
Lecture 6:
Bases
Dimension

Unless otherwise stated:

Assume F is a field with more than one element (so that 0 ‰ 1).
Let V be a vector space over F .

Last time
Let V be a vector space (over F ), and let S Ñ V be a subset of V . There are

two main ways we think about the span of S:

‚ Bottom-up: FS is the vector space that you can build out of S.
Focus on S and see where you can get.

‚ Top-down: S is enough to build FS.
Focus on the vector space FS and find a way to build it.

A set S Ñ V is linearly independent if

c1s1 ` ¨ ¨ ¨ ` cnsn “ 0 implies c1 “ ¨ ¨ ¨ “ cn “ 0
for any s1, . . . , sn P S. Otherwise, if there exist c1, . . . , cn with at least some

c` ‰ 0 such that c1s1 ` ¨ ¨ ¨ ` cnsn “ 0, we say S is linearly dependent.
Other characterizations of linear (in)dependence:

‚ S is independent if and only if

c1s1 ` ¨ ¨ ¨ ` cnsn “ d1s1 ` ¨ ¨ ¨ ` dnsn implies ci “ di for i “ 1, . . . , n;
i.e. each element in FS has a unique expression as a linear combination

of elements of S.

‚ S is dependent if and only if

there exists v P S such that v P F pS ´ tvuq;

i.e. there’s redundancy in S as a set of building blocks for FS.



Bases Still: Let V be a vector space over F .

A spanning set for V is a subset S Ñ V such that FS “ V .

Think: S is “enough” to build/generate V .

A basis for V is a linearly independent spanning set.

Think: S is minimal in being “enough” to build/generate V .

Example: We showed last time that

$
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¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
0
3
1

˛

‚

,
.

- is a basis of R3
.

Example: Another basis of R3
is the natural or standard basis

E “ te1, e2, e3u where e1 “
¨

˝
1
0
0

˛

‚, e2 “
¨

˝
0
1
0

˛

‚, and e3 “
¨

˝
0
0
1

˛

‚.

Reflection questions (from last time):

1. We have lots of examples of vector spaces now. Can you come up with a

basis for each of them? For example, can you find a basis for. . . (next slide)

‚ V “ PnpRq “ tf P Rrxs | degpfq § nu over F “ R;
‚ V “ M2,2pRq “ t 2 ˆ 2 matrices w/ coefs in R u, over F “ R;
‚ V “ 0 “ t0u, the trivial vector space over a field F ;

2. Many vector spaces have more than one basis. Under what circumstances

will a basis of V be unique?

3. Does every vector space even have a basis? (How could you prove or disprove?)

Standard bases
There are usually lots of bases of a given vector space, and there will be very concrete
examples where “non-standard” bases are important. But generally, we start to think
about most of our favorite vector spaces in terms of natural choices of bases already.

The standard basis for. . .

‚ V “ Fn
(over F ) is

Ete1, . . . , enu where ei “ 0 0 0 01, , , , , , ;p q

ith coordinate

ith coordinate

‚ V “ Ma,bpF q (over F ) is E “ tEi,j | i “ 1, . . . a, j “ 1, . . . , bu where

Ei,j “ 1

0 0 0 0

0 0 0 0
0 0
0 0 0 0 0

0 0 0 0 0

¨

˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‚
ith row

jth col

(0’s everywhere except
in the ith row and jth col);

‚ V “ F rxs (over F ) is E “ t1, x, x2, . . . u “ tx`
| ` P Z•0u;

and V “ PnpF q (over F ) is E “ t1, x, x2, . . . , xn
u.



Putting together what we learned about span, together with the fact that a

basis generates all of V we know. . .

Prop. Let V be a vector space over F , and let B be a basis of V . Then every

element v P V has a unique expression in the form v “

ÿ

bPB
cbb;

i.e. there is a unique way to express v as a linear combination of elements of B
(being smart about order and 0’s).

[For example,
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¨

˝
1
0
0

˛

‚` 5

¨

˝
0
1
0

˛

‚, 5

¨

˝
0
1
0

˛

‚` 2

¨

˝
1
0
0

˛

‚, and 5

¨

˝
0
1
0

˛

‚` 0

¨

˝
0
0
1

˛

‚` 2

¨

˝
1
0
0

˛

‚

all count as the “same” linear combination.]

