
Lecture 7 Warmup

Let F be a field (with 0 6= 1) and let V be a vector space over F . Last time, we proved the Exchange
Lemma (Lemma 1 below); on Homework 3, you will also prove the following Lemma 2.

Lemma 1 (Exchange Lemma). Let B be a basis of V and let v 2 V � {0}. Then there exists an element
b 2 B such that B0 = (B � {b}) [ {v} is also a basis of V . Specifically, b is any vector that appears with
non-zero coe�cient in the expansion of v in B.

Lemma 2. Let S ✓ T ✓ V be subsets. If S generates V and T is linearly independent, then S = T .

Warmup: Work in groups of 2–3. Returning to the big theorem we sketched a proof of at the end
of Lecture 6 (restated a little here to make it more straightforward to prove), we’ll walk through

the proof more carefully now. For each of the marked (⇤) statements and steps in the following
proof of Theorem 3, fill out the details. In other words, convince yourself/each other of their truth
and/or suss out why each statement is true or why each step is possible.

Theorem 3. Suppose V has at least one basis of size n. Then any other basis also has size n.

Proof. Let A and B be bases of V , and assume |A| = n. If A ✓ B, then by Lemma 2, A = B (1). Hence
|B| = |A| = n.

Otherwise (if A * B), let B1 = B, and take a1 2 A�B1. Since a1 6= 0 (2), when we write a1 as a linear

combination of elements of B1, there’s some b1 2 B1 �A (3) that appears with non-zero coe�cient. So
by Lemma 1, the set B2 = (B1 � {b1}) [ {a1} is also a basis of V .

If A ✓ B2, then A = B2. Hence |B| = |B2| (4) = |A| = n. Otherwise, take some a2 2 A�B2 and expand

a2 in the basis B2.

Since {a1,a2} is linearly independent (5), when we write a2 as a linear combination of elements of B2,

there is some b2 2 B2 �A (6) that contributes (meaning that it has non-zero coe�cient in the expansion
of a2), and hence B3 = (B2 � {b2}) [ {a2} is a basis (again by the Exchange Lemma).

Continuing to recurse, at each step we’ll take ak 2 A � Bk and expand it in the basis Bk. Then since

{a1, . . . ,ak} is linearly independent (7), when we write ak as a linear combination of elements of Bk, there

must be some bk 2 Bk�A that contributes with non-zero coe�cient; and hence Bk+1 = (Bk�{bk})[{ak}
is a basis.

Since A is finite (with n elements), this process will end after at most n steps. (8) If i is the step where

it ends (meaning A ✓ Bi), then we can conclude

|B| = |B1| = |B2| = · · · = |Bi| (9) = |A| = n,

as desired. ⇤

Last questions:

(10) Where and why did it become important that I started moving elements of A into B, rather than
the other way around?

(11) When did we actually use the fact that A was linearly independent? that B was linearly independent?

(12) When did we actually use the fact that A spans V ? that B spans V ?



Lecture 7:
More relationships between

independent sets, bases, and spanning sets
“Dimension is strict”
Column space of a matrix

Begin with Warmup

Unless otherwise stated:

Assume F is a field with more than one element (so that 0 ‰ 1).
Let V be a vector space over F .
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We can actually push the same proof of Theorem 3 to get much stronger

characterization of dimension!

Theorem 4
Let V be a finite-dimensional v.s./F , with dimpV q “ n. Then
1. every linearly independent set has at most n elements;
2. every spanning set has at least n elements; and
3. if S Ñ V has exactly n elements, then

S spans V if and only S is linearly independent.
In particular, if W Ñ V is a subspace, then

dimpW q § dimpV q and dimpW q † dimpV q if and only if W à V.

Why would we care?

Claim: tp1, 2q, p3, 4qu is a basis for C2
(over F “ C).

To prove this last week, we would have had to. . .

1. For x, y P C, find c1, c2 P C such that px, yq “ c1p1, 2q ` c2p3, 4q.
2. Show that c1, c2 are unique (at least in the case where x “ y “ 0).

Now, we know that since dimCpC2q “ 2 “ |tp1, 2q, p3, 4qu|, then we know that

tp1, 2q, p3, 4qu spans if and only if it’s independent.

[Independent: c1p1, 2q ` c2p3, 4q “ p0, 0q implies either

c1 “ c2 “ 0 or p3, 4q “ cp1, 2q for some c P C;
the latter is not possible.]

Thm. 4 Let V be a finite-dimensional v.s./F , with dimpV q “ n.
Then Let S Ñ V .

1. every linearly independent set has at most n elements; “If S indep., then |S| § n.”

2. every spanning set has at least n elements; and “If FS “ V , then |S| • n.”

3. if S Ñ V has exactly n elements, then
S spans V if and only S is linearly independent.

