Lecture 10:

Linear extension Rank/Nullity Theorem Isomorphisms

Linear extensions: concrete constructions of linear maps Question. Are there any linear functions $h : \mathbb{R}^2 \to \mathbb{R}^3$ that sends

$$\begin{pmatrix} 1\\0 \end{pmatrix} \mapsto \begin{pmatrix} 3\\2\\0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0\\1 \end{pmatrix} \mapsto \begin{pmatrix} -1\\1\\5 \end{pmatrix}? \tag{*}$$

Answer. For any $(x, y) \in \mathbb{R}^2$, we know

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Hence

$$h\left(\binom{x}{y}\right) = h\left(x\binom{1}{0} + y\binom{0}{1}\right) = h\left(x\binom{1}{0}\right) + h\left(y\binom{0}{1}\right)$$
$$= xh\left(\binom{1}{0}\right) + yh\left(\binom{0}{1}\right) = x\binom{3}{2} + y\binom{-1}{1}$$
$$= \binom{x \cdot 3}{x \cdot 2} + \binom{y \cdot (-1)}{y \cdot 1} = \binom{x \cdot 3 + y \cdot (-1)}{x \cdot 2 + y \cdot 1}$$
$$x \cdot 0 + y \cdot 5$$

So yes! There's a *unique* linear function that satisfies (*).

Thm. Let U and V be vector spaces over a field F, and let B be a basis of U. For each $\mathbf{b} \in B$, fix some $\mathbf{v_b} \in V$. Then there exists a unique linear transformation $h: U \to V$ that satisfies

$$h(\mathbf{b}) = \mathbf{v}_{\mathbf{b}}$$
 for each $\mathbf{b} \in B$.

In particular, for any $\mathbf{u} \in U$, there's a "unique" way to write $\mathbf{u} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$, where $c_i \in F, \mathbf{b}_i \in B$. Then we define

 $h(\mathbf{u}) = c_1 \mathbf{v}_{\mathbf{b}_1} + \dots + c_n \mathbf{v}_{\mathbf{b}_n}.$

Writing $h: B \to V$ defined by $H: \mathbf{b} \mapsto \mathbf{v}_{\mathbf{b}}$, we say H extends linearly to $h: U \to V$, or that h is a linear extension of H.

See Book (Ch. Two, §II, Thm. 1.9) for proof.

Sketch: We have to check each of the following.

- 1. Existence. Check that the function above is
 - (a) Well-defined: The image is in the codomain (follows from closure) and is independent of representatives (doesn't depend on how you write \mathbf{u} as a linear combination over B).
 - (b) Linear: similar to our examples, check that $h(\mathbf{u} + \mathbf{u}') = h(\mathbf{u}) + h(\mathbf{u}')$ and $h(\lambda \mathbf{u}) = \lambda h(\mathbf{u})$.
 - (c) Does what it says it does: $h(\mathbf{b}) = \mathbf{v}_{\mathbf{b}}$ for all $\mathbf{b} \in B$.

2. Uniqueness.

If $g: U \to V$ also satisfies $g(\mathbf{b}) = \mathbf{v}_{\mathbf{b}}$ for all $\mathbf{b} \in B$, then g = h.

Any linear transformation is determined by the image of a basis of the domain!

Thm. Let U and V be vector spaces over a field F, and let B be a basis of U. For each $\mathbf{b} \in B$, fix some $\mathbf{v_b} \in V$. Then there exists a unique linear transformation $h: U \to V$ that satisfies $h(\mathbf{b}) = \mathbf{v_b}$ for each $\mathbf{b} \in B$.

In particular, for any $\mathbf{u} \in U$, there's a "unique" way to write $\mathbf{u} = c_1\mathbf{b}_1 + \cdots + c_n\mathbf{b}_n$, where $c_i \in F, \mathbf{b}_i \in B$. Then we define $h(\mathbf{u}) = c_1\mathbf{v}_{\mathbf{b}_1} + \cdots + c_n\mathbf{v}_{\mathbf{b}_n}$.

Writing $H: B \to V$ defined by $H: \mathbf{b} \mapsto \mathbf{v}_{\mathbf{b}}$, we say H extends linearly to $h: U \to V$, or that h is a linear extension of H.

Note. This theorem says something **very powerful**: Given vector spaces U and V over F, and a basis B of U, the linear functions $\{h: U \rightarrow V \mid h \text{ is linear }\}$

are in bijection with functions

 $\{H: B \to V\}.$

Every linear map $h: U \to V$ restricts uniquely to a function $H: B \to V$; and every function $H: B \to V$ extends uniquely to a linear map $h: U \to V$. Next week: Use this fact to encode linear functions as matrices.