An ordered basis B is a basis together with a fixed order on its elements.

Note: This is what the book just calls a “basis”; this not standard.
We’ll write

B “ xv1, . . . ,vny

to mean the set tv1, . . . ,vnu considered in that order.

Aside: There is no standard notation for ordered bases—the literature uses p q, r s, etc.
Most people just use t u, even though technically sets don’t have order, but it can be helpful

to have separate notation while we’re first learning, so we’ll use special notation for now.

An ordered basis B is a basis together with a fixed order on its elements).

We’ll write

B “ xv1, . . . ,vny

to mean the set tv1, . . . ,vnu considered in that order.

For now, let’s focus on cases where V has a finite basis.

yes: Fn
, Ma,bpF q, PnpF q “ tp P F rxs | degppq § nu no: F rxs

Examples:

xe1, . . . , eny is the standard ordered basis of Fn
;

xE1,1, E1,2, . . . , E1,b,
E2,1 . . . , E2,b,

. . . , Ea,by

is the standard ordered basis of Ma,bpF q;

x1, x, x2, . . . , xn
y is the standard ordered basis of PnpF q.

Example:

xe1, e2, e3y, xe1, e3, e2y, and xe2, e3, e1y

are all di↵erent ordered bases of R3 (corresponding to the same underlying basis).



Example. Let’s consider the three ordered bases in C3
given by

E “ xe1, e2, e3y with e1 “

¨

˝
1
0
0

˛

‚, e2 “

¨

˝
0
1
0

˛

‚, e3 “

¨

˝
0
0
1

˛

‚;

A “ xa1,a2,a3y with a1 “

¨

˝
0
1
0

˛

‚, a2 “

¨

˝
0
0
1

˛

‚, a3 “

¨

˝
1
0
0

˛

‚; and

B “ xb1,b2,b3y with b1 “

¨

˝
1
0
0

˛

‚, b2 “

¨

˝
1
1
0

˛

‚, b3 “

¨

˝
1
1
1

˛

‚.

[How do I know they’re bases? One can check that these are each independent sets using

the techniques of last time, and the following confirms that they’re spanning sets as well.]

We can solve relevant systems of linear equations (e.g. x “ c1v1 ` c2v2 ` c3v3)

to find ¨

˝
x
y
z

˛

‚“ x e1 ` y e2 ` z e3,

“ y a1 ` z a2 ` x a3, and

“ px ´ yq b3 ` py ´ zq b2 ` z b3.

Encoding V using an ordered basis
Let B “ xb1, . . . ,bny be an ordered basis of a vector space V (over the field

F ). For each v P V , we again note that the expression

v “ c1b1 ` ¨ ¨ ¨ ` cnbn

is unique, meaning that there is a bijection

Fn
›Ñ V

pc1, . . . , cnq fi›Ñ c1b1 ` ¨ ¨ ¨ ` cnbn.
(˚)

Recall: A map f : X Ñ Y is well-defined if for all x P X we have
(1) fpxq is uniquely identified and (2) fpxq P Y .

A bijection, or bijective function, is a function f : X Ñ Y that is both injective,

meaning
fpx1q “ fpx2q implies x1 “ x2,

and surjective, meaning

for all y P Y , there is some x P X such that fpxq “ y.

The function in (˚) is well-defined because B is ordered;

it is surjective because B is a spanning set; and

it is injective because B is independent.

In other words, the definition of ordered basis is exactly what’s needed for (˚)

to be well-defined and bijective.



Encoding V using an ordered basis
Let B “ xb1, . . . ,bny be an ordered basis of a vector space V (over F ).

Recall that a function is bijective if and only if it’s invertible;

so take (˚) from the last and turn it around (invert it) to get the bijection

RepB : V ›Ñ Fn

c1b1 ` ¨ ¨ ¨ ` cnbn fi›Ñ pc1, . . . , cnq.
(˚)

We call c1, . . . , cn the coordinates of

v “ c1b1 ` ¨ ¨ ¨ ` cnbn

with respect to B, and

RepBpvq “

¨

˚̊
˚̋

c1
c2
...
cn

˛

‹‹‹‚.

is the representation of v with respect to B.