In particular, if W Ñ V is a subspace, then

dimpW q § dimpV q and dimpW q † dimpV q if and only if W à V.

Proof. Let S Ñ V , and let B be a basis of V .

For 1, by the warmup, we can iteratively move S into B using the Exchange

Lemma (same-ish proof as that of Theorem 3), implying that |S| § |B| “ n.

For 2, use the Exchange Lemma to iteratively move B into S, implying that

|S| • |B| “ n.

For 3, suppose |S| “ n.

If S spans V , use the techniques of Lecture 5 to find a linearly independent

subset T Ñ S that has the same span as S.
[Set up c1s1 ` ¨ ¨ ¨ ` cnsn “ 0, row reduce, and discard si’s corresponding to free var’s.]

If S is independent, use the Exchange Lemma to move S into B. But since

S Ñ Bi (the basis at the last step) and |S| “ |Bi| “ |B|, we must have

S “ Bi, and is therefore a basis.



Cor. Let V be a finite-dimensional v.s./F , with dimpV q “ n. Let S Ñ V .

1. If S is linearly independent, then S is contained in a basis.

“Every independent set extends to a basis.”

2. If S spans V , then S contains a basis.

“Every spanning set contains a basis.”

Proof.

1. Take a basis B. Feed S into B to get a basis Bi containing S.
2. Take one element of S at a time, iteratively building up an independent

subset:

S1 “ ts1u, S2 “ ts1, s2u, . . . .

If i † n, then Si is not spanning (by Thm. 4), so there is some v P V ´ FSi.

Since S does span, there’s some element si`1 P S ´ Si that contributes to

expanding v in S. Iterate until i “ n. By Thm. 4, since Sn is independent and

|Sn| “ n, it must be a basis.



Row operations revisited
What was that technique from Lecture 5 again? i.e. how did we use an aug. matrix

and row ops to shrink a (finite) set to an independent subset with the same span.

We started with

S “

$
&

%

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
2
2
0

˛

‚,

¨

˝
0
3
1

˛

‚,

¨

˝
3
0
1

˛

‚

,
.

- Ñ R3

and endeavored to solve

c1

¨

˝
2
0
0

˛

‚` c2

¨

˝
0
1
0

˛

‚` c3

¨

˝
2
2
0

˛

‚` c4

¨

˝
0
3
1

˛

‚` c5

¨

˝
3
0
1

˛

‚“
¨

˝
0
0
0

˛

‚.

To do so, we reduced¨

˝
2 0 2 0 3 0
0 1 2 3 0 0
0 0 0 1 1 0

˛

‚ to get

¨

˝
1 0 1 0 3{2 0
0 1 2 0 ´3 0
0 0 0 1 1 0

˛

‚. . .

Our observations:

1. Considering the solutions c3 “ 1 & c5 “ 0 and c3 “ 0 & c5 “ 1 showed

s3 and s5 were in the span of ts1, s2, s4u; and setting c3 “ c5 “ 0 forced

c1 “ c2 “ c4 “ 0, showing that ts1, s2, s4u is independent.

2. The last column (of 0’s) didn’t have any e↵ect (except to find FS).

Going the other way, given a matrix A P Mm,npF q,

A “

¨

˚̋
a1,1 a1,2 ¨ ¨ ¨ a1,n

.

.

.

.

.

.
. . .

.

.

.

am,1 am,2 ¨ ¨ ¨ am,n

˛

‹‚,

we associate a homogeneous system

c1

¨

˚̋
a1,1

.

.

.

am,1

˛

‹‚` c2

¨

˚̋
a1,2

.

.

.

am,2

˛

‹‚` ¨ ¨ ¨ ` cn

¨

˚̋
a1,n

.

.

.

am,n

˛

‹‚“
¨

˝
0
0
0

˛

‚.

Notice that we’re really thinking about the columns in A as individual vectors

in Fn
, inserted into one big array: we call these the column vectors of A.

Define the pivot columns of A as those column vectors corresponding to the

pivots of A’s reduced form. [Compute the reduced form of A to know

where to look; but read the columns o↵ of A, not its reduced form.]

Ex. We saw

¨

˝
2 0 2 0 3
0 1 2 3 0
0 0 0 1 1

˛

‚ reduces to

¨

˝
1 0 1 0 3{2
0 1 2 0 ´3
0 0 0 1 1

˛

‚,

so the pivot columns of A are

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚, and

¨

˝
0
3
1

˛

‚.

The whole point of our example (Lecture 5/last slide) was that

the pivot columns of A have the same span as all of the column vectors of A.



The column space of A is the span of its column vectors:

If A “

¨

˚̋
a1,1 a1,2 ¨ ¨ ¨ a1,n

.

