Lecture 6:

Bases

Dimension

Unless otherwise stated:
Assume F is a field with more than one element (so that $0 \neq 1$).
Let V be a vector space over F.

Last time

Let V be a vector space (over F), and let $S \subseteq V$ be a subset of V. There are two main ways we think about the span of S :

- Bottom-up: $F S$ is the vector space that you can build out of S.

Focus on S and see where you can get.

- Top-down: S is enough to build $F S$.

Focus on the vector space FS and find a way to build it.
A set $S \subseteq V$ is linearly independent if

$$
c_{1} \mathbf{s}_{1}+\cdots+c_{n} \mathbf{s}_{n}=\mathbf{0} \quad \text { implies } \quad c_{1}=\cdots=c_{n}=0
$$

for any $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n} \in S$. Otherwise, if there exist c_{1}, \ldots, c_{n} with at least some $c_{\ell} \neq 0$ such that $c_{1} \mathbf{s}_{1}+\cdots+c_{n} \mathbf{s}_{n}=\mathbf{0}$, we say S is linearly dependent.
Other characterizations of linear (in)dependence:

- S is independent if and only if

$$
c_{1} \mathbf{s}_{1}+\cdots+c_{n} \mathbf{s}_{n}=d_{1} \mathbf{s}_{1}+\cdots+d_{n} \mathbf{s}_{n} \quad \text { implies } \quad c_{i}=d_{i} \text { for } i=1, \ldots, n
$$

i.e. each element in $F S$ has a unique expression as a linear combination of elements of S.

- S is dependent if and only if
there exists $\mathbf{v} \in S \quad$ such that $\quad \mathbf{v} \in F(S-\{\mathbf{v}\})$;
i.e. there's redundancy in S as a set of building blocks for $F S$.

Still: Let V be a vector space over F.
A spanning set for V is a subset $S \subseteq V$ such that $F S=V$.
Think: S is "enough" to build/generate V.
A basis for V is a linearly independent spanning set.
Think: S is minimal in being "enough" to build/generate V.
Example: We showed last time that $\left\{\left(\begin{array}{l}2 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 3 \\ 1\end{array}\right)\right\}$ is a basis of \mathbb{R}^{3}.
Example: Another basis of \mathbb{R}^{3} is the natural or standard basis

$$
\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\} \quad \text { where } \quad \mathbf{e}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \text { and } \mathbf{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Reflection questions (from last time):

1. We have lots of examples of vector spaces now. Can you come up with a basis for each of them? For example, can you find a basis for. . . (next slide)

- $V=\mathcal{P}_{n}(\mathbb{R})=\{f \in \mathbb{R}[x] \mid \operatorname{deg}(f) \leqslant n\}$ over $F=\mathbb{R}$;
- $V=M_{2,2}(\mathbb{R})=\{2 \times 2$ matrices $\mathrm{w} /$ coefs in $\mathbb{R}\}$, over $F=\mathbb{R}$;
- $V=0=\{\mathbf{0}\}$, the trivial vector space over a field F;

2. Many vector spaces have more than one basis. Under what circumstances will a basis of V be unique?
3. Does every vector space even have a basis? (How could you prove or disprove?)

Standard bases

There are usually lots of bases of a given vector space, and there will be very concrete examples where "non-standard" bases are important. But generally, we start to think about most of our favorite vector spaces in terms of natural choices of bases already.

The standard basis for...

- $V=F^{n}($ over $F)$ is

$$
\mathcal{E}\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\} \quad \text { where } \quad \mathbf{e}_{i}=(0, \ldots, 0,1,0, \ldots, 0)
$$

- $V=M_{a, b}(F)($ over $F)$ is $\mathcal{E}=\left\{E_{i, j} \mid i=1, \ldots a, j=1, \ldots, b\right\}$ where

$$
E_{i, j}=\left(\begin{array}{cccccc}
0 & \cdots & 0 & & j \text { th col } \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \searrow & 0 & \cdots
\end{array}\right)
$$

(0's everywhere except in the i th row and j th col);

- $V=F[x]($ over $F)$ is $\mathcal{E}=\left\{1, x, x^{2}, \ldots\right\}=\left\{x^{\ell} \mid \ell \in \mathbb{Z}_{\geqslant 0}\right\}$;

$$
\text { and } V=\mathcal{P}_{n}(F)(\operatorname{over} F) \text { is } \mathcal{E}=\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

