LECTURE 7 WARMUP

Let F be a field (with $0 \neq 1$) and let V be a vector space over F. Last time, we proved the *Exchange* Lemma (Lemma 1 below); on Homework 3, you will also prove the following Lemma 2.

Lemma 1 (Exchange Lemma). Let B be a basis of V and let $\mathbf{v} \in V - \{\mathbf{0}\}$. Then there exists an element $\mathbf{b} \in B$ such that $B' = (B - \{\mathbf{b}\}) \cup \{\mathbf{v}\}$ is also a basis of V. Specifically, \mathbf{b} is any vector that appears with non-zero coefficient in the expansion of \mathbf{v} in B.

Lemma 2. Let $S \subseteq T \subseteq V$ be subsets. If S generates V and T is linearly independent, then S = T.

Warmup: Work in groups of 2–3. Returning to the big theorem we sketched a proof of at the end of Lecture 6 (restated a little here to make it more straightforward to prove), we'll walk through the proof more carefully now. For each of the $\boxed{\text{marked}}^{(*)}$ statements and steps in the following proof of Theorem 3, fill out the details. In other words, convince yourself/each other of their truth and/or suss out *why* each statement is true or *why* each step is possible.

Theorem 3. Suppose V has at least one basis of size n. Then any other basis also has size n.

Proof. Let A and B be bases of V, and assume |A| = n. If $A \subseteq B$, then by Lemma 2, $A = B^{(1)}$. Hence |B| = |A| = n.

Otherwise (if $A \not\subseteq B$), let $B_1 = B$, and take $\mathbf{a}_1 \in A - B_1$. Since $\mathbf{a}_1 \neq \mathbf{0}^{(2)}$, when we write \mathbf{a}_1 as a linear combination of elements of B_1 , there's some $\mathbf{b}_1 \in B_1 - A^{(3)}$ that appears with non-zero coefficient. So by Lemma 1, the set $B_2 = (B_1 - \{\mathbf{b}_1\}) \cup \{\mathbf{a}_1\}$ is also a basis of V.

If $A \subseteq B_2$, then $A = B_2$. Hence $|B| = |B_2|^{(4)} = |A| = n$. Otherwise, take some $\mathbf{a}_2 \in A - B_2$ and expand \mathbf{a}_2 in the basis B_2 .

Since $\{\mathbf{a}_1, \mathbf{a}_2\}$ is linearly independent ⁽⁵⁾, when we write \mathbf{a}_2 as a linear combination of elements of B_2 , there is some $\mathbf{b}_2 \in B_2 - A$ ⁽⁶⁾ that contributes (meaning that it has non-zero coefficient in the expansion of \mathbf{a}_2), and hence $B_3 = (B_2 - \{\mathbf{b}_2\}) \cup \{\mathbf{a}_2\}$ is a basis (again by the Exchange Lemma).

Continuing to recurse, at each step we'll take $\mathbf{a}_k \in A - B_k$ and expand it in the basis B_k . Then since $\{\mathbf{a}_1, \ldots, \mathbf{a}_k\}$ is linearly independent ⁽⁷⁾, when we write \mathbf{a}_k as a linear combination of elements of B_k , there must be some $\mathbf{b}_k \in B_k - A$ that contributes with non-zero coefficient; and hence $B_{k+1} = (B_k - \{\mathbf{b}_k\}) \cup \{\mathbf{a}_k\}$ is a basis.

Since A is finite (with n elements), this process will end after at most n steps. (8) If i is the step where it ends (meaning $A \subseteq B_i$), then we can conclude

$$|B| = |B_1| = |B_2| = \dots = |B_i|$$
⁽⁹⁾ = |A| = n

as desired.

Last questions:

- (10) Where and why did it become important that I started moving elements of A into B, rather than the other way around?
- (11) When did we actually use the fact that A was linearly independent? that B was linearly independent?
- (12) When did we actually use the fact that A spans V? that B spans V?

