
Lecture 8:
Row/column spaces
Rank
Linear transformations (a beginning)

Warmup
Recall: A relation on a set S is a subset X Ñ S ˆ S or pairs of elements.
We write s „ t to mean ps, tq P X , and think of this statement as “s is related
to t”. A relation is an equivalence relation if it satisfies three conditions:
1. Reflexivity. For all s P S, we have s „ s.
2. Symmetry. For any s, t P S such that s „ t, we must also have t „ s.
3. Transitivity.

For any s, t, u P S such that s „ t and t „ u, we must also have s „ u.
[Fav. example: “ is an equivalence relation on any set.]

Fix k, ` P Z°0. On the set of matrices Mk,`pF q, define the relation

A „ B whenever
“B can be reached by a sequence

of row operations on A”

You check: verify that this defines an equivalence relation on Mk,`pF q.

Hint: For matrices A and B, writing the rows of A as a1, . . . ,ak and the rows of B
as b1, . . . ,bk, we have. . .

if A
aiØajfi››››Ñ B, then B

biØbjfi››››Ñ A;

if A
ai fiÑ↵aifi›››››Ñ B for ↵ ‰ 0, then B

bi fiÑ 1
↵bifi››››››Ñ A; and

if A
ai fiÑai`↵ajfi››››››››Ñ B for i ‰ j, then B

bi fiÑbi´↵bjfi››››››››Ñ A.



Some info about next week’s exam and other work:

§ Exam handed out in class, Thursday 9/29;
not to be opened before 3pm that day;
due on Gradescope Sunday 10/2.

§ Time limit: 3 hours in one sitting.
§ Test written to be doable in 1 hour.

§ Time limit does not include time spent scanning/uploading exam.

§ Do not open the exam until you’re ready to begin.

§ Closed book/notes/internet/other people’s brains/etc.
except for one 8.5”ˆ11” sheet of notes.

§ Covers Weeks 1–4 (Lectures 1–8, HW 1–4, Chapters One and Two).
§ Homework 4:

§ Due THURSDAY 9/29 by 3pm.

§ LATEX not required.

§ Weekly logs:
§ Week 4 due next Tuesday as usual.

§ No log due Tuesday 10/4 (immediately after exam)

§ Week 5 and Week 6 will be combined into one assignment (due 10/11).
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Last time: Dimension is a rigid statistic on vector spaces! If V be a
finite-dimensional v.s./F , and W Ñ V is a subspace, then

dimpW q § dimpV q and dimpW q † dimpV q if and only if W à V.
In particular, linearly independent sets have size bounded above by n,
spanning sets have size bounded below by n, and sets of exactly size n are
either bases or they fail at both spanning and independence.

We also saw that in finite-dimensional spaces,
§ every independent set extends to a basis (is contained in a basis), and
§ every spanning set contains a basis.

Example: Prove that the following is a basis of R4
:

B “

$
’’&

’’%

¨

˚̊
˝
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0
0

˛
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¨

˚̊
˝

1
1
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˛
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1
1
1
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˚̊
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1
1
1
1
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,
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Since |B| “ 4 “ dimpR4q, we know that it’s independent if and only if it is a

spanning set, so I only need to test for one of those. But the equation

c1

¨

˚̊
˝

1
0
0
0

˛

‹‹‚` c2

¨

˚̊
˝

1
1
0
0

˛

‹‹‚` c3

¨

˚̊
˝

1
1
1
0

˛

‹‹‚` c4

¨

˚̊
˝

1
1
1
1

˛

‹‹‚“

¨

˚̊
˝

0
0
0
0

˛

‹‹‚ has aug. matrix

1 1 1 1 0
0 1 1 1 0
0 0 1 1 0
0 0 0 1 0

¨

˚̊
˚̋

˛

‹‹‹‚

which is already in row echelon form. So I can already see that it will have unique

solution (and ci “ 0 is a solution, so I know that’s the one).

Last time: Given a matrix A P Mm,npF q,

A “

¨

˚̋
a1,1 a1,2 ¨ ¨ ¨ a1,n

.

.

.

.
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.
. . .

.

.

.

am,1 am,2 ¨ ¨ ¨ am,n

˛

‹‚,

we associate the set of column vectors$
’&

’%

¨
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¨
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‹‚

,
/.

/-
.

Define the pivot columns of A as those column vectors corresponding to the
pivots of A’s reduced form. [Compute the reduced form of A to know

where to look; but read the columns o↵ of A, not its reduced form.]

