Lecture 9:
Linear transformations, a.k.a. homomorphisms Range, preimage, and nullspace Linear extension

Reminder:

- Exam 1 goes out in class on Thursday.
- You're allowed one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of notes.
- Homework 4 is due by 3 pm on Thursday, but $\operatorname{LT}_{\mathrm{E}} \mathrm{EX}$ is not required.

Last time: We say a function $f: U \rightarrow V$ is linear (or is a linear transformation) if it satisfies

$$
f\left(\mathbf{u}_{1}+\mathbf{u}_{2}\right)=f\left(\mathbf{u}_{1}\right)+f\left(\mathbf{u}_{2}\right) \quad \text { and } \quad f(\lambda \mathbf{u})=\lambda f(\mathbf{u})
$$

for all $\mathbf{u}, \mathbf{u}_{1}, \mathbf{u}_{2} \in U$ and $\lambda \in F$. General terms: "structure-preserving map" We say f preserves addition and scaling-the structure that is intrinsic to what it means to be a vector space!
Example: Scaling is linear.
Let V be a vector space over a field F, and fix $\alpha \in F$. Then

$$
\begin{aligned}
f: & V \rightarrow V \\
& \mathbf{v} \mapsto \alpha \mathbf{v}
\end{aligned}
$$

is a linear transformation.
Check: for any $\mathbf{u}, \mathbf{v} \in V, \lambda \in F$,

$$
f(\mathbf{u}+\mathbf{v})=
$$

$$
f(\lambda \mathbf{v})=
$$

Example. Rotation about the origin is linear.
Let $V=\mathbb{R}^{2}$ and fix $\theta \in \mathbb{R}$. Then rotation around the origin by θ,

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto(x \cos (\theta)-y \sin (\theta), x \sin (\theta)+y \cos (\theta))
\end{aligned}
$$

is a linear transformation.

We really should check: for any $\mathbf{u}, \mathbf{v} \in V, \lambda \in F$,

$$
\begin{aligned}
f(\mathbf{u}+\mathbf{v}) & = \\
f(\lambda \mathbf{v}) & =
\end{aligned}
$$

You try: Which of the following functions are linear?

1. $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $x \mapsto(0,4 x)$.
2. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $(x, y) \mapsto 3 x-y$.
3. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $(x, y) \mapsto x y$.
4. $f: \mathbb{R}^{2} \rightarrow M_{2}(\mathbb{R})$ defined by

$$
(x, y) \mapsto\left(\begin{array}{cc}
x & x+y \\
0 & 2 y
\end{array}\right)
$$

5. $f: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ defined by

$$
p(x) \mapsto \frac{d}{d x} p(x)
$$

Claim. Fix $a, b, c, d \in F$. Then the function

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto(a x+b y, c x+d y)
\end{aligned}
$$

is linear.
Check:

$$
\begin{aligned}
f\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right) & =f\left(\left(x+x^{\prime}, y+y^{\prime}\right)\right) \\
& =\left(a\left(x+x^{\prime}\right)+b\left(y+y^{\prime}\right), c\left(x+x^{\prime}\right)+d\left(y+y^{\prime}\right)\right) \\
& =\left((a x+b y)+\left(a x^{\prime}+b y^{\prime}\right),(c x+y d)+\left(c x^{\prime}+d y^{\prime}\right)\right) \\
& =(a x+b y, c x+y d)+\left(a x^{\prime}+b y^{\prime}, c x^{\prime}+d y^{\prime}\right) \\
& =f((x, y))+f\left(\left(x^{\prime}, y^{\prime}\right)\right) ; \quad \checkmark \\
f(\lambda(x, y)) & =f((\lambda x, \lambda y)) \\
& =(a(\lambda x)+b(\lambda y), c(\lambda x)+d(\lambda y)) \\
& =(\lambda(a x+b y), \lambda(c x+d y)) \\
& =\lambda(a x+b y, c x+d y) \\
& =\lambda f((x, y)) . \quad \checkmark
\end{aligned}
$$

Some properties of linear functions.

Let U, V be vector spaces over a field F, and let $f: U \rightarrow V$ be a linear function.

Lemma 1. Letting $\mathbf{0}_{U}$ and $\mathbf{0}_{V}$ denote the additive identities of U and V, respectively (as usual), we have

$$
f\left(\mathbf{0}_{U}\right)=\mathbf{0}_{V}
$$

"Every linear map sends additive identity to additive identity."
Proof. (Consider $0_{F} \cdot \mathbf{u}$ for some $\mathbf{u} \in U$.)
Lemma 2. The range/image of f,

$$
\begin{aligned}
f(U) & =\{f(\mathbf{u}) \mid \mathbf{u} \in U\} \\
& =\{\mathbf{v} \in V \mid \text { there is some } \mathbf{u} \in U \text { such that } f(\mathbf{u})=\mathbf{v}\}
\end{aligned}
$$

is a subspace of V.
Proof. Recall the subspace criterion: our goal is to show that
(1) $f(U) \neq \varnothing$, and
(2) for all $\mathbf{v}, \mathbf{w} \in f(U)$ and $\lambda \in F$, we have $\mathbf{v}+\lambda \mathbf{w} \in f(U)$.