.

.

.

.

.
. . .

.

.

.

am,1 am,2 ¨ ¨ ¨ am,n

˛

‹‚, then ColSpacepAq “ FS

where S “

$
’&

’%

¨

˚̋
a1,1

.

.

.

am,1

˛

‹‚,

¨

˚̋
a1,2

.

.

.

am,2

˛

‹‚, . . . ,

¨

˚̋
a1,n

.

.

.

am,n

˛

‹‚

,
/.

/-
.

Lemma. The pivot columns of A form a basis for ColSpacepAq.
Proof. (A formalization of our earlier example—for your reading only)

Let S “ ta1, . . . ,anu be the column vectors of A; so the homogeneous equation associated
to A is

c1a1 ` ¨ ¨ ¨ ` cnan “ 0. (*)

Now, let P “ tp1, . . . ,p`u be the pivot columns of A (so there are some i1 † ¨ ¨ ¨ † i` such
that p1 “ si1 , . . . , p` “ si` ). . .

In our example where

¨

˝
2 0 2 0 3
0 1 2 3 0
0 0 0 1 1

˛

‚ reduced to

¨

˝
1 0 1 0 3{2
0 1 2 0 ´3
0 0 0 1 1

˛

‚,

we have ` “ 3 (the number of pivots), and are setting i1 “ 1, i2 “ 2, and i3 “ 4, so that

p1 “ a1, p2 “ a2, and p3 “ a4.

The free variables in the associated homogeneous equation are

cj for j P t1, 2, 3, 4, 5u ´ t1, 2, 4u “ t3, 5u.

Lemma. The pivot columns of A form a basis for ColSpacepAq.
Proof. (A formalization of our earlier example—for your reading only)

Let S “ ta1, . . . ,anu be the column vectors of A; so the homogeneous equation

associated to A is

c1a1 ` ¨ ¨ ¨ ` cnan “ 0. (˚)
Now, let P “ tp1, . . . ,p`u be the pivot columns of A (so there are some

i1 † ¨ ¨ ¨ † i` such that p1 “ si1 , . . . , p` “ si`). Testing dependence of P is the

same as testing for a solution to (˚) that also has all coe�cients except ci1 , . . . ci`
set to 0 (for all j P t1, . . . , nu ´ ti1, . . . , i`u, we want cj “ 0). But the solution to

the homogeneous system associated to E is exactly the same as that associated to

A (the point of row operations). And by design, the column vectors of E in columns

i1, . . . , i` are the standard basis vectors e1, . . . , e`, which are independent. So

ci1 “ ¨ ¨ ¨ “ ci` “ 0. Thus tp1, . . . ,p`u is independent.

“Row operations preserve (in)dependence of columns”

Now, suppose v P ColSpace. Then there is a solution to

c1a1 ` ¨ ¨ ¨ ` cnan “ v. (‹)

But that’s exactly the same as the solution space to the reduced form of pA|vq. In
that solution, I find out that the coe�cients cj for j P t1, . . . , nu ´ ti1, . . . , i`u are

all free; so I might as well set the free variables all to be 0. This means that there

exists a solution to my equation (‹) of the form ci1p1 ` ¨ ¨ ¨ ` ci`p` “ v; and hence

v P FP . Hence FS Ñ FP , and therefore FS “ FP .



Exercises
Book: Ch Two, §III.3 #22: Give a basis for the column space of

A “
¨

˝
1 3 ´1 2
2 1 1 0
0 1 1 4

˛

‚.

Book: Ch Two, §III.2 #25: Give an argument showing that the following is a

basis of R4 without doing any calculations (arithmetic).

B “

$
’&

’%

¨

˚̊
˝

1
0
0
0

˛

‹‹‚,

¨

˚̊
˝

1
1
0
0

˛

‹‹‚,

¨

˚̊
˝

1
1
1
0

˛

‹‹‚,

¨

˚̊
˝

1
1
1
1

˛

‹‹‚

,
/.

/-

Generalization of the last problem:

A square matrix A P Mn,npF q is said to be upper triangular if ai,j “ 0
whenever i ° j: (ai,j for i § j may or may not be 0)

¨

˚̊
˚̊
˚̋

a1,1 a1,2 a1,3 ¨ ¨ ¨ a1,n´1 a1,n
0 a2,2 a2,3 ¨ ¨ ¨ a2,n´1 a2,n
0 0 a3,3 ¨ ¨ ¨ a3,n´1 a3,n
...

...
...

. . .
...

...
0 0 0 ¨ ¨ ¨ 0 an,n

˛

‹‹‹‹‹‚
.

Argue that that column vectors of an upper-triangular matrix form a basis for

Fn
if and only if ai,i ‰ 0 for all i “ 1, . . . , n.


