Lecture 10:

Linear extension
Rank/Nullity Theorem
Isomorphisms

Linear extensions: concrete constructions of linear maps
Question. Are there any linear functions h : R? — R3 that sends

(é) - (%) and @ . (él)? (%)
Answer. For any (z,%)

Hence

x-3 y-(—1) r-3+y-
=|x-2|+ y-1 = x - 2+y l .
z-0 (T z-0+y-5

So yes! There's a unique linear function that satisfies ().



Any linear transformation is determined by the image of a basis of the domain!
Thm. Let U and V be vector spaces over a field F', and let B be a basis of U.

For each b € B, fix some vy, € V. Then there exists a unique linear
transformation h : U — V that satisfies

h(b) = vy, for each b e B.

In particular, for any u € U, there's a “unique” way to write
u=cby+-+c,b,, where ¢; € F.b; € B. Then we define

h(u) = c1Vp, + - + CuVp, -
Writing h : B — V defined by H : b — vy, we say H extends linearly to
h:U — V, or that h is a linear extension of H.
See Book (Ch. Two, §ll, Thm. 1.9) for proof.
Sketch: We have to check each of the following.

1. Existence. Check that the function above is
(a) Well-defined: The image is in the codomain (follows from closure) and is
independent of representatives (doesn’'t depend on how you write u as a
linear combination over B).
(b) Linear: similar to our examples, check that h(u + u’) = h(u) + h(u’) and
h(Au) = Ah(u).
(c) Does what it says it does: h(b) = vy, for all b e B.
2. Uniqueness.
If g: U — V also satisfies g(b) = vy, for all b e B, then g = h.

Any linear transformation is determined by the image of a basis of the domain!

Thm. Let U and V be vector spaces over a field F', and let B be a basis of U. For each
b € B, fix some v € V. Then there exists a unique linear transformation h : U — V that
satisfies h(b) = vy, for each b € B.

In particular, for any u € U, there's a “unique” way to write u = ¢1b1 + - - - + ¢ by, where
c; € F,b; € B. Then we define h(u) = c1vp, + - -+ cpvp,, .

Writing H : B — V defined by H : b — vy, we say H extends linearly to h : U — V, or
that A is a linear extension of H.

Note. This theorem says something very powerful:
Given vector spaces U and V over F', and a basis B of U, the linear functions
{h:U — V| his linear }
are in bijection with functions
{H:B—V}.
Every linear map h : U — V restricts uniquely to a function H : B — V; and

every function H : B — V extends uniquely to a linear map h: U — V.
Next week: Use this fact to encode linear functions as matrices.

Caution!
Things can go wrong when we try to do this with a set that is not a basis!

Exercise: Try to extend the function
H:(1,0) —~ (1,1), (0,1)— (0,2), and (1,1) (3,—1)
to a linear function h : R? — R2. What goes wrong?



Rank and nullity

Recall from last time: Let U,V be vector spaces over a field F', and let
h:U — V be a linear function (a.k.a. homomorphism).

The range space of h is
R(h) = h(U) = {h(u) | ue U}

and the null space of f is
N(h) =h 1 0y) ={ue U | h(a) =0y}

Both are vector spaces (prove using subspace criterion), and hence we can talk
about their dimensions.
In particular, the rank of h is rank(h) = dim(R(h)); and

the nullity of h is nullity(h) = dim(N (h)).

Example. Last time, we considered h : R® — R? defined by
(s,t,x,y,2) — (4dz,x —y), we computed that
R(f) = Rz and N(f) = {(87t70707 Z) | S,t,Z € R} = R{617627e5}'
So rank(f) = 2 and nullity(f) = 3. [Notice that 2 + 3 = dim(R?)]

Rank-nullity theorem
Theorem. Let U,V be vector spaces over a field F', and let h: U — V be a
linear function. Then
dim(U) = nullity(h) + rank(h).
Proof. Let A be a basis of N'(h). In particular, A is a linearly independent

subset of U, and hence there is some basis X of U that contains A.
[Lecture 7: Every independent set extends to a basis].

Let B=X — A, so that X = .A L B (the disjoint union), and hence

dim(U , dim(FB) (whatever FB is...)

Goal: show dim(F'B) = rank(h)

dim(N = nullity (H

We will show that
(1) h(B) is in bijection with B (so that |B| = |h(B)]|); and
(2) h(B) is a basis of R(h) (so that dim(R(h)) = |h(B)|).
Hence, we will be able to conclude that

rank(h) = dim(R(h)) = |h(B)| = |B|,

which will prove our theorem.