Caution!

Things can go wrong when we try to do this with a set that is not a basis!

Exercise: Try to extend the function

$$H: (1,0) \mapsto (1,1), \quad (0,1) \mapsto (0,2), \quad \text{and} \quad (1,1) \mapsto (3,-1)$$
to a linear function $h: \mathbb{R}^2 \to \mathbb{R}^2$. What goes wrong?

Rank and nullity

Recall from last time: Let U, V be vector spaces over a field F, and let $h: U \rightarrow V$ be a linear function (a.k.a. homomorphism).

The range space of h is

$$\mathcal{R}(h) = h(U) = \{h(\mathbf{u}) \mid \mathbf{u} \in U\};\$$

and the null space of f is $\mathcal{N}(h) = h^{-1}(\mathbf{0}_V) = \{\mathbf{u} \in U \mid h(\mathbf{u}) = \mathbf{0}_V\}.$

Both are vector spaces (prove using subspace criterion), and hence we can talk about their dimensions.

In particular, the rank of h is $rank(h) = dim(\mathcal{R}(h))$; and the nullity of h is $rullity(h) = dim(\mathcal{N}(h))$.

Example. Last time, we considered $h : \mathbb{R}^5 \to \mathbb{R}^2$ defined by $(s, t, x, y, z) \mapsto (4x, x - y)$, we computed that

 $\mathcal{R}(f) = \mathbb{R}^2 \text{ and } \mathcal{N}(f) = \{(s, t, 0, 0, z) \mid s, t, z \in \mathbb{R}\} = \mathbb{R}\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_5\}.$ So rank(f) = 2 and nullity(f) = 3. [Notice that $2 + 3 = \dim(\mathbb{R}^5)$]

Rank-nullity theorem

Theorem. Let U, V be vector spaces over a field F, and let $h: U \to V$ be a linear function. Then

$$\dim(U) = \operatorname{nullity}(h) + \operatorname{rank}(h).$$

Proof. Let \mathcal{A} be a basis of $\mathcal{N}(\mathbf{h})$. In particular, \mathcal{A} is a linearly independent subset of U, and hence there is some basis \mathcal{X} of U that contains \mathcal{A} .

[Lecture 7: Every independent set extends to a basis]. Let $\mathcal{B} = \mathcal{X} - \mathcal{A}$, so that $\mathcal{X} = \mathcal{A} \sqcup \mathcal{B}$ (the disjoint union), and hence

$$\dim(U) \xrightarrow{|\mathcal{X}|} = |\mathcal{A}| + |\mathcal{B}|$$

$$\dim(F\mathcal{B}) \text{ (whatever } F\mathcal{B} \text{ is...)}$$

$$\dim(\mathcal{N}(h)) = \text{nullity}(H)$$

$$\operatorname{Goal: show } \dim(F\mathcal{B}) = \operatorname{rank}(h)$$

We will show that

(1) $h(\mathcal{B})$ is in bijection with \mathcal{B} (so that $|\mathcal{B}| = |h(\mathcal{B})|$); and

(2) $h(\mathcal{B})$ is a basis of $\mathcal{R}(h)$ (so that $\dim(\mathcal{R}(h)) = |h(\mathcal{B})|$).

Hence, we will be able to conclude that

$$\operatorname{rank}(h) = \dim(\mathcal{R}(h)) = |h(\mathcal{B})| = |\mathcal{B}|,$$

which will prove our theorem.

So far: Let U, V be vector spaces over a field F, and let $h: U \to V$ be a linear function. Let

- \mathcal{A} be a basis of $\mathcal{N}(h) = \{\mathbf{u} \in U \mid h(\mathbf{u}) = \mathbf{0}\}$ (the *null space* of *h*);
- \mathcal{X} be a basis of U that contains \mathcal{A} ; and

[guaranteed to exists because A is linearly independent]

 $\blacktriangleright \mathcal{B} = \mathcal{X} - \mathcal{A}.$

(1) Show $|\mathcal{B}| = |h(\mathcal{B})|$.

 $[\mathsf{Recall} \ h(\mathcal{B}) = \{h(\mathbf{b}) \mid \mathbf{b} \in \mathcal{B}\}]$

Specifically, we'll show that $h : \mathcal{B} \to h(\mathcal{B})$ is a bijection. It's surjective by definition, so we really just need to check that it's injective!

