
Lecture 9:
Linear transformations, a.k.a. homomorphisms
Range, preimage, and nullspace
Linear extension

Reminder:

§ Exam 1 goes out in class on Thursday.

§ You’re allowed one 8.5”ˆ11” sheet of notes.

§ Homework 4 is due by 3pm on Thursday, but LATEX is not required.

Last time: We say a function f : U Ñ V is linear (or is a linear

transformation) if it satisfies

fpu1 ` u2q “ fpu1q ` fpu2q and fp�uq “ �fpuq

for all u,u1,u2 P U and � P F . General terms:
“structure-preserving map”

“homomorphism”

We say f preserves addition and scaling—the structure that is intrinsic to what it
means to be a vector space!

Example: Scaling is linear.

Let V be a vector space over a field F , and fix ↵ P F . Then

f : V Ñ V
v fiÑ ↵v

is a linear transformation.

Check: for any u,v P V , � P F ,

fpu ` vq “

fp�vq “



Example. Rotation about the origin is linear.

Let V “ R2
and fix ✓ P R. Then rotation around the origin by ✓,

f : R2
Ñ R2

px, yq fiÑ px cosp✓q ´ y sinp✓q, x sinp✓q ` y cosp✓qq

is a linear transformation.

uv

u
`
v

f
fi››››Ñ u

`
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fpvq

f
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q

We really should check: for any u,v P V , � P F ,

fpu ` vq “

fp�vq “

(We’ll get these more generally in a moment)

You try: Which of the following functions are linear?

1. f : R Ñ R2
defined by x fiÑ p0, 4xq.

Yes

2. f : R2
Ñ R defined by px, yq fiÑ 3x ´ y.

Yes

3. f : R2
Ñ R defined by px, yq fiÑ xy.

No

4. f : R2
Ñ M2pRq defined by

Yes

px, yq fiÑ

ˆ
x x ` y
0 2y

˙
.

5. f : Rrxs Ñ Rrxs defined by

Yes

ppxq fiÑ
d

dx
ppxq.



Claim. Fix a, b, c, d P F . Then the function

f : R2
Ñ R2

px, yq fiÑ pax ` by, cx ` dyq

is linear.

Check:

fppx, yq ` px1, y1
qq “ fppx ` x1, y ` y1

qq

“
`
apx ` x1

q ` bpy ` y1
q, cpx ` x1

q ` dpy ` y1
q
˘

“
`
pax ` byq ` pax1

` by1
q, pcx ` ydq ` pcx1

` dy1
q
˘

“
`
ax ` by, cx ` ydq ` pax1

` by1, cx1
` dy1

q

“ fppx, yqq ` fppx1, y1
qq; X

fp�px, yqq “ fpp�x,�yqq

“
`
ap�xq ` bp�yq, cp�xq ` dp�yq

˘

“
`
�pax ` byq,�pcx ` dyq

˘

“ �pax ` by, cx ` dyq

“ �fppx, yqq. X

Some properties of linear functions.
Let U, V be vector spaces over a field F , and let f : U Ñ V be a linear

function.

Lemma 1. Letting 0U and 0V denote the additive identities of U and V ,

respectively (as usual), we have

fp0U q “ 0V .

“Every linear map sends additive identity to additive identity.”

Proof. (Consider 0F ¨ u for some u P U .)

Lemma 2. The range/image of f ,

fpUq “ tfpuq | u P Uu

“ tv P V | there is some u P U such that fpuq “ vu

is a subspace of V .

Proof. Recall the subspace criterion: our goal is to show that

(1) fpUq ‰ H, and

(2) for all v,w P fpUq and � P F , we have v ` �w P fpUq.

The book calls fpUq the range space of f , denoted Rpfq (only curlier).



Let U, V be vector spaces over a field F , and let f : U Ñ V be a linear function.

Lemma 1. fp0U q “ 0V .

Lemma 2. The range/image of f , fpUq “ tfpuq | u P Uu, is a subspace of V .