Lemma. The pivot columns of A form a basis for ColSpacepAq.



Lemma. The pivot columns of A form a basis for ColSpacepAq.

Example. Find a basis for

V “ F

$
&

%

¨

˚̊
˝

1
´1
3
0

˛
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¨
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˝

7
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˛
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˝
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3
2
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˛
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˝

´1
1

´3
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˛
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0
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˛

‹‹‚,
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0
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˛

‹‹‚

,
.

- Ñ R4.

The associated matrix is

A “

p1q p2q p5q

1 7 ´2 ´1 0 0

´1 ´9 3 1 0 1

3 5 2 ´3 1 2

0 ´4 2 0 0 0

¨

˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‚
, which reduces to

p1q p2q p5q

1 0 3
2 ´1 0 ´1

0 1 ´ 1
2 0 0 0

0 0 0 0 1 5

0 0 0 0 0 0

¨

˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‚
.

Since the pivots are in columns 1, 2, and 5, we know that V “ ColSpacepAq

has basis

B “
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- . Is there a “better” basis?

For example, B1 “

$
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,
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is also a basis for V . How???

Let A P Mk,`pF q be a k ˆ ` matrix. (k rows, ` columns)

§ The column vectors are the vectors C “

$
’&

’%

¨

˚̋
a1,j

.

.

.

ak,j

˛

‹‚

ˇ̌
ˇ̌
ˇ̌
ˇ
j “ 1, . . . , `

,
/.

/-
.

§ The row vectors are the vectors R “ tpai,1 ¨ ¨ ¨ ai,`q | i “ 1, . . . , ku.
§ The column space of A is ColSpacepAq “ FC,

the span of the column vectors of A.
§ The row space of A is RowSpacepAq “ FR,

the span of the row vectors of A.
§ The column rank of A is dimpColSpacepAqq

§ The row rank of A is dimpRowSpacepAqq.

So far: We have a nice understanding of ColSpacepAq

in terms of A’s reduced form E:
§ ColSpacepAq has a basis consisting of the pivot columns of A (those
marked by pivots in E); so that

§ the column rank of A is the number of pivots in E.

We’d like:
§ a similar description of RowSpacepAq, and
§ a reason to care.



Back to row operations!

Let’s focus in on row vectors by writing

a1,1 a1,2 ¨ ¨ ¨ a1,`

a2,1 a2,2 ¨ ¨ ¨ a2,`

.

.

.

.

.

.

.

.

.

ak,1 ak,2 ¨ ¨ ¨ ak,`

¨

˚̊
˚̊
˚̊
˚̋

˛

‹‹‹‹‹‹‹‚

¨

˚̊
˚̊
˚̊
˚̋

˛

‹‹‹‹‹‹‹‚
as

¨

˚̊
˚̊
˚̊
˚̋

˛

‹‹‹‹‹‹‹‚

a1

a2

ak

.

.

.

.

Consider how the row space of a matrix is a↵ected by row operations:

1. Row swapping.

A “

¨

˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‚

ai

aj

aiØajfi›››››Ñ

¨

˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‚

aj

ai

“ B.

The set of column vectors has not changed, so

RowSpacepAq “ RowSpacepBq.

Starting with matrix A. . .
1. Row swapping. Swap rows i and j to get B.

The set of row vectors has not changed, so

RowSpacepAq “ RowSpacepBq.

2. Row scaling. For some ↵ ‰ 0, replace ai with ↵ai to get B.

A “

¨

˚̊
˚̋

˛

‹‹‹‚
ai

ai fiÑ↵aifi››››››Ñ

¨

˚̊
˚̋

˛

‹‹‹‚
↵ai “ B.

The row vectors of B are linear combinations of the row vectors of A, so

RowSpacepAq Ö RowSpacepBq.

3. Row combinations. For some i ‰ j, replace ai with ai ` ↵aj to get B.

A “

¨

˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‚

ai

aj

ai fiÑai`↵ajfi››››››››Ñ

¨

˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‚

ai ` ↵aj

ai

“ B.

The row vectors of B are linear combinations of the row vectors of A, so

RowSpacepAq Ö RowSpacepBq.

row



Starting with matrix A and applying row operations to get B. . .
In all three cases, RowSpacepAq Ö RowSpacepBq.

But all three row operations are reversible! (see warmup)
So RowSpacepAq Ñ RowSpacepBq by the same arguments.

Hence RowSpacepAq “ RowSpacepBq .

