
Lecture 10:
Linear extension
Rank/Nullity Theorem
Isomorphisms

Linear extensions: concrete constructions of linear maps
Question. Are there any linear functions h : R2 Ñ R3

that sends

ˆ
1
0

˙
fiÑ

¨

˝
3
2
0

˛

‚ and

ˆ
0
1

˙
fiÑ

¨

˝
´1
1
5

˛

‚? (˚)

Answer. For any px, yq P R2
, we know

ˆ
x
y

˙
“

ˆ
x
0

˙
`

ˆ
0
y

˙
“ x

ˆ
1
0

˙
` y

ˆ
0
1

˙
.

Hence

h

ˆˆ
x
y

˙˙
“ h

ˆ
x

ˆ
1
0

˙
` y

ˆ
0
1

˙˙
“ h

ˆ
x

ˆ
1
0

˙˙
` h

ˆ
y

ˆ
0
1

˙˙

“ xh

ˆˆ
1
0

˙˙
` yh

ˆˆ
0
1

˙˙
“ x

¨

˝
3
2
0

˛

‚` y

¨

˝
´1
1
5

˛

‚

“
¨

˝
x ¨ 3
x ¨ 2
x ¨ 0

˛

‚`
¨

˝
y ¨ p´1q
y ¨ 1
y ¨ 5

˛

‚“
¨

˝
x ¨ 3 ` y ¨ p´1q
x ¨ 2 ` y ¨ 1
x ¨ 0 ` y ¨ 5

˛

‚.

So yes! There’s a unique linear function that satisfies (˚).



Any linear transformation is determined by the image of a basis of the domain!

Thm. Let U and V be vector spaces over a field F , and let B be a basis of U .

For each b P B, fix some vb P V . Then there exists a unique linear

transformation h : U Ñ V that satisfies

hpbq “ vb for each b P B.

In particular, for any u P U , there’s a “unique” way to write

u “ c1b1 ` ¨ ¨ ¨ ` cnbn, where ci P F,bi P B. Then we define

hpuq “ c1vb1 ` ¨ ¨ ¨ ` cnvbn .

Writing h : B Ñ V defined by H : b fiÑ vb, we say H extends linearly to

h : U Ñ V , or that h is a linear extension of H.

See Book (Ch. Two, §II, Thm. 1.9) for proof.

Sketch: We have to check each of the following.

1. Existence. Check that the function above is

(a) Well-defined: The image is in the codomain (follows from closure) and is
independent of representatives (doesn’t depend on how you write u as a
linear combination over B).

(b) Linear: similar to our examples, check that hpu ` u1q “ hpuq ` hpu1q and
hp�uq “ �hpuq.

(c) Does what it says it does: hpbq “ vb for all b P B.

2. Uniqueness.
If g : U Ñ V also satisfies gpbq “ vb for all b P B, then g “ h.

Any linear transformation is determined by the image of a basis of the domain!

Thm. Let U and V be vector spaces over a field F , and let B be a basis of U . For each
b P B, fix some vb P V . Then there exists a unique linear transformation h : U Ñ V that
satisfies hpbq “ vb for each b P B.

In particular, for any u P U , there’s a “unique” way to write u “ c1b1 ` ¨ ¨ ¨ ` cnbn, where
ci P F,bi P B. Then we define hpuq “ c1vb1 ` ¨ ¨ ¨ ` cnvbn .

Writing H : B Ñ V defined by H : b fiÑ vb, we say H extends linearly to h : U Ñ V , or
that h is a linear extension of H.

Note. This theorem says something very powerful:
Given vector spaces U and V over F , and a basis B of U , the linear functions

th : U Ñ V | h is linear u
are in bijection with functions

tH : B Ñ V u.
Every linear map h : U Ñ V restricts uniquely to a function H : B Ñ V ; and

every function H : B Ñ V extends uniquely to a linear map h : U Ñ V .

Next week: Use this fact to encode linear functions as matrices.

Caution!
Things can go wrong when we try to do this with a set that is not a basis!

Exercise: Try to extend the function

H : p1, 0q fiÑ p1, 1q, p0, 1q fiÑ p0, 2q, and p1, 1q fiÑ p3,´1q
to a linear function h : R2 Ñ R2

. What goes wrong?