For any v Ñ fpUq, define the preimage (“inverse image”) of v as

f´1
pvq “ tu P U | fpuq “ vu.

Note: in general, we don’t expect f´1pvq to be a single point unless f is injective!

f

V
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For most v P fpUq, note that f´1
pvq is not a subspace of U . However. . .

Let U, V be vector spaces over a field F , and let f : U Ñ V be a linear function.

Lemma 1. fp0U q “ 0V .

Lemma 2. The range/image of f , fpUq “ tfpuq | u P Uu, is a subspace of V .

For any v Ñ fpUq, define the preimage (“inverse image”) of v as
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pvq “ tu P U | fpuq “ vu.
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For most v P fpUq, note that f´1
pvq is not a subspace of U . However. . .

For a subspace W Ñ fpUq, the preimage (“inverse image”) of W is

f´1
pW q “

§

wPW
f´1

pwq “ tu P U | fpuq P W u.

Lemma 3. The preimage of a subspace W Ñ fpUq is a subspace of U .



Let U, V be vector spaces over a field F , and let f : U Ñ V be a linear function.

Lemma 1. fp0U q “ 0V .

Lemma 2. The range/image of f , fpUq “ tfpuq | u P Uu, is a subspace of V .

Lemma 3. The preimage of a subspace W Ñ fpUq, given by

f´1pW q “ tu P U | fpuq P W u,
is a subspace of U .

In particular, the kernel, or nullspace, of f is

N pfq “ f´1
p0V q “ tu P U | fpuq “ 0V u.

Since 0 “ t0V u is a subspace of V and fp0U q “ 0V (so that 0 is a subspace

of fpUq), we know that N pfq is a subspace of U .

f
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Example. Consider f : R5
Ñ R2

defined by ps, t, x, y, zq fiÑ p4x, x ´ yq.

Let’s compute

1. fpR5
q “ tpa, bq P R2

| a “ 4x and b “ x ´ y for some ps, t, x, y, zq P R5
u

2. f´1
pp4,´5qq “ tps, t, x, y, zq P R5

| 4x “ 4 and x ´ y “ ´5u

3. N pfq “ tps, t, x, y, zq P R5
| 4x “ 0 and x ´ y “ 0u



Let U, V be vector spaces over a field F , and let f : U Ñ V be a linear function
(a.k.a. homomorphism).

The range space of f is

Rpfq “ fpUq “ tfpuq | u P Uu;
and the null space of f is

N pfq “ f´1p0V q “ tu P U | fpuq “ 0V u.

These are vector spaces, and so we are interested in their dimensions!

The rank of f is rankpfq “ dimpfpUqq; and

the nullity of f is nullitypfq “ dimpN pfqq.

Example. For f : R5
Ñ R2

defined by ps, t, x, y, zq fiÑ p4x, x ´ yq, we

computed that

Rpfq “ R2
and N pfq “ tps, t, 0, 0, zq | s, t, z P Ru “ Rte1, e2, e5u.

So rankpfq “ 2 and nullitypfq “ 3. [Notice that 2 ` 3 “ dimpR5q]
Example. For f : P3pRq Ñ P3pRq defined by ppxq fiÑ

d
dxppxq, we have

a0 ` a1x ` a2x
2

` a3x
3

fiÑ a1 ` 2a2x ` 3a3x
2.

So

Rpfq “ tppxq P P3pRq | degpppxqq § 2u““”P2pxq; and

N pfq “ tppxq P P3pRq |
d
dxppxq “ 0u “ t constant polynomials u““”R.

Hence rankpfq “ 3 and nullitypfq “ 1. [Notice that 3 ` 1 “ dimpP3pRqq]

Linear extensions: concrete constructions of linear maps
Question. Are there any linear functions f : R2

Ñ R3
that sends

ˆ
1
0

˙
fiÑ

¨

˝
3
2
0

˛

‚ and

ˆ
0
1

˙
fiÑ

¨

˝
´1
1
5

˛

‚? (˚)

Answer. For any px, yq P R2
, we know

ˆ
x
y

˙
“

ˆ
x
0

˙
`

ˆ
0
y

˙
“ x

ˆ
1
0

˙
` y

ˆ
0
1

˙
.

