an isormophism.
For example, using the standard ordered bases, we have the isomorphisms

$$
\begin{gathered}
\mathcal{P}_{n}(F) \rightarrow F^{n+1} \quad \text { defined by } \quad c_{0}+c_{1} x+\cdots+c_{n} x^{n} \mapsto\left(c_{0}, c_{1}, \ldots, c_{n}\right) ; \\
\quad \text { and } \\
M_{2}(F) \rightarrow F^{4} \quad \text { defined by } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto(a, b, c, d) .
\end{gathered}
$$

## Isomorphisms

We say that $U$ is isomorphic to $V$ if there exists an isomorphism $h: U \rightarrow V$. If so, we write $U \cong V$.
Examples: We just saw that $P_{n}(F) \cong F^{n+1}$ and $M_{2}(F) \cong F^{4}$.

AMAZING Theorem. Suppose $U$ and $V$ are finite-dimensional vector spaces.
Then $U \cong V$ if and only if $\operatorname{dim}(U)=\operatorname{dim}(V)$.

Cor. If $V$ is a finite-dimensional vector space, and $h: V \rightarrow V$ is linear, then the following are equivalent:

1. $h$ is injective;
2. $h$ is surjective;
3. $h$ is an isomorphism.

However, if $V$ is infinite-dimensional, there are linear maps that are injective but not surjective, and vice versa.