Putting together what we learned about span, together with the fact that a basis generates all of V we know...
Prop. Let V be a vector space over F, and let B be a basis of V. Then every element $\mathbf{v} \in V$ has a unique expression in the form $\mathbf{v}=\sum_{\mathbf{b} \in B} c_{\mathbf{b}} \mathbf{b}$;
i.e. there is a unique way to express \mathbf{v} as a linear combination of elements of B

$$
\text { (being smart about order and } 0 \text { 's). }
$$

[For example,

$$
2\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad 5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+2\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \text { and } \quad 5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+0\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+2\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

all count as the "same" linear combination.]
An ordered basis B is a basis together with a fixed order on its elements.
Note: This is what the book just calls a "basis"; this not standard.
We'll write

$$
B=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle
$$

to mean the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ considered in that order.
Aside: There is no standard notation for ordered bases-the literature uses (), [], etc.
Most people just use \{ \}, even though technically sets don't have order, but it can be helpful to have separate notation while we're first learning, so we'll use special notation for now.

An ordered basis B is a basis together with a fixed order on its elements). We'll write

$$
B=\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle
$$

to mean the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ considered in that order.
For now, let's focus on cases where V has a finite basis.

$$
\text { yes: } F^{n}, M_{a, b}(F), \mathcal{P}_{n}(F)=\{p \in F[x] \mid \operatorname{deg}(p) \leqslant n\} \quad \text { no: } F[x]
$$

Examples:

$$
\begin{aligned}
& \left\langle\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\rangle \text { is the standard ordered basis of } F^{n} \text {; } \\
& \left\langle E_{1,1}, E_{1,2}, \ldots, E_{1, b},\right. \\
& E_{2,1} \ldots, E_{2, b}, \quad \text { is the standard ordered basis of } M_{a, b}(F) ; \\
& \left.\ldots, E_{a, b}\right\rangle \\
& \left\langle 1, x, x^{2}, \ldots, x^{n}\right\rangle \text { is the standard ordered basis of } \mathcal{P}_{n}(F) \text {. }
\end{aligned}
$$

Example:

$$
\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle, \quad\left\langle\mathbf{e}_{1}, \mathbf{e}_{3}, \mathbf{e}_{2}\right\rangle, \quad \text { and } \quad\left\langle\mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{1}\right\rangle
$$

are all different ordered bases of \mathbb{R}^{3} (corresponding to the same underlying basis).

Example. Let's consider the three ordered bases in \mathbb{C}^{3} given by

$$
\begin{array}{ll}
\mathcal{E}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\rangle & \text { with } \mathbf{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \mathbf{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) ; \\
A=\left\langle\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\rangle & \text { with } \mathbf{a}_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \mathbf{a}_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) ; \text { and } \\
B=\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\rangle & \text { with } \mathbf{b}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0
\end{array}\right), \mathbf{b}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \mathbf{b}_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) .
\end{array}
$$

[How do I know they're bases? One can check that these are each independent sets using the techniques of last time, and the following confirms that they're spanning sets as well.] We can solve relevant systems of linear equations (e.g. $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}$) to find

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}, \\
& =y \mathbf{a}_{1}+z \mathbf{a}_{2}+x \mathbf{a}_{3}, \quad \text { and } \\
& =(x-y) \mathbf{b}_{3}+(y-z) \mathbf{b}_{2}+z \mathbf{b}_{3} .
\end{aligned}
$$

Encoding V using an ordered basis

Let $B=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\rangle$ be an ordered basis of a vector space V (over the field $F)$. For each $\mathbf{v} \in V$, we again note that the expression

$$
\mathbf{v}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}
$$

is unique, meaning that there is a bijection

$$
\begin{array}{ccc}
F^{n} & \longrightarrow & V \\
\left(c_{1}, \ldots, c_{n}\right) & \longmapsto & c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \tag{*}
\end{array}
$$

Recall: A map $f: X \rightarrow Y$ is well-defined if for all $x \in X$ we have

$$
\text { (1) } f(x) \text { is uniquely identified and } \quad(2) f(x) \in Y \text {. }
$$

A bijection, or bijective function, is a function $f: X \rightarrow Y$ that is both injective, meaning

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \quad \text { implies } \quad x_{1}=x_{2},
$$

and surjective, meaning
for all $y \in Y$, there is some $x \in X$ such that $f(x)=y$.
The function in $(*)$ is well-defined because B is ordered;
it is surjective because B is a spanning set; and
it is injective because B is independent.
In other words, the definition of ordered basis is exactly what's needed for (*) to be well-defined and bijective.