Let $\mathbf{b}, \mathbf{b}' \in \mathcal{B}$, and suppose that $h(\mathbf{b}) = h(\mathbf{b}')$. Then $\mathbf{0} = h(\mathbf{b}) - h(\mathbf{b}') = h(\mathbf{b} - \mathbf{b}');$

so that $\mathbf{b} - \mathbf{b}' \in \mathcal{N}(h)$. Expanding $\mathbf{b} - \mathbf{b}'$ in the basis \mathcal{A} (of $\mathcal{N}(h)$),

 $\mathbf{b} - \mathbf{b}' = c_1 \mathbf{a}_1 + \dots + c_n \mathbf{a}_n,$

we can see that either $\mathbf{b} = \mathbf{b}'$ or (since $\mathbf{b}, \mathbf{b}' \in \mathcal{X} - \mathcal{A}$) we have a contradiction of \mathcal{X} 's linear independence! Hence $h : \mathcal{B} \to h(\mathcal{B})$ is injective.

Thus
$$|\mathcal{B}| = |h(\mathcal{B})|.$$
 ,

So far: Let U, V be vector spaces over a field F, and let $h: U \to V$ be a linear function. Let

- \mathcal{A} be a basis of $\mathcal{N}(h) = \{\mathbf{u} \in U \mid h(\mathbf{u}) = \mathbf{0}\}$ (the *null space* of *h*);
- \mathcal{X} be a basis of U that contains \mathcal{A} ; and

[guaranteed to exists because A is linearly independent]

 $\blacktriangleright \mathcal{B} = \mathcal{X} - \mathcal{A}.$

(2) Show $h(\mathcal{B})$ is a basis of $\mathcal{R}(h) = \{h(\mathbf{u}) \mid \mathbf{u} \in U\}.$

Spanning: Let $\mathbf{v} \in \mathcal{R}(h)$ (*Goal:* show $\mathbf{v} \in \text{span}(h(\mathcal{B}))$). Let $\mathbf{u} \in h^{-1}(\mathbf{v})$, meaning that $h(\mathbf{u}) = \mathbf{v}$. Since $\mathbf{u} \in U$, we can expand it in the basis $\mathcal{X} = \mathcal{A} \sqcup \mathcal{B}$; writing

$$\mathbf{u} = c_1 \mathbf{a}_1 + \dots + c_k \mathbf{a}_k + d_1 \mathbf{b}_1 + \dots + d_\ell \mathbf{b}_\ell$$

for some $c_i, d_i \in F$, $\mathbf{a}_i \in \mathcal{A}$, and $\mathbf{b}_i \in \mathcal{B}$. But then

$$\mathbf{v} = h(\mathbf{u}) = h(c_1\mathbf{a}_1 + \dots + c_k\mathbf{a}_k + d_1\mathbf{b}_1 + \dots + d_\ell\mathbf{b}_\ell)$$

= $c_1h(\mathbf{a}_1) + \dots + c_kh(\mathbf{a}_k) + d_1h(\mathbf{b}_1) + \dots + d_\ell h(\mathbf{b}_\ell)$ (h is linear)
= $c_1\mathbf{0} + \dots + c_k\mathbf{0} + d_1h(\mathbf{b}_1) + \dots + d_\ell h(\mathbf{b}_\ell)$ ($\mathbf{a}_i \in \mathcal{N}(h)$)
= $d_1h(\mathbf{b}_1) + \dots + d_\ell h(\mathbf{b}_\ell) \in \operatorname{span}(h(\mathcal{B})).\checkmark$

So far: Let U, V be vector spaces over a field F, and let $h: U \to V$ be a linear function. Let

- \mathcal{A} be a basis of $\mathcal{N}(h) = \{\mathbf{u} \in U \mid h(\mathbf{u}) = 0\}$ (the *null space* of *h*);
- \mathcal{X} be a basis of U that contains \mathcal{A} ; and

[guaranteed to exists because A is linearly independent]

 $\blacktriangleright \mathcal{B} = \mathcal{X} - \mathcal{A}.$

(2) Show $h(\mathcal{B})$ is a basis of $\mathcal{R}(h) = \{h(\mathbf{u}) \mid \mathbf{u} \in U\}.$

Independent: [Similarly to showing that $|h(\mathcal{B})| = |\mathcal{B}|$, we'll see that $h(\mathcal{B})$ is independent because its preimage is independent from itself and from \mathcal{A} .] Let $d_1, \ldots, d_{\ell} \in F$ and $h(\mathbf{b}_1), \ldots, h(\mathbf{b}_{\ell}) \in h(\mathcal{B})$ such that

$$\mathbf{0} = d_1 h(\mathbf{b}_1) + \dots + d_\ell h(\mathbf{b}_\ell)$$

= $h(d_1 \mathbf{b}_1 + \dots + d_\ell \mathbf{b}_\ell).$ (h is linear)

Hence, $d_1\mathbf{b}_1 + \cdots + d_\ell\mathbf{b}_\ell \in \mathcal{N}(h) = \operatorname{span}(\mathcal{A})$. But again, either

$$d_1\mathbf{b}_1+\cdots+d_\ell\mathbf{b}_\ell=\mathbf{0},$$

or we have a contradiction of \mathcal{X} being linearly independent. And if it is 0, then by \mathcal{B} 's independence, we know $d_1 = \cdots = d_{\ell} = 0$.