Example: Using the ordered bases E , A, and B of V “ C from before, we have

RepE

¨

˝
¨

˝
x
y
z

˛

‚

˛

‚“

¨

˝
x
y
z

˛

‚, RepA

¨

˝
¨

˝
x
y
z

˛

‚

˛

‚“

¨

˝
y
z
x

˛

‚, and RepB

¨

˝
¨

˝
x
y
z

˛

‚

˛

‚“

¨

˝
x ´ y
y ´ z
z

˛

‚.

You try.

1. Consider the ordered basis B “ xb1,b2,b3y of Q3
, where

b1 “

¨

˝
1
1
0

˛

‚, b2 “

¨

˝
1
0

´1

˛

‚, and b3 “

¨

˝
0

´2
1

˛

‚.

(You could verify that B is independent by solving

c1b1 ` c2b2 ` c3b3 “ 0 for c1, c2, c3 P Q.)

Compute RepBpuq for

(i) u “

¨

˝
5
0
1

˛

‚ and (ii) u “

¨

˝
x
y
z

˛

‚ (where x, y, z P Q).

[Hint. Start by solving u “ c1b1 ` c2b2 ` c3b3 for c1, c2, c3.]

2. Let V be a vector space with ordered basis B “ xb1, . . . ,bny, so that

RepBpuq “ pc1, . . . , cnq means u “ c1b1 ` ¨ ¨ ¨ ` cnbn.

Verify that, for any u,v P V and ↵ P F , we have

RepBpu ` vq “ RepBpuq ` RepBpvq and RepBp↵uq “ ↵ RepBpuq.

[Hint. Start the first identity by writing v “ d1b1 ` ¨ ¨ ¨ ` dnbn and computing

(I) RepBpuq and RepBpvq, so to compute RepBpuq ` RepBpvq using vector addition

in Fn; and (II) u ` v (collecting like terms) and using that to compute RepBpu ` vq.]



Dimension

Theorem
If V has bases B and C, then |B| “ |C|.

(Proof in the finite case in a moment. . . )

In particular, if V has a basis B, then |B| is a statistic for V , not just B.

[Aside: This is a statement about vector spaces with infinite bases as well,
where |B| “ |C| means that there exists a bijection B Ñ C.]

Definition. We call the size of a basis B of V the dimension of V , denoted

dimpV q “ |B|.

If we need to emphasize what field we’re working with, we can write dimF pV q.

Examples.

‚ dimpFn
q “ n because |te1, . . . , enu| “ n;

‚ dimpMa,bpF qq “ ab because |tEi,j | i “ 1, . . . , a, j “ 1, . . . , bu| “ ab;

‚ dimpPnpF qq “ n ` 1 because |t1, x, . . . , xn
u| “ n ` 1;

‚ dimRpCq “ 2 because t1, iu is a basis for C over R.

Thm. (Finite case)

If V has finite bases B and C, then |B| “ |C|.

Lemma. (Exchange Lemma)

Let B “ tb1, . . . ,bnu be a (finite
˚
) basis of V and let v P V ´ t0u. Then

there exists an element b P B such that B1
“ pB ´ tbuq Y tvu is also a basis

of V . (˚ also true in infinite case.)

Proof. Fix v P V ´ t0u. Since B is a basis of V and v ‰ 0, we can write

v “ c1b1 ` ¨ ¨ ¨ ` cnbn

for some ci P F not all 0. Take ` such that c` ‰ 0 and solve for b`:

b` “
1

c`
v `

ÿ

i“1,...n
i‰`

´ ´ci
c`

¯
bi P FB1, where B1

“ pB ´ tb`uq Y tvu. (˛)

To see that B1
spans V , we see that for any u P V , we have

u “ d1b1 ` ¨ ¨ ¨ ` dnbn “ d`b` `

ÿ

i“1,...n
i‰`

dibi for some di P F ,

“ d`

ˆ
1
c`
v `

ÿ

i“1,...n
i‰`

´ ´ci
c`

¯
bi

˙
`

ÿ

i“1,...n
i‰`

dibi by (˛)

“
d`
c`
v `

ÿ

i“1,...n
i‰`

´ ´d`ci
c`

` di
¯
bi P FB1.