Encoding V using an ordered basis

Let $B=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\rangle$ be an ordered basis of a vector space V (over F).
Recall that a function is bijective if and only if it's invertible;
so take (*) from the last and turn it around (invert it) to get the bijection

$$
\begin{array}{rccc}
\operatorname{Rep}_{B}: & V & \longrightarrow & F^{n} \\
& c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} & \longmapsto & \left(c_{1}, \ldots, c_{n}\right) .
\end{array}
$$

We call c_{1}, \ldots, c_{n} the coordinates of

$$
\mathbf{v}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}
$$

with respect to B, and

$$
\operatorname{Rep}_{B}(\mathbf{v})=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

is the representation of \mathbf{v} with respect to B.
Example: Using the ordered bases \mathcal{E}, A, and B of $V=\mathbb{C}$ from before, we have
$\operatorname{Rep}_{\mathcal{E}}\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), \quad \operatorname{Rep}_{A}\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=\left(\begin{array}{l}y \\ z \\ x\end{array}\right), \quad$ and $\quad \operatorname{Rep}_{B}\left(\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right)=\left(\begin{array}{c}x-y \\ y-z \\ z\end{array}\right)$.

You try.

1. Consider the ordered basis $B=\left\langle\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\rangle$ of \mathbb{Q}^{3}, where

$$
\mathbf{b}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{b}_{2}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad \text { and } \quad \mathbf{b}_{3}=\left(\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right) .
$$

(You could verify that B is independent by solving

$$
\left.c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}=\mathbf{0} \text { for } c_{1}, c_{2}, c_{3} \in \mathbb{Q} .\right)
$$

Compute $\operatorname{Rep}_{B}(\mathbf{u})$ for
(i) $\mathbf{u}=\left(\begin{array}{l}5 \\ 0 \\ 1\end{array}\right) \quad$ and
(ii) $\mathbf{u}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \quad($ where $x, y, z \in \mathbb{Q})$.
[Hint. Start by solving $\mathbf{u}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}$ for c_{1}, c_{2}, c_{3}.]
2. Let V be a vector space with ordered basis $B=\left\langle\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\rangle$, so that

$$
\operatorname{Rep}_{B}(\mathbf{u})=\left(c_{1}, \ldots, c_{n}\right) \quad \text { means } \mathbf{u}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}
$$

Verify that, for any $\mathbf{u}, \mathbf{v} \in V$ and $\alpha \in F$, we have

$$
\operatorname{Rep}_{B}(\mathbf{u}+\mathbf{v})=\operatorname{Rep}_{B}(\mathbf{u})+\operatorname{Rep}_{B}(\mathbf{v}) \quad \text { and } \quad \operatorname{Rep}_{B}(\alpha \mathbf{u})=\alpha \operatorname{Rep}_{B}(\mathbf{u})
$$

[Hint. Start the first identity by writing $\mathbf{v}=d_{1} \mathbf{b}_{1}+\cdots+d_{n} \mathbf{b}_{n}$ and computing
(I) $\operatorname{Rep}_{B}(\mathbf{u})$ and $\operatorname{Rep}_{B}(\mathbf{v})$, so to compute $\operatorname{Rep}_{B}(\mathbf{u})+\operatorname{Rep}_{B}(\mathbf{v})$ using vector addition in F^{n}; and (II) $\mathbf{u}+\mathbf{v}$ (collecting like terms) and using that to compute $\operatorname{Rep}_{B}(\mathbf{u}+\mathbf{v})$.]

Dimension

Theorem

If V has bases B and C, then $|B|=|C|$.
(Proof in the finite case in a moment. . .)
In particular, if V has a basis B, then $|B|$ is a statistic for V, not just B.
[Aside: This is a statement about vector spaces with infinite bases as well, where $|B|=|C|$ means that there exists a bijection $B \rightarrow C$.]

Definition. We call the size of a basis B of V the dimension of V, denoted

$$
\operatorname{dim}(V)=|B|
$$

If we need to emphasize what field we're working with, we can write $\operatorname{dim}_{F}(V)$.