The book calls $f(U)$ the range space of f, denoted $\mathcal{R}(f)$ (only curlier).

Let U, V be vector spaces over a field F, and let $f: U \rightarrow V$ be a linear function.
Lemma 1. $f\left(\mathbf{0}_{U}\right)=\mathbf{0}_{V}$.
Lemma 2. The range/image of $f, f(U)=\{f(\mathbf{u}) \mid \mathbf{u} \in U\}$, is a subspace of V.
For any $\mathbf{v} \subseteq f(U)$, define the preimage ("inverse image") of \mathbf{v} as

$$
f^{-1}(\mathbf{v})=\{\mathbf{u} \in U \mid f(\mathbf{u})=\mathbf{v}\} .
$$

Note: in general, we don't expect $f^{-1}(\mathbf{v})$ to be a single point unless f is injective!

For most $\mathbf{v} \in f(U)$, note that $f^{-1}(\mathbf{v})$ is not a subspace of U. However...
For a subspace $W \subseteq f(U)$, the preimage ("inverse image") of W is

$$
f^{-1}(W)=\bigcup_{\mathbf{w} \in W} f^{-1}(\mathbf{w})=\{\mathbf{u} \in U \mid f(\mathbf{u}) \in W\} .
$$

Lemma 3. The preimage of a subspace $W \subseteq f(U)$ is a subspace of U.

Let U, V be vector spaces over a field F, and let $f: U \rightarrow V$ be a linear function.
Lemma 1. $f\left(\mathbf{0}_{U}\right)=\mathbf{0}_{V}$.
Lemma 2. The range/image of $f, f(U)=\{f(\mathbf{u}) \mid \mathbf{u} \in U\}$, is a subspace of V.
Lemma 3. The preimage of a subspace $W \subseteq f(U)$, given by

$$
f^{-1}(W)=\{\mathbf{u} \in U \mid f(\mathbf{u}) \in W\}
$$

is a subspace of U.
In particular, the kernel, or nullspace, of f is

$$
\mathcal{N}(f)=f^{-1}\left(\mathbf{0}_{V}\right)=\left\{\mathbf{u} \in U \mid f(\mathbf{u})=\mathbf{0}_{V}\right\}
$$

Since $0=\left\{\mathbf{0}_{V}\right\}$ is a subspace of V and $f\left(\mathbf{0}_{U}\right)=\mathbf{0}_{V}$ (so that 0 is a subspace of $f(U)$), we know that $\mathcal{N}(f)$ is a subspace of U.

Example. Consider $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ defined by $(s, t, x, y, z) \mapsto(4 x, x-y)$.
Let's compute

1. $f\left(\mathbb{R}^{5}\right)=\left\{(a, b) \in \mathbb{R}^{2} \mid a=4 x\right.$ and $b=x-y$ for some $\left.(s, t, x, y, z) \in \mathbb{R}^{5}\right\}$
2. $f^{-1}((4,-5))=\left\{(s, t, x, y, z) \in \mathbb{R}^{5} \mid 4 x=4\right.$ and $\left.x-y=-5\right\}$
3. $\mathcal{N}(f)=\left\{(s, t, x, y, z) \in \mathbb{R}^{5} \mid 4 x=0\right.$ and $\left.x-y=0\right\}$

Let U, V be vector spaces over a field F, and let $f: U \rightarrow V$ be a linear function
(a.k.a. homomorphism).

The range space of f is

$$
\mathcal{R}(f)=f(U)=\{f(\mathbf{u}) \mid \mathbf{u} \in U\}
$$

and the null space of f is

$$
\mathcal{N}(f)=f^{-1}\left(\mathbf{0}_{V}\right)=\left\{\mathbf{u} \in U \mid f(\mathbf{u})=\mathbf{0}_{V}\right\}
$$

These are vector spaces, and so we are interested in their dimensions!
The rank of f is $\operatorname{rank}(f)=\operatorname{dim}(f(U))$; and the nullity of f is nullity $(f)=\operatorname{dim}(\mathcal{N}(f))$.
Example. For $f: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$ defined by $(s, t, x, y, z) \mapsto(4 x, x-y)$, we computed that

$$
\mathcal{R}(f)=\mathbb{R}^{2} \quad \text { and } \quad \mathcal{N}(f)=\{(s, t, 0,0, z) \mid s, t, z \in \mathbb{R}\}=\mathbb{R}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{5}\right\} .
$$

So $\operatorname{rank}(f)=2$ and nullity $(f)=3$.
[Notice that $2+3=\operatorname{dim}\left(\mathbb{R}^{5}\right)$]
Example. For $f: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{3}(\mathbb{R})$ defined by $p(x) \mapsto \frac{d}{d x} p(x)$, we have

$$
a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mapsto a_{1}+2 a_{2} x+3 a_{3} x^{2}
$$

