Lecture 9:

Linear transformations, a.k.a. homomorphisms
Range, preimage, and nullspace

Linear extension

Reminder:
» Exam 1 goes out in class on Thursday.
» You're allowed one 8.5" x11" sheet of notes.

» Homework 4 is due by 3pm on Thursday, but IATEX is not required.

Last time: We say a function f: U — V is linear (or is a linear
transformation) if it satisfies

flur +ug) = f(ur) + f(uz) and  f(Au) = Af(u)

“structure-preserving map”

for all u,u;,us € U and A € F. General terms: " .
homomorphism

We say f preserves addition and scaling—the structure that is intrinsic to what it
means to be a vector space!
Example: Scaling is linear.
Let V be a vector space over a field F', and fix o € F. Then

f: V-V

vV — av

is a linear transformation.
Check: for any u,veV, Ae F,

flu+v) =

fav) =



Example. Rotation about the origin is linear.
Let V = R? and fix § € R. Then rotation around the origin by 6,
f: R? 5> R?
(z,y) — (xcos(f) — ysin(f), zsin(f) + y cos(h))
is a linear transformation.

~

~

We really should check: for any u,veV, A e F,
flu+v) =

Fw) =

You try: Which of the following functions are linear?
1. f:R — R? defined by z — (0,4x).
2. f:R? - R defined by (z,y) — 3z —y.
3. f:R? — R defined by (z,y) — .
4. f:R? - My(R) defined by
e (5547
5. f:R[z] — R[z] defined by

p(@) — = ple).



Claim. Fix a,b,c,d € F. Then the function
f: R? - R?
(z,y) — (ax + by, cx + dy)
is linear.
Check:

(@) + (@) = f((z+ 2"y +9)

= (a(z+2") + by + ), c(z +2') +d(y + v/))
((az + by) + (az’ + by'), (cz + yd) + (cz’ + dy'))
= (az + by, cx + yd) + (az’ + by', cx’ + dy')
F(y) + f(@ ) v

FAM(z,y)) = f((Az, Ay))
= (a(Az) + b(\y), c(\z) + d(\y))
= (Maz + by), Acx + dy))
= Maz + by, cx + dy)
= M((z,y). v

Some properties of linear functions.

Let U,V be vector spaces over a field F', and let f : U — V be a linear
function.

Lemma 1. Letting Oy and Oy denote the additive identities of U and V/,
respectively (as usual), we have

f(Oy) = 0y.
“Every linear map sends additive identity to additive identity.”
Proof. (Consider O - u for some ue U.)

Lemma 2. The range/image of f,
fU)={f(u) [ueU}

= {v eV | thereis some ue U such that f(u) = v}

is a subspace of V.
Proof. Recall the subspace criterion: our goal is to show that

(1) f(U) # &, and
(2) forall v,we f(U) and XA € F, we have v + Aw € f(U).

The book calls f(U) the range space of f, denoted R(f) (only curlier).



Let U,V be vector spaces over a field F', and let f : U — V be a linear function.
Lemma 1. f(Oy) = Oy.
Lemma 2. The range/image of f, f(U) = {f(u) | ue U}, is a subspace of V.

For any v € f(U), define the preimage (“inverse image") of v as
f7Hv)={ueU] f(u) = v},

Note: in general, we don't expect f~'(v) to be a single point unless f is injective!

For most v € f(U), note that f~!(v) is not a subspace of U. However. ..
For a subspace W < f(U), the preimage (“inverse image”) of W is
7y = | i w) = {ueU| flu) e W}

weW
Lemma 3. The preimage of a subspace W < f(U) is a subspace of U.



Let U,V be vector spaces over a field F', and let f : U — V be a linear function.
Lemma 1. f(Oy) = Oy.
Lemma 2. The range/image of f, f(U) = {f(u) | ue U}, is a subspace of V.
Lemma 3. The preimage of a subspace W < f(U), given by

FTHW) = {ueU| f(u) e W},

is a subspace of U.