Examples.

- $\operatorname{dim}\left(F^{n}\right)=n$ because $\left|\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}\right|=n$;
- $\operatorname{dim}\left(M_{a, b}(F)\right)=a b$ because $\left|\left\{E_{i, j} \mid i=1, \ldots, a, j=1, \ldots, b\right\}\right|=a b$;
- $\operatorname{dim}\left(\mathcal{P}_{n}(F)\right)=n+1$ because $\left|\left\{1, x, \ldots, x^{n}\right\}\right|=n+1$;
- $\operatorname{dim}_{\mathbb{R}}(\mathbb{C})=2$ because $\{1, i\}$ is a basis for \mathbb{C} over \mathbb{R}.

Thm. (Finite case)
If V has finite bases B and C, then $|B|=|C|$.
Lemma. (Exchange Lemma)
Let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a (finite*) basis of V and let $\mathbf{v} \in V-\{\mathbf{0}\}$. Then there exists an element $\mathbf{b} \in B$ such that $B^{\prime}=(B-\{\mathbf{b}\}) \cup\{\mathbf{v}\}$ is also a basis of V.
(* also true in infinite case.)
Proof. Fix $\mathbf{v} \in V-\{\mathbf{0}\}$. Since B is a basis of V and $\mathbf{v} \neq 0$, we can write

$$
\mathbf{v}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}
$$

for some $c_{i} \in F$ not all 0 . Take ℓ such that $c_{\ell} \neq 0$ and solve for \mathbf{b}_{ℓ} :

$$
\mathbf{b}_{\ell}=\frac{1}{c_{\ell}} \mathbf{v}+\sum_{\substack{i=1, \ldots, n \\ i \neq \ell}}\left(\frac{-c_{i}}{c_{\ell}}\right) \mathbf{b}_{i} \in F B^{\prime}, \text { where } B^{\prime}=\left(B-\left\{\mathbf{b}_{\ell}\right\}\right) \cup\{\mathbf{v}\}
$$

To see that B^{\prime} spans V, we see that for any $\mathbf{u} \in V$, we have

$$
\begin{array}{rlr}
\mathbf{u} & =d_{1} \mathbf{b}_{1}+\cdots+d_{n} \mathbf{b}_{n}=d_{\ell} \mathbf{b}_{\ell}+\sum_{\substack{i=1, \ldots, n \\
i \neq \ell}} d_{i} \mathbf{b}_{i} & \text { for some } d_{i} \in F, \\
& =d_{\ell}\left(\frac{1}{c_{\ell}} \mathbf{v}+\sum_{\substack{i=1, \ldots, n \\
i \neq \ell}}\left(\frac{-c_{i}}{c_{\ell}}\right) \mathbf{b}_{i}\right)+\sum_{\substack{i=1, \ldots . n \\
i \neq \ell}} d_{i} \mathbf{b}_{i} & \text { by }(\diamond) \\
& =\frac{d_{\ell}}{c_{\ell}} \mathbf{v}+\sum_{\substack{i=1, \ldots, n \\
i \neq \ell}}\left(\frac{-d_{\ell} c_{i}}{c_{\ell}}+d_{i}\right) \mathbf{b}_{i} \in F B^{\prime} . & \begin{array}{c}
\text { So } F B^{\prime}=V . \\
\begin{array}{c}
\text { (This shows } F B^{\prime} \supseteq V \text { but } \\
F B^{\prime} \subseteq V \text { aready by closure) }
\end{array}
\end{array}
\end{array}
$$

Let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a (finite) basis of V and let $\mathbf{v} \in V-\{\mathbf{0}\}$. Then there exists an element $\mathbf{b} \in B$ such that $B^{\prime}=(B-\{\mathbf{b}\}) \cup\{\mathbf{v}\}$ is also a basis of V.
Proof (continued). We fixed $\mathbf{v} \in V-\{\mathbf{0}\}$, wrote $\mathbf{v}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$, and took ℓ such that $c_{\ell} \neq 0$. Then we defined $B^{\prime}=\left(B-\left\{\mathbf{b}_{\ell}\right\}\right) \cup\{\mathbf{v}\}$ and showed $F B^{\prime}=V$. It remains to show that B^{\prime} is independent.
To that end, suppose (for some $\alpha, \alpha_{i} \in F$) we have