So

$$
\begin{aligned}
& \mathcal{R}(f)=\left\{p(x) \in \mathcal{P}_{3}(\mathbb{R}) \mid \operatorname{deg}(p(x)) \leqslant 2\right\} "=" \mathcal{P}_{2}(x) ; \quad \text { and } \\
& \mathcal{N}(f)=\left\{p(x) \in \mathcal{P}_{3}(\mathbb{R}) \left\lvert\, \frac{d}{d x} p(x)=0\right.\right\}=\{\text { constant polynomials }\} "=" \mathbb{R}
\end{aligned}
$$

Hence $\operatorname{rank}(f)=3$ and nullity $(f)=1$.
[Notice that $\left.3+1=\operatorname{dim}\left(\mathcal{P}_{3}(\mathbb{R})\right)\right]$

Linear extensions: concrete constructions of linear maps

Question. Are there any linear functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that sends

$$
\binom{1}{0} \mapsto\left(\begin{array}{l}
3 \tag{*}\\
2 \\
0
\end{array}\right) \quad \text { and } \quad\binom{0}{1} \mapsto\left(\begin{array}{c}
-1 \\
1 \\
5
\end{array}\right) \text { ? }
$$

Answer. For any $(x, y) \in \mathbb{R}^{2}$, we know

$$
\binom{x}{y}=\binom{x}{0}+\binom{0}{y}=x\binom{1}{0}+y\binom{0}{1} .
$$

Hence

$$
\begin{aligned}
f\left(\binom{x}{y}\right) & =f\left(x\binom{1}{0}+y\binom{0}{1}\right)=f\left(x\binom{1}{0}\right)+f\left(y\binom{0}{1}\right) \\
& =x f\left(\binom{1}{0}\right)+y f\left(\binom{0}{1}\right)=x\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)+y\left(\begin{array}{c}
-1 \\
1 \\
5
\end{array}\right) \\
& =\left(\begin{array}{l}
x \cdot 3 \\
x \cdot 2 \\
x \cdot 0
\end{array}\right)+\left(\begin{array}{c}
y \cdot(-1) \\
y \cdot 1 \\
y \cdot 5
\end{array}\right)=\left(\begin{array}{c}
x \cdot 3+y \cdot(-1) \\
x \cdot 2+y \cdot 1 \\
x \cdot 0+y \cdot 5
\end{array}\right) .
\end{aligned}
$$

So yes! There's a unique linear function that satisfies (*).

Any linear transformation is determined by the image of a basis of the domain!
Thm. Let U and V be vector spaces over a field F, and let B be a basis of U. For each $\mathbf{b} \in B$, fix some $\mathbf{v}_{\mathbf{b}} \in V$. Then there exists a unique linear transformation $f: U \rightarrow V$ that satisfies

$$
f(\mathbf{b})=\mathbf{v}_{\mathbf{b}} \quad \text { for each } \mathbf{b} \in B
$$

In particular, for any $\mathbf{u} \in U$, there's a "unique" way to write $\mathbf{u}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$, where $c_{i} \in F, \mathbf{b}_{i} \in B$. Then we define

$$
f(\mathbf{u})=c_{1} \mathbf{v}_{\mathbf{b}_{1}}+\cdots+c_{n} \mathbf{v}_{\mathbf{b}_{n}} .
$$

Writing $F: B \rightarrow V$ defined by $F: \mathbf{b} \mapsto \mathbf{v}_{\mathbf{b}}$, we say F extends linearly to $f: U \rightarrow V$, or that f is a linear extension of F.

See Book (Ch. Two, §II, Thm. 1.9) for proof.

Sketch: We have to check each of the following.

1. Existence. Check that the function above is
(a) Well-defined: The image is in the codomain (follows from closure) and is independent of representatives (doesn't depend on how you write \mathbf{u} as a linear combination over B).
(b) Linear: similar to our examples, check that $f\left(\mathbf{u}+\mathbf{u}^{\prime}\right)=f(\mathbf{u})+f\left(\mathbf{u}^{\prime}\right)$ and $f(\lambda \mathbf{u})=\lambda f(\mathbf{u})$.
(c) Does what it says it does: $f(\mathbf{b})=\mathbf{v}_{\mathbf{b}}$ for all $\mathbf{b} \in B$.

2. Uniqueness.

If $g: U \rightarrow V$ also satisfies $g(\mathbf{b})=\mathbf{v}_{\mathbf{b}}$ for all $\mathbf{b} \in B$, then $g=f$.

Note. This theorem says something very powerful:
Given vector spaces U and V over F, and a basis B of U, the linear functions

$$
\{f: U \rightarrow V \mid f \text { is linear }\}
$$

are in bijection with functions

$$
\{F: B \rightarrow V\} .
$$

Every linear map $f: U \rightarrow V$ restricts uniquely to a function $F: B \rightarrow V$; and every function $F: B \rightarrow V$ extends uniquely to a linear map $f: U \rightarrow V$.

Next time: Use this fact to encode linear functions as matrices.

Caution!

Things can go wrong when we try to do this with a set that is not a basis!
Exercise: Try to extend the function

$$
F:(1,0) \mapsto(1,1), \quad(0,1) \mapsto(0,2), \quad \text { and } \quad(1,1) \mapsto(3,-1)
$$

to a linear function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. What goes wrong?