Rank and nullity

Recall from last time: Let U, V be vector spaces over a field F , and let

h : U Ñ V be a linear function (a.k.a. homomorphism).

The range space of h is

Rphq “ hpUq “ thpuq | u P Uu;
and the null space of f is

N phq “ h
´1p0V q “ tu P U | hpuq “ 0V u.

Both are vector spaces (prove using subspace criterion), and hence we can talk

about their dimensions.

In particular, the rank of h is rankphq “ dimpRphqq; and
the nullity of h is nullityphq “ dimpN phqq.

Example. Last time, we considered h : R5 Ñ R2
defined by

ps, t, x, y, zq fiÑ p4x, x ´ yq, we computed that

Rpfq “ R2
and N pfq “ tps, t, 0, 0, zq | s, t, z P Ru “ Rte1, e2, e5u.

So rankpfq “ 2 and nullitypfq “ 3. [Notice that 2 ` 3 “ dimpR5q]

Rank-nullity theorem
Theorem. Let U, V be vector spaces over a field F , and let h : U Ñ V be a

linear function. Then

dimpUq “ nullityphq ` rankphq.
Proof. Let A be a basis of N pUq. In particular, A is a linearly independent

subset of U , and hence there is some basis X of U that contains A.

[Lecture 7: Every independent set extends to a basis].
Let B “ X ´ A, so that X “ A \ B (the disjoint union), and hence

|X | “ |A| ` |B||X |
dimpUq

|A|

dimpN phqq “ nullitypHq

|B|
dimpFBq (whatever FB is. . . )

Goal: show dimpFBq “ rankphq

We will show that

(1) hpBq is in bijection with B (so that |B| “ |hpBq|); and
(2) hpBq is a basis of Rphq (so that dimpRphqq “ |hpBq|).
Hence, we will be able to conclude that

rankphq “ dimpRphqq “ |hpBq| “ |B|,
which will prove our theorem.

h



So far: Let U, V be vector spaces over a field F , and let h : U Ñ V be a

linear function. Let

§ A be a basis of N phq “ tu P U | hpuq “ 0u (the null space of h);

§ X be a basis of U that contains A; and

[guaranteed to exists because A is linearly independent]

§ B “ X ´ A.

(1) Show |B| “ |hpBq|. [Recall hpBq “ thpbq | b P Bu]
Specifically, we’ll show that h : B Ñ hpBq is a bijection.

It’s surjective by definition, so we really just need to check that it’s injective!

Let b,b1 P B, and suppose that hpbq “ hpb1q. Then
0 “ hpbq ´ hpb1q “ hpb ´ b1q;

so that b ´ b1 P N phq. Expanding b ´ b1
in the basis A (of N phq),

b ´ b1 “ c1a1 ` ¨ ¨ ¨ ` cnan,

we can see that either b “ b1
or (since b,b1 P X ´ A) we have a

contradiction of X ’s linear independence! Hence h : B Ñ hpBq is injective.

Thus |B| “ |hpBq|. X

So far: Let U, V be vector spaces over a field F , and let h : U Ñ V be a

linear function. Let

§ A be a basis of N phq “ tu P U | hpuq “ 0u (the null space of h);

§ X be a basis of U that contains A; and

[guaranteed to exists because A is linearly independent]

§ B “ X ´ A.

(2) Show hpBq is a basis of Rphq “ thpuq | u P Uu.
Spanning: Let v P Rphq (Goal: show v P spanphpBqq).
Let u P h

´1pvq, meaning that hpuq “ v. Since u P U , we can expand it in

the basis X “ A \ B; writing
u “ c1a1 ` ¨ ¨ ¨ ` ckak ` d1b1 ` ¨ ¨ ¨ ` d`b`

for some ci, di P F , ai P A, and bi P B. But then

v “ hpuq “ hpc1a1 ` ¨ ¨ ¨ ` ckak ` d1b1 ` ¨ ¨ ¨ ` d`b`q
“ c1hpa1q ` ¨ ¨ ¨ ` ckhpakq ` d1hpb1q ` ¨ ¨ ¨ ` d`hpb`q (h is linear)

“ c10 ` ¨ ¨ ¨ ` ck0 ` d1hpb1q ` ¨ ¨ ¨ ` d`hpb`q (ai P N phq)
“ d1hpb1q ` ¨ ¨ ¨ ` d`hpb`q P spanphpBqq.X



So far: Let U, V be vector spaces over a field F , and let h : U Ñ V be a

linear function. Let

§ A be a basis of N phq “ tu P U | hpuq “ 0u (the null space of h);

§ X be a basis of U that contains A; and

[guaranteed to exists because A is linearly independent]

§ B “ X ´ A.