Ex. The matriẍ

˝
1 ´1 3 0
7 ´9 5 ´4
0 0 1 0

˛

‚ reduces to

¨

˝
1 0 0 2
0 1 0 2
0 0 1 0

˛

‚

So

R

$
’&

’%

¨

˚̊
˝

1
´1
3
0

˛

‹‹‚,
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,
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“ R
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0
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˛
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,
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[From our example at the beginning]

Caution!

We put the first set of vectors into the matrix as rows
and then reduced!! (Up until this moment, we have
been putting vectors into columns of matrices.)

Back to equivalence relations. . .
Given an equivalence relation „ on a set S, and an element s P S, the set

rss “ tt P S | t „ su

is called the equivalence class of s.

The equivalence classes have a really nice property (put three ways):
§ If t P rss, then rss “ rts (we call the elements of rss representatives of rss).
§ For any s, t P S, either rss “ rts or rss X rts “ H.
§ The equivalence classes partition S

(meaning they break S into disjoint subsets).

In the warmup, we showed that row operations give us a nice equivalence
relation on Mk,`pF q given by sequences of row operations.
Pushing that language a little further. . .

1. In each equivalence class, there is a unique element that’s in reduced row
echelon form; this is typically our favorite representative.

2. Solution sets (to the associated homogeneous system of equations) are
constant on equivalence classes.

Now:

3. Row spaces are constant on equivalence classes.

4. Row rank (dim. of the row space) is constant on equivalence classes.



Given a matrix A and its reduced echelon form E. . .
So far:
1. RowSpacepAq “ RowSpacepEq

2. RowRankpAq “ RowRankpEq

3. The pivot columns of A form a basis of ColSpacepAq.
4. ColRankpAq “ # pivots of E.

Lemma. The non-zero row vectors of any row echelon form B of A form a
linearly independent set, and hence form a basis for RowSpacepAq. In
particular, the non-zero row vectors of E form a basis of RowSpacepAq.

Pf (sketch). Denote the row vectors of B by ⇢1, . . . , ⇢m, and consider
solutions to 0 “ c1⇢1 ` ¨ ¨ ¨ ` cm⇢m.
Compare the coe�cients corresponding to the leading term of ⇢1; then those
corresponding to the leading term of ⇢2; and so on. . .
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Given a matrix A and its reduced echelon form E. . .
(Amazing) Corollary. RowRankpAq “ ColRankpAq.

Pf. By the lem, the dimension of the column space of A is equal to the number of pivots of

E (one pivot per non-zero row), which is also the dimension of the row space of A.

Define the rank of a matrix A as

rkpAq “ RowRankpAq “ ColRankpAq “ #pivots in E.

Putting it all together:

1. ColSpacepAq has basis tpivot columns of Au.
[This basis is a subset of your original collection of vectors.]

Problem: Given a set S of vectors, find a subset of S that’s a basis for FS.

Sol’n: Insert S as cols, row reduce to find pivot locations, and take corresp. vectors from S.

2. RowSpacepAq has basis tnon-zero rows of Eu.
[Caution: This basis is almost never a subset of your original collection of vectors.]

Problem: Given a set S of vectors, find a basis of FS that’s as close to E as possible.

Sol. Insert S as rows, row reduce, take the resulting row vectors.

3. The rank of A is a statistic relating to both the row space and the
column space of A (and of any other matrix related by row operations).

4. The solution space of the homogeneous system associated to A has
dimension

#t free variables u “ #t columns of A u ´ rkpAq



Next time: Functions between vector spaces.
Let U and V be vector spaces over the same field F .
Q. What properties would we want out of a function f : U Ñ V ?

Illustrative example: Given an ordered basis B of U , we have a function

RepB : U Ñ Fn.

It’s meaningful because

1. it preserves `; RepBpu1 ` u2q “ RepBpu1q ` RepBpu2q

2. it preserves scaling; RepBp↵ ¨ uq “ ↵ ¨ RepBpuq

3. and it’s bijective.

Really, we like 1 and 2 because they mean RepB “respects” the vector space
structure (otherwise, what’s the point of noticing U is a vector space in the first

place??). We like 3 because it means we can move back and forth between U
and Fn faithfully, without losing any information (too strong!).

We say a function f : U Ñ V is linear (or is a linear transformation) if it
satisfies

fpu1 ` u2q “ fpu1q ` fpu2q and fp↵uq “ ↵fpuq

for all u,u1,u2 P U and ↵ P F . General terms:
“structure-preserving map”

“homomorphism”