So far: Let U,V be vector spaces over a field F', and let h: U — V be a
linear function. Let

> A be a basis of N'(h) = {ue€ U | h(u) = 0} (the null space of h);
» X be a basis of U that contains A; and

[guaranteed to exists because A is linearly independent]
»B=X-A
(1) Show |B| = |h(B)]. [Recall h(B) = {h(b) | b € B}]
Specifically, we'll show that h : B — h(B) is a bijection.
It's surjective by definition, so we really just need to check that it's injective!
Let b, b’ € 3, and suppose that h(b) = h(b’). Then
0 = h(b) — h(b) = h(b — b’);
so that b — b’ € N'(h). Expanding b — b’ in the basis A (of N'(h)),
b—b':clal + -+ cpay,

we can see that either b = b’ or (since b,b’ € X — A) we have a
contradiction of X’'s linear independence! Hence h : B — h(B) is injective.

Thus |B] = [h(B)|-] v

So far: Let U,V be vector spaces over a field F', and let h: U — V be a
linear function. Let

> A be a basis of N'(h) = {ue€ U | h(u) = 0} (the null space of h);
» X be a basis of U that contains A; and

[guaranteed to exists because A is linearly independent]

»B=X - A

(2) Show h(B) is a basis of R(h) = {h(u) | ue U}.

Spanning: Let v € R(h) (Goal: show v € span(h(B))).

Let u € h~!(v), meaning that h(u) = v. Since u € U, we can expand it in
the basis X = A u B; writing

u=ca +---+car+diby +---+diby
for some ¢;,d; € F, a;, € A, and b; € B. But then

v =h(u) = h(cia; + -+ + cgay + diby + -+ - + dyby)
=cih(a))+ -+ cghlay) +dih(by) + -« + deh(by)  (his linear)
=10+ +¢c,0+dih(by) + -+ + deh(by) (a; e N(h))
= dih(by) + -+ +dsh(by) € span(h(B)).v’



So far: Let U,V be vector spaces over a field F', and let h: U — V be a
linear function. Let

» A be a basis of N'(h) = {ue€ U | h(u) = 0} (the null space of h);
» X be a basis of U that contains A; and

[guaranteed to exists because A is linearly independent]

» B=X - A

(2) Show h(B) is a basis of R(h) = {h(u) | ue U}.

Independent: [Similarly to showing that |h(B)| = |B|, we'll see that h(B) is
independent because its preimage is independent from itself and from A.]
Let dy,...,d¢ € F and h(by),..., h(by) € h(B) such that

) )

0 =dih(by) + -+ deh(by)
= h(diby + - + d¢by). (h is linear).

Hence, diby + -+ + d¢by € N'(h) = span(A). But again, either
dyby + - +dgby =0,

or we have a contradiction of X" being linearly independent. And if it is O,
then by B's independence, we know dy = --- = dy = 0.

Hence h(B) is linearly independent. v" [Concluding our proof of the Theorem.]



You try. Define h : R3 — R3 by linearly extending

o) C) ()G = ()

a

1. What exactly is h? Compute h (b) (in terms of a,b,c € R).

C
2. Compute N (h).
3. Compute R(h).

4. Give a basis A of N (h) (there are lots of examples—pick the easiest one
you can think of).

5. Give a basis X of R3 that contains A (there are lots of examples—pick
the easiest one you can think of).

6. Let B=X — A. For each b € B, compute h(b).
7. Verify that |h(B)| = |B| and that the set h(B) is a basis for R(h).



Injective linear functions
Theorem. A linear function h : U — V is injective if and only if A'(h) = 0.

Corollary. If h : U — V is linear and V is finite-dimensional, then the
following are equivalent:

1. h is injective;

2. nullity(h) = 0;

3. rank(h) = dim(U);

4. If B is a basis for V, then h(B) is a basis for R(h).

Isomorphisms
We call a bijective linear function an isomorphism.

Note: For any h : U — V, the function h : U — R(h) is surjective by
definition. So h : U — R(h) is an isomorphism if and only if nullity(h) = 0.

Recall that a function f : X — Y is bijective if and only if it has a two-sided
inverse, i.e. a function g : Y — X such that
fog:idy and gof:idX.

Lemma.
If h: U — V is an isomorphism, then h=! : V' — U is also an isomorphism.

Proof: Exercise.
Example. Given an ordered basis B = (by,...,b,) of a vector space V, the

representation Repp : V — F™ is an isormophism.
For example, using the standard ordered bases, we have the isomorphisms

Pn(F) — F""1 defined by co+ ciz+ - + cpx™ — (co,c1,. .., Cn);
and

M,(F) — F*  defined by (Z Z) — (a,b,c,d).



|Isomorphisms
We say that U is isomorphic to V if there exists an isomorphism h: U — V.
If so, we write U = V.
Examples: We just saw that P, (F) =~ F"*! and My (F) =~ F*.

AMAZING Theorem. Suppose U and V are finite-dimensional vector spaces.
Then U = V if and only if dim(U) = dim(V).

Cor. If V is a finite-dimensional vector space, and h : V — V is linear, then
the following are equivalent:

1. h is injective;
2. h is surjective;
3. his an isomorphism.

However, if V' is infinite-dimensional, there are linear maps that are injective
but not surjective, and vice versa.