Lecture 7:

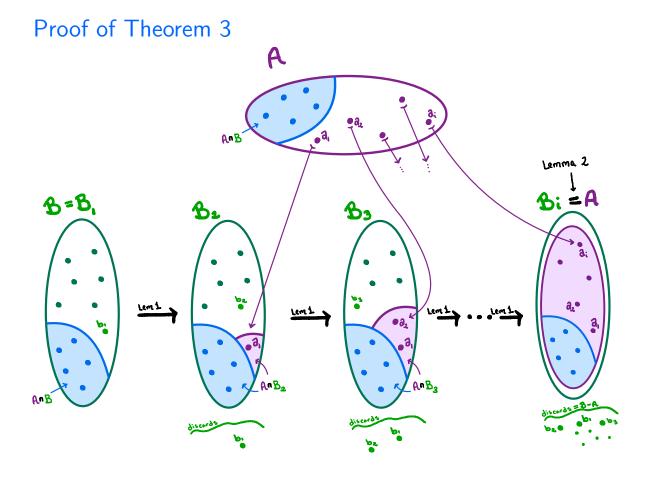
More relationships between

independent sets, bases, and spanning sets "Dimension is strict"

Column space of a matrix

Begin with Warmup

Unless otherwise stated: Assume F is a field with more than one element (so that $0 \neq 1$). Let V be a vector space over F.



We can actually push the same proof of Theorem 3 to get much stronger characterization of dimension!

Theorem 4

Let V be a finite-dimensional v.s./F, with $\dim(V) = n$. Then

- 1. every linearly independent set has at most n elements;
- 2. every spanning set has at least n elements; and
- 3. if $S \subseteq V$ has exactly n elements, then

S spans V if and only S is linearly independent.

In particular, if $W \subseteq V$ is a subspace, then

 $\dim(W) \leq \dim(V)$ and $\dim(W) < \dim(V)$ if and only if $W \subsetneq V$.

Why would we care?

Claim: $\{(1,2), (3,4)\}$ is a basis for \mathbb{C}^2 (over $F = \mathbb{C}$).

To prove this last week, we would have had to...

1. For $x, y \in \mathbb{C}$, find $c_1, c_2 \in \mathbb{C}$ such that $(x, y) = c_1(1, 2) + c_2(3, 4)$.

2. Show that c_1, c_2 are unique (at least in the case where x = y = 0).

Now, we know that since $\dim_{\mathbb{C}}(\mathbb{C}^2) = 2 = |\{(1,2), (3,4)\}|$, then we know that $\{(1,2), (3,4)\}$ spans if and only if it's independent.

[*Independent*: $c_1(1,2) + c_2(3,4) = (0,0)$ implies either

$$c_1 = c_2 = 0$$
 or $(3,4) = c(1,2)$ for some $c \in \mathbb{C}$;

the latter is not possible.]

Thm. 4 Let V be a finite-dimensional v.s. /F, with dim(V) = n. Then Let $S \subseteq V$. "If S indep., then $|S| \leq n$." 1. every linearly independent set has at most *n* elements; "If FS = V, then $|S| \ge n$." 2. every spanning set has at least n elements; and 3. if $S \subseteq V$ has exactly n elements, then S spans Vif and only S is linearly independent. In particular, if $W \subseteq V$ is a subspace, then $\dim(W) \leqslant \dim(V)$ and $\dim(W) < \dim(V)$ if and only if $W \subsetneq V$. **Proof.** Let $S \subseteq V$, and let B be a basis of V. For 1, by the warmup, we can iteratively move S into B using the Exchange

Lemma (same-ish proof as that of Theorem 3), implying that $|S| \le |B| = n$. For 2, use the Exchange Lemma to iteratively move B into S, implying that $|S| \ge |B| = n$.

For 3, suppose |S| = n.

If S spans V, use the techniques of Lecture 5 to find a linearly independent subset $T \subseteq S$ that has the same span as S.

[Set up $c_1 \mathbf{s}_1 + \cdots + c_n \mathbf{s}_n = \mathbf{0}$, row reduce, and discard \mathbf{s}_i 's corresponding to free var's.] If S is independent, use the Exchange Lemma to move S into B. But since $S \subseteq B_i$ (the basis at the last step) and $|S| = |B_i| = |B|$, we must have $S = B_i$, and is therefore a basis. Cor. Let V be a finite-dimensional v.s./F, with $\dim(V) = n$. Let $S \subseteq V$.

1. If S is linearly independent, then S is contained in a basis. "Every independent set extends to a basis."

2. If S spans V, then S contains a basis.

"Every spanning set contains a basis."

Proof.

1. Take a basis B. Feed S into B to get a basis B_i containing S. 2. Take one element of S at a time, iteratively building up an independent subset:

$$S_1 = \{\mathbf{s}_1\}, \quad S_2 = \{\mathbf{s}_1, \mathbf{s}_2\}, \quad \dots$$

If i < n, then S_i is not spanning (by Thm. 4), so there is some $v \in V - FS_i$. Since S does span, there's some element $s_{i+1} \in S - S_i$ that contributes to expanding v in S. Iterate until i = n. By Thm. 4, since S_n is independent and $|S_n| = n$, it must be a basis.