$$
\begin{aligned}
\mathbf{0} & =\alpha \mathbf{v}+\sum_{\substack{i=1, \ldots, n^{n} \\
i \neq \ell}} \alpha_{i} \mathbf{b}_{i} & & \begin{array}{c}
\text { (how we always start } \\
\text { to test for dependence) }
\end{array} \\
& =\alpha\left(c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}\right)+\sum_{\substack{i=1 \ldots \ldots, n \\
i \neq \ell}} \alpha_{i} \mathbf{b}_{i}, & & \text { using our formula for } \mathbf{v}, \\
& =\alpha c_{\ell} \mathbf{b}_{\ell}+\sum_{\substack{i=1, \ldots, n \\
i \neq \ell, n}}\left(\alpha c_{i}+\alpha_{i}\right) \mathbf{b}_{i}, & & \text { combining like terms. }
\end{aligned}
$$

But B is a basis (and therefore is independent), so this implies that

$$
\alpha c_{\ell}=0 \quad \text { and } \quad \alpha c_{i}+\alpha_{i}=0 \text { for all } i \neq \ell .
$$

We assumed $c_{\ell} \neq 0$, and hence $\alpha=0$; and this further implies that $\alpha_{i}=0$ for all $i \neq \ell$ (as desired).

So B^{\prime} is independent, and is therefore a basis.

Lemma. (Exchange Lemma)
Let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a (finite*) basis of V and let $\mathbf{v} \in V-\{\mathbf{0}\}$. Then there exists an element $\mathbf{b} \in B$ such that $B^{\prime}=(B-\{\mathbf{b}\}) \cup\{\mathbf{v}\}$ is also a basis of V.

Note: Our proof more specifically showed...
Let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a (finite) basis of V and let
$\mathbf{v}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n} \in V-\{\mathbf{0}\}$. Then for any ℓ such that $c_{\ell} \neq 0$, we have that $B^{\prime}=\left(B-\left\{\mathbf{b}_{\ell}\right\}\right) \cup\{\mathbf{v}\}$ is also a basis of V.
(We cooked up a specific recipe for finding what to replace with \mathbf{v}.)
Theorem (Ch Two, §III, Thm. 2.4)
If V has finite bases B and C, then $|B|=|C|$.
Namely, dimension is well-defined.
Proof (sketch). [See book for full deatails]
Inductively move from $B \rightarrow C$, replacing one term at a time.
Step 0: Let $B_{1}=B$.
Step i : If $C \subseteq B_{i}$, you're done. Otherwise. . .

- Take some element $\mathbf{v}_{i} \in C-B$, and find $\mathbf{u}_{i} \in B_{0}-C$ such that the coefficient of \mathbf{u}_{i} in $\operatorname{Rep}_{B_{i}}\left(\mathbf{v}_{i}\right)$ is not 0 .
- Let $B_{i+1}=\left(B_{i}-\left\{\mathbf{u}_{i}\right\}\right) \cup\left\{\mathbf{v}_{i}\right\}$. (Recurse step i until $C \subseteq B_{i}$.)
Homework: Show that if $C \subseteq B_{i}$ with C spanning V and B_{i} being indepenent, then $C=B_{i}$.

Epilog: Some tips for translating between lecture and the book.

- The book defines a basis as an ordered set (that spans and is independent)-i.e. what we're calling an ordered basis. This isn't standard, so we'll differentiate between the two.
- The book notationally distinguishes between a linearly independent spanning set

$$
B=\left\{\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\} ; \quad \text { (set) }
$$

and an ordered linearly independent spanning set (the thing they call basis)

$$
B=\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots, \vec{\beta}_{n}\right\rangle . \quad \text { (ordered set) }
$$

In $\operatorname{AT} T_{E X}$, those angle brackets aren't just < and >; the angle bracket symbols are more shallow (e.g. < versus <). They're coded as \langle and \rangle ("left angle" and "right angle"). You also have the shortcuts \< and \> coded in our preambles for those two commands, respectively.
Note: There is no standard convention for what to use for notation in the second case. If you're looking at other resources, keep an eye out for () (thinking of an ordered basis as a sequence) or []. But mostly, folks just use \{ \}, even though technically sets don't have order, and use words to specify that they've fixed an order.