(2) Show hpBq is a basis of Rphq “ thpuq | u P Uu.
Independent: [Similarly to showing that |hpBq| “ |B|, we’ll see that hpBq is

independent because its preimage is independent from itself and from A.]

Let d1, . . . , d` P F and hpb1q, . . . , hpb`q P hpBq such that

0 “ d1hpb1q ` ¨ ¨ ¨ ` d`hpb`q
“ hpd1b1 ` ¨ ¨ ¨ ` d`b`q. (h is linear).

Hence, d1b1 ` ¨ ¨ ¨ ` d`b` P N phq “ spanpAq. But again, either
d1b1 ` ¨ ¨ ¨ ` d`b` “ 0,

or we have a contradiction of X being linearly independent. And if it is 0,
then by B’s independence, we know d1 “ ¨ ¨ ¨ “ d` “ 0.

Hence hpBq is linearly independent. X [Concluding our proof of the Theorem.]



You try. Define h : R3 fiÑ R3
by linearly extending

¨

˝
1
0
0

˛

‚ fiÑ
¨

˝
1
1
0

˛

‚,

¨

˝
0
1
0

˛

‚ fiÑ
¨

˝
1
0
1

˛

‚, and

¨

˝
0
0
1

˛

‚ fiÑ
¨

˝
2
1
1

˛

‚.

1. What exactly is h? Compute h

¨

˝
¨

˝
a
b
c

˛

‚

˛

‚ (in terms of a, b, c P R).

2. Compute N phq.
3. Compute Rphq.
4. Give a basis A of N phq (there are lots of examples—pick the easiest one

you can think of).

5. Give a basis X of R3
that contains A (there are lots of examples—pick

the easiest one you can think of).

6. Let B “ X ´ A. For each b P B, compute hpbq.
7. Verify that |hpBq| “ |B| and that the set hpBq is a basis for Rphq.



Injective linear functions
Theorem. A linear function h : U Ñ V is injective if and only if N phq “ 0.

Corollary. If h : U Ñ V is linear and V is finite-dimensional, then the

following are equivalent:

1. h is injective;

2. nullityphq “ 0;

3. rankphq “ dimpV q;
4. If B is a basis for V , then hpBq is a basis for Rphq.

Isomorphisms
We call a bijective linear function an isomorphism.

Note: For any h : U Ñ V , the function h : U Ñ Rphq is surjective by

definition. So h : U Ñ Rphq is an isomorphism if and only if nullityphq “ 0.

Recall that a function f : X Ñ Y is bijective if and only if it has a two-sided

inverse, i.e. a function g : Y Ñ X such that

f ˝ g “ idY and g ˝ f “ idX .

Lemma.

If h : U Ñ V is an isomorphism, then h
´1 : V Ñ U is also an isomorphism.

Proof: Exercise.

Example. Given an ordered basis B “ xb1, . . . ,bny of a vector space V , the

representation RepB : V Ñ F
n
is an isormophism.

For example, using the standard ordered bases, we have the isomorphisms

PnpF q Ñ F
n`1

defined by c0 ` c1x ` ¨ ¨ ¨ ` cnx
n fiÑ pc0, c1, . . . , cnq;

and

M2pF q Ñ F
4

defined by

ˆ
a b
c d

˙
fiÑ pa, b, c, dq.

U



Isomorphisms
We say that U is isomorphic to V if there exists an isomorphism h : U Ñ V .

If so, we write U – V .

Examples: We just saw that PnpF q – F
n`1

and M2pF q – F
4
.

AMAZING Theorem. Suppose U and V are finite-dimensional vector spaces.

Then U – V if and only if dimpUq “ dimpV q.

Cor. If V is a finite-dimensional vector space, and h : V Ñ V is linear, then

the following are equivalent:

1. h is injective;

2. h is surjective;

3. h is an isomorphism.

However, if V is infinite-dimensional, there are linear maps that are injective

but not surjective, and vice versa.