Row operations revisited

What was that technique from Lecture 5 again? i.e. how did we use an aug. matrix and row ops to shrink a (finite) set to an independent subset with the same span.

We started with

$$S = \left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix}, \begin{pmatrix} 3\\0\\1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

and endeavored to solve

$$c_1\begin{pmatrix}2\\0\\0\end{pmatrix} + c_2\begin{pmatrix}0\\1\\0\end{pmatrix} + c_3\begin{pmatrix}2\\2\\0\end{pmatrix} + c_4\begin{pmatrix}0\\3\\1\end{pmatrix} + c_5\begin{pmatrix}3\\0\\1\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}$$

To do so, we reduced

$$\begin{pmatrix} 2 & 0 & 2 & 0 & 3 & | & 0 \\ 0 & 1 & 2 & 3 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & 1 & | & 0 \end{pmatrix}$$
 to get
$$\begin{pmatrix} 1 & 0 & 1 & 0 & 3/2 & | & 0 \\ 0 & 1 & 2 & 0 & -3 & | & 0 \\ 0 & 0 & 0 & 1 & 1 & | & 0 \end{pmatrix} \dots$$

Our observations:

- 1. Considering the solutions $c_3 = 1$ & $c_5 = 0$ and $c_3 = 0$ & $c_5 = 1$ showed s_3 and s_5 were in the span of $\{s_1, s_2, s_4\}$; and setting $c_3 = c_5 = 0$ forced $c_1 = c_2 = c_4 = 0$, showing that $\{s_1, s_2, s_4\}$ is independent.
- 2. The last column (of 0's) didn't have any effect (except to find FS).

Going the other way, given a matrix $A \in M_{m,n}(F)$,

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix},$$

we associate a homogeneous system

$$c_1\begin{pmatrix}a_{1,1}\\\vdots\\a_{m,1}\end{pmatrix}+c_2\begin{pmatrix}a_{1,2}\\\vdots\\a_{m,2}\end{pmatrix}+\cdots+c_n\begin{pmatrix}a_{1,n}\\\vdots\\a_{m,n}\end{pmatrix}=\begin{pmatrix}0\\\vdots\\0\end{pmatrix}.$$

Notice that we're really thinking about the columns in A as individual vectors in F^n , inserted into one big array: we call these the column vectors of A. Define the pivot columns of A as those column vectors corresponding to the pivots of A's reduced form. [Compute the reduced form of A to know where to look; but read the columns off of A, not its reduced form.]

Ex. We saw
$$\begin{pmatrix} 2 & 0 & 2 & 0 & 3 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$
 reduces to $\begin{pmatrix} 1 & 0 & 1 & 0 & 3/2 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$,
so the pivot columns of A are $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, and $\begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$.

The whole point of our example (Lecture 5/last slide) was that the pivot columns of A have the same span as *all* of the column vectors of A.

The column space of A is the span of its column vectors:

If
$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$
, then $\operatorname{ColSpace}(A) = FS$
where $S = \left\{ \begin{pmatrix} a_{1,1} \\ \vdots \\ a_{m,1} \end{pmatrix}, \begin{pmatrix} a_{1,2} \\ \vdots \\ a_{m,2} \end{pmatrix}, \dots, \begin{pmatrix} a_{1,n} \\ \vdots \\ a_{m,n} \end{pmatrix} \right\}$.

Lemma. The pivot columns of A form a basis for ColSpace(A).

Proof. (A formalization of our earlier example—for your reading only) Let $S = {a_1, ..., a_n}$ be the column vectors of A; so the homogeneous equation associated to A is

$$c_1\mathbf{a}_1 + \dots + c_n\mathbf{a}_n = \mathbf{0}.$$

Now, let $P = {\mathbf{p}_1, \dots, \mathbf{p}_\ell}$ be the pivot columns of A (so there are some $i_1 < \dots < i_\ell$ such that $\mathbf{p}_1 = \mathbf{s}_{i_1}, \dots, \mathbf{p}_\ell = \mathbf{s}_{i_\ell}$)...