In particular, the kernel, or nullspace, of f is

N(f)=f"H0v) ={ueU| f(u) =0y}
Since 0 = {0y} is a subspace of V' and f(0y) = Oy (so that 0 is a subspace
of f(U)), we know that N'(f) is a subspace of U.

Example. Consider f : R® — R? defined by (s,t,z,y,2) — (4,2 — y).

Let's compute

1. f(R%) = {(a,b) e R? | @ = 42 and b = = — y for some (s,t,2,v, z) € R®}

2. f7YH(4,-5)) = {(s,t,z,y,2) e R® | dx =4 and x — y = —5}

3. N(f) ={(s,t,7,y,2) e R® | 4x = 0 and = — y = 0}



Let U,V be vector spaces over a field F', and let f : U — V be a linear function
(a.k.a. homomorphism).
The range space of f is

R(f) = f(U) = {f(a) | ueU};
and the null space of f is

N(f) =f"H0y) ={uecU| f(u) =0y}

These are vector spaces, and so we are interested in their dimensions!

The rank of f is rank(f) = dim(f(U)); and
the nullity of f is nullity(f) = dim(N(f)).
Example. For f:R% — R? defined by (s,t,z,v,2) — (4z,7 — y), we
computed that
R(f) =R?* and N(f) ={(5,t0,0,2) | s,t,z€ R} = R{e;, ez, e5}.
So rank(f) = 2 and nullity(f) = 3. [Notice that 2 + 3 = dim(R5)]

Example. For f : P3(R) — P3(R) defined by p(z) — -Lp(z), we have

3

agp +aix + a2x2 + azx” — a1 + 2a9x + 3a3x2.

So
R(f) = {p(x) € P3(R) | deg(p(x)) < 2}"="Pa(x); and
N(f) = {p(z) € Ps(R) | ‘Lp(x) = 0}

Hence rank(f) = 3 and nullity(f) = 1. [Notice that 3 + 1 = dim(P3(R))]

= { constant polynomials } “="R.

Linear extensions: concrete constructions of linear maps
Question. Are there any linear functions f : R? — R3 that sends

)= [2) e ()1 )

Answer. For any (z,y)

Hence

So yes! There's a unique linear function that satisfies ().



Any linear transformation is determined by the image of a basis of the domain!
Thm. Let U and V be vector spaces over a field I, and let B be a basis of U.

For each b € B, fix some v, € V. Then there exists a unique linear
transformation f : U — V that satisfies

f(b) =vp for each b e B.

In particular, for any u € U, there's a “unique” way to write
u=cby+-+c,b,, where ¢; € F.b; € B. Then we define

f(u) =c1vp, + -+ cpVp, -

Writing F': B — V defined by F': b — vy, we say F' extends linearly to
f:U —V, orthat fis a linear extension of F'.

See Book (Ch. Two, §lI, Thm. 1.9) for proof.
Sketch: We have to check each of the following.
1. Existence. Check that the function above is
(a) Well-defined: The image is in the codomain (follows from closure) and is
independent of representatives (doesn't depend on how you write u as a
linear combination over B).
(b) Linear: similar to our examples, check that f(u + u’) = f(u) + f(u’) and
fAu) = Af(u).
(c) Does what it says it does: f(b) = vy for all b e B.
2. Uniqueness.
If g: U — V also satisfies g(b) = vy, for all b e B, then g = f.

Note. This theorem says something very powerful:
Given vector spaces U and V over F', and a basis B of U, the linear functions
{f:U— V| fislinear }
are in bijection with functions
{F:B -V}
Every linear map f : U — V restricts uniquely to a function F': B — V; and

every function F': B — V extends uniquely to a linear map f: U — V.
Next time: Use this fact to encode linear functions as matrices.

Caution!
Things can go wrong when we try to do this with a set that is not a basis!

Exercise: Try to extend the function
F:(1,0)— (1,1), (0,1)~ (0,2), and (1,1) (3,—1)
to a linear function f : R? — R2. What goes wrong?