Hence

f

ˆˆ
x
y

˙˙
“ f

ˆ
x

ˆ
1
0

˙
` y

ˆ
0
1

˙˙
“ f

ˆ
x

ˆ
1
0

˙˙
` f

ˆ
y

ˆ
0
1

˙˙

“ xf

ˆˆ
1
0

˙˙
` yf

ˆˆ
0
1

˙˙
“ x

¨

˝
3
2
0

˛

‚` y

¨

˝
´1
1
5

˛

‚

“

¨

˝
x ¨ 3
x ¨ 2
x ¨ 0

˛

‚`

¨

˝
y ¨ p´1q
y ¨ 1
y ¨ 5

˛

‚“

¨

˝
x ¨ 3 ` y ¨ p´1q
x ¨ 2 ` y ¨ 1
x ¨ 0 ` y ¨ 5

˛

‚.

So yes! There’s a unique linear function that satisfies (˚).



Any linear transformation is determined by the image of a basis of the domain!

Thm. Let U and V be vector spaces over a field F , and let B be a basis of U .

For each b P B, fix some vb P V . Then there exists a unique linear

transformation f : U Ñ V that satisfies

fpbq “ vb for each b P B.

In particular, for any u P U , there’s a “unique” way to write

u “ c1b1 ` ¨ ¨ ¨ ` cnbn, where ci P F,bi P B. Then we define

fpuq “ c1vb1 ` ¨ ¨ ¨ ` cnvbn .

Writing F : B Ñ V defined by F : b fiÑ vb, we say F extends linearly to

f : U Ñ V , or that f is a linear extension of F .

See Book (Ch. Two, §II, Thm. 1.9) for proof.

Sketch: We have to check each of the following.

1. Existence. Check that the function above is

(a) Well-defined: The image is in the codomain (follows from closure) and is
independent of representatives (doesn’t depend on how you write u as a
linear combination over B).

(b) Linear: similar to our examples, check that fpu ` u1q “ fpuq ` fpu1q and
fp�uq “ �fpuq.

(c) Does what it says it does: fpbq “ vb for all b P B.

2. Uniqueness.
If g : U Ñ V also satisfies gpbq “ vb for all b P B, then g “ f .Any linear transformation is determined by the image of a basis of the domain!

Thm. Let U and V be vector spaces over a field F , and let B be a basis of U . For each
b P B, fix some vb P V . Then there exists a unique linear transformation f : U Ñ V that
satisfies fpbq “ vb for each b P B.

In particular, for any u P U , there’s a “unique” way to write u “ c1b1 ` ¨ ¨ ¨ ` cnbn, where
ci P F,bi P B. Then we define fpuq “ c1vb1 ` ¨ ¨ ¨ ` cnvbn .

Writing F : B Ñ V defined by F : b fiÑ vb, we say F extends linearly to f : U Ñ V , or
that f is a linear extension of F .

Note. This theorem says something very powerful:
Given vector spaces U and V over F , and a basis B of U , the linear functions

tf : U Ñ V | f is linear u

are in bijection with functions

tF : B Ñ V u.

Every linear map f : U Ñ V restricts uniquely to a function F : B Ñ V ; and

every function F : B Ñ V extends uniquely to a linear map f : U Ñ V .

Next time: Use this fact to encode linear functions as matrices.

Caution!
Things can go wrong when we try to do this with a set that is not a basis!

Exercise: Try to extend the function

F : p1, 0q fiÑ p1, 1q, p0, 1q fiÑ p0, 2q, and p1, 1q fiÑ p3,´1q

to a linear function f : R2
Ñ R2

. What goes wrong?