Hence $h(\mathcal{B})$ is linearly independent. \checkmark [Concluding our proof of the Theorem.]

You try. Define $h : \mathbb{R}^3 \mapsto \mathbb{R}^3$ by linearly extending

$$\begin{pmatrix} 1\\0\\0 \end{pmatrix} \mapsto \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \quad \begin{pmatrix} 0\\1\\0 \end{pmatrix} \mapsto \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \text{ and } \begin{pmatrix} 0\\0\\1 \end{pmatrix} \mapsto \begin{pmatrix} 2\\1\\1 \end{pmatrix}.$$
1. What exactly is h ? Compute $h\left(\begin{pmatrix} a\\b\\c \end{pmatrix}\right)$ (in terms of $a, b, c \in \mathbb{R}$).

- 2. Compute $\mathcal{N}(h)$.
- **3**. Compute $\mathcal{R}(h)$.
- 4. Give a basis \mathcal{A} of $\mathcal{N}(h)$ (there are lots of examples—pick the easiest one you can think of).
- 5. Give a basis \mathcal{X} of \mathbb{R}^3 that contains \mathcal{A} (there are lots of examples—pick the easiest one you can think of).
- 6. Let $\mathcal{B} = \mathcal{X} \mathcal{A}$. For each $\mathbf{b} \in \mathcal{B}$, compute $h(\mathbf{b})$.
- 7. Verify that $|h(\mathcal{B})| = |\mathcal{B}|$ and that the set $h(\mathcal{B})$ is a basis for $\mathcal{R}(h)$.

Injective linear functions

Theorem. A linear function $h: U \to V$ is injective if and only if $\mathcal{N}(h) = 0$.

Corollary. If $h: U \rightarrow V$ is linear and V is finite-dimensional, then the following are equivalent:

- 1. *h* is injective;
- **2**. nullity(h) = 0;
- 3. $\operatorname{rank}(h) = \dim(\mathbf{U});$
- 4. If \mathcal{B} is a basis for V, then $h(\mathcal{B})$ is a basis for $\mathcal{R}(h)$.

Isomorphisms

We call a bijective linear function an isomorphism.

Note: For any $h: U \to V$, the function $h: U \to \mathcal{R}(h)$ is surjective by definition. So $h: U \to \mathcal{R}(h)$ is an isomorphism if and only if $\operatorname{nullity}(h) = 0$.

Recall that a function $f: X \to Y$ is bijective if and only if it has a two-sided inverse, i.e. a function $g: Y \to X$ such that

$$f \circ g = \operatorname{id}_Y$$
 and $g \circ f = \operatorname{id}_X$.

Lemma.

If $h: U \to V$ is an isomorphism, then $h^{-1}: V \to U$ is also an isomorphism.

Proof: Exercise.

Example. Given an ordered basis $B = \langle \mathbf{b}_1, \dots, \mathbf{b}_n \rangle$ of a vector space V, the representation $\operatorname{Rep}_B : V \to F^n$ is an isormophism.

For example, using the standard ordered bases, we have the isomorphisms

$$\mathcal{P}_n(F) \to F^{n+1}$$
 defined by $c_0 + c_1 x + \dots + c_n x^n \mapsto (c_0, c_1, \dots, c_n);$
and

$$M_2(F) \to F^4$$
 defined by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c, d).$

Isomorphisms

We say that U is isomorphic to V if there exists an isomorphism $h:U\to V.$ If so, we write $U\cong V.$

Examples: We just saw that $P_n(F) \cong F^{n+1}$ and $M_2(F) \cong F^4$.

AMAZING Theorem. Suppose U and V are finite-dimensional vector spaces. Then $U \cong V$ if and only if $\dim(U) = \dim(V)$.

Cor. If V is a finite-dimensional vector space, and $h: V \rightarrow V$ is linear, then the following are equivalent:

- **1**. h is injective;
- 2. h is surjective;
- 3. h is an isomorphism.

However, if V is infinite-dimensional, there are linear maps that are injective but not surjective, and vice versa.