So FB1
“ V .

(This shows FB1 Ö V , but

FB1 Ñ V already by closure)



Lemma. (Exchange Lemma)

Let B “ tb1, . . . ,bnu be a (finite) basis of V and let v P V ´ t0u. Then there exists an

element b P B such that B1 “ pB ´ tbuq Y tvu is also a basis of V .

Proof (continued). We fixed v P V ´ t0u, wrote v “ c1b1 ` ¨ ¨ ¨ ` cnbn, and

took ` such that c` ‰ 0. Then we defined B1
“ pB ´ tb`uq Y tvu and

showed FB1
“ V . It remains to show that B1

is independent.

To that end, suppose (for some ↵,↵i P F ) we have

0 “ ↵v `

ÿ

i“1,...,n
i‰`

↵ibi
(how we always start

to test for dependence)

“ ↵ pc1b1 ` ¨ ¨ ¨ ` cnbnq `

ÿ

i“1,...,n
i‰`

↵ibi, using our formula for v,

“ ↵c`b` `

ÿ

i“1,...,n
i‰`

p↵ci ` ↵iqbi, combining like terms.

But B is a basis (and therefore is independent), so this implies that

↵c` “ 0 and ↵ci ` ↵i “ 0 for all i ‰ `.

We assumed c` ‰ 0, and hence ↵ “ 0 ; and this further implies that

↵i “ 0 for all i ‰ ` (as desired).

So B1
is independent, and is therefore a basis.

Lemma. (Exchange Lemma)
Let B “ tb1, . . . ,bnu be a (finite˚) basis of V and let v P V ´ t0u. Then there exists an element
b P B such that B1 “ pB ´ tbuq Y tvu is also a basis of V .

Note: Our proof more specifically showed. . .

Let B “ tb1, . . . ,bnu be a (finite) basis of V and let

v “ c1b1 ` ¨ ¨ ¨ ` cnbn P V ´ t0u. Then for any ` such that c` ‰ 0, we
have that B1 “ pB ´ tb`uq Y tvu is also a basis of V .

(We cooked up a specific recipe for finding what to replace with v.)

Theorem (Ch Two, §III, Thm. 2.4)
If V has finite bases B and C, then |B| “ |C|.
Namely, dimension is well-defined.

Proof (sketch). [See book for full deatails]

Inductively move from B Ñ C, replacing one term at a time.

Step 0: Let B1 “ B.

Step i: If C Ñ Bi, you’re done. Otherwise. . .

§ Take some element vi P C ´ B, and
find ui P B0 ´ C such that
the coe�cient of ui in RepBi

pviq is not 0.
§ Let Bi`1 “ pBi ´ tuiuq Y tviu. (Recurse step i until C Ñ Bi.)

Homework: Show that if C Ñ Bi with C spanning V and Bi being

indepenent, then C “ Bi.



Epilog: Some tips for translating between lecture and the book.

§ The book defines a basis as an ordered set (that spans and is
independent)—i.e. what we’re calling an ordered basis. This isn’t standard, so
we’ll di↵erentiate between the two.

§ The book notationally distinguishes between a linearly independent spanning set
B “ t~�1, ~�2, . . . , ~�nu; (set)

and an ordered linearly independent spanning set (the thing they call basis)

B “ x~�1, ~�2, . . . , ~�ny. (ordered set)

In LATEX, those angle brackets aren’t just < and >; the angle bracket symbols are
more shallow (e.g. † versus x ). They’re coded as \langle and \rangle (“left
angle” and “right angle”). You also have the shortcuts \< and \> coded in our
preambles for those two commands, respectively.

Note: There is no standard convention for what to use for notation in the
second case. If you’re looking at other resources, keep an eye out for p q
(thinking of an ordered basis as a sequence) or r s. But mostly, folks just use
t u, even though technically sets don’t have order, and use words to specify
that they’ve fixed an order.