In our example where	$\begin{pmatrix} 2\\0\\0 \end{pmatrix}$	0 1 0	2 2 0	$\begin{array}{c} 0 \\ 3 \\ 1 \end{array}$	$\begin{pmatrix} 3\\0\\1 \end{pmatrix}$	reduced to		0 1 0	$\begin{array}{c} 1 \\ 2 \\ 0 \end{array}$	0 0 1	$\begin{pmatrix} 3/2 \\ -3 \\ 1 \end{pmatrix},$
we have $\ell = 3$ (the number of pivots), and are setting $i_1 = 1$, $i_2 = 2$, and $i_3 = 4$, so that											
	P	$b_1 =$	$\mathbf{a}_1,$	р	$b_2 = \mathbf{a}_2$	$_2$, and	$\mathbf{p}_3=\mathbf{a}_4.$				
The free variables in the associated homogeneous equation are											
	c_j	for	j	∈ {1	, 2, 3, 4	$\{4,5\} - \{1,2\}$	$,4\} = \{3,$	5}.			

Lemma. The pivot columns of A form a basis for ColSpace(A).

Proof. (A formalization of our earlier example—for your reading only)

Let $S = {a_1, ..., a_n}$ be the column vectors of A; so the homogeneous equation associated to A is

$$c_1\mathbf{a}_1 + \dots + c_n\mathbf{a}_n = \mathbf{0}.$$
 (*)

Now, let $P = {\mathbf{p}_1, \ldots, \mathbf{p}_\ell}$ be the pivot columns of A (so there are some $i_1 < \cdots < i_\ell$ such that $\mathbf{p}_1 = \mathbf{s}_{i_1}, \ldots, \mathbf{p}_\ell = \mathbf{s}_{i_\ell}$). Testing dependence of P is the same as testing for a solution to (*) that also has all coefficients except $c_{i_1}, \ldots, c_{i_\ell}$ set to 0 (for all $j \in {1, \ldots, n} - {i_1, \ldots, i_\ell}$, we want $c_j = 0$). But the solution to the homogeneous system associated to E is exactly the same as that associated to A (the point of row operations). And by design, the column vectors of E in columns i_1, \ldots, i_ℓ are the standard basis vectors $\mathbf{e}_1, \ldots, \mathbf{e}_\ell$, which are independent. So $c_{i_1} = \cdots = c_{i_\ell} = 0$. Thus ${\mathbf{p}_1, \ldots, \mathbf{p}_\ell}$ is independent. "Row operations preserve (in)dependence of columns"

Now, suppose $\mathbf{v} \in \text{ColSpace}$. Then there is a solution to

$$c_1\mathbf{a}_1 + \dots + c_n\mathbf{a}_n = \mathbf{v}.\tag{(\star)}$$

But that's exactly the same as the solution space to the reduced form of $(A|\mathbf{v})$. In *that* solution, I find out that the coefficients c_j for $j \in \{1, \ldots, n\} - \{i_1, \ldots, i_\ell\}$ are all free; so I might as well set the free variables all to be 0. This means that there exists a solution to my equation (*) of the form $c_{i_1}\mathbf{p}_1 + \cdots + c_{i_\ell}\mathbf{p}_\ell = \mathbf{v}$; and hence $\mathbf{v} \in FP$. Hence $FS \subseteq FP$, and therefore FS = FP.

Exercises

Book: Ch Two, \$III.3 #22: Give a basis for the column space of

$$A = \begin{pmatrix} 1 & 3 & -1 & 2\\ 2 & 1 & 1 & 0\\ 0 & 1 & 1 & 4 \end{pmatrix}.$$

Book: Ch Two, §III.2 #25: Give an argument showing that the following is a basis of \mathbb{R}^4 without doing any calculations (arithmetic).

$$B = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}$$

Generalization of the last problem:

A square matrix $A \in M_{n,n}(F)$ is said to be upper triangular if $a_{i,j} = 0$ whenever i > j: $(a_{i,j} \text{ for } i \leq j \text{ may or may not be } 0)$

$\begin{pmatrix} a_{1,1} \\ 0 \\ 0 \end{pmatrix}$	$a_{1,2} \\ a_{2,2} \\ 0$	$a_{1,3}\ a_{2,3}\ a_{3,3}$	 	$a_{1,n-1}$ $a_{2,n-1}$	$\begin{pmatrix} a_{1,n} \\ a_{2,n} \\ a_{2} \end{pmatrix}$
	: 0	u3,3 : 0	·	$a_{3,n-1}$ \vdots 0	$\begin{vmatrix} a_{3,n} \\ \vdots \\ a_{n,n} \end{vmatrix}$.

Argue that that column vectors of an upper-triangular matrix form a basis for F^n if and only if $a_{i,i} \neq 0$ for all i = 1, ..., n.