Lecture 5: Linear independence Bases

Unless otherwise stated:

Assume F is a field with more than one element (so that $0 \neq 1$). Let V be a vector space over F.

Last time: Let V be a vector space (over F), and let $S \subseteq V$ be a subset of V. The linear closure or span of S is the set

$$FS = \{a_1\mathbf{s}_1 + \dots + a_n\mathbf{s}_n \mid n \in \mathbb{Z}_{\geq 0}, a_i \in F, \mathbf{s}_i \in S\}.$$

We also denote FS by $\operatorname{span}_F(S)$ (book: [S]). Back to our parameterized planes picture...

$$H = \{a\mathbf{u} + b\mathbf{v} \mid a, b \in \mathbb{R}\}:$$

Lemma. (Two.l.2.15) Let V be a vector space over F, and let $S \subseteq V$. Then FS is a subspace of V.

Proof. Use the subspace critereon (See book for proof). Idea: The span FS is also the smallest vector space in V that contains S.

Given a (finite) set $S = {\mathbf{s}_1, \ldots, \mathbf{s}_n} \subseteq V$, we might ask if some given v is in the span of S, i.e. if v is generated by S. In particular, we may ask if there exist $a_1, \ldots, a_n \in F$ such that

$$v = a_1 \mathbf{s}_1 + \dots + a_n \mathbf{s}_n.$$

Example: Let $V = \mathbb{R}^3$ and $S = \{\mathbf{s}_1, \mathbf{s}_2\}$, where $\mathbf{s}_1 = (1, 2, 1)$ and $\mathbf{s}_2 = (5, 1, -1)$. To discover if v = (-2, 5, 4) is in the span of S, we must solve

$$v = a_1 \mathbf{s}_1 + a_2 \mathbf{s}_2$$
 for a_1 and a_2 .

Namely, solve

$$(-2,5,4) = a_1(1,2,1) + a_2(5,1,-1) = (a_1 + 5a_2, 2a_1 + a_2, a_1 - a_2)$$

This is equivalent to solving the system

$$\begin{cases} a_1 + 5a_2 = -2, \\ 2a_1 + a_2 = 5, \\ a_1 + (-1)a_2 = 4. \end{cases}$$

And reducing

$$\begin{pmatrix} 1 & 5 & | & -2 \\ 2 & 1 & 5 \\ 1 & -1 & | & 4 \end{pmatrix} \quad \text{yields} \quad \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 0 \end{pmatrix},$$

meaning $3s_1 - s_2 = v$, so that $v \in \mathbb{R}S$.

Redundancy in spanning sets

Consider

$$S = \{(1,0,0), (2,0,0)\} \subseteq \mathbb{R}^3.$$

z

The span of S in \mathbb{R}^3 is

$$\mathbb{R}S = \{a(1,0,0) + b(2,0,0) \mid a, b \in \mathbb{R}\}$$

= $\{(a+2b,0,0) \mid a, b \in \mathbb{R}\}$
= $\{(a+2b)(1,0,0) \mid a, b \in \mathbb{R}\}$
= $\{c(1,0,0) \mid c \in \mathbb{R}\}.$

Geometrically: The vectors (2,0,0) and (1,0,0) are parallel, and so they both generate the same line.

Lemma. (Ch. 2, §II, Lemma 1.2) Let V be a v.s. over F, and let $S \subseteq V$. Then for any $v \in V$, we have

$$FS = F(S \cup \{v\})$$
 if and only if $v \in FS$.

Sketch of proof. (See book for full proof) Since $v \in F(S \cup \{v\})$, if $v \notin FS$, then it must be that $F(S \cup \{v\}) \neq FS$. Conversely, if $v \in FS$, then write $v = c_1 \mathbf{s}_1 + \cdots + c_n \mathbf{s}_n$ and check that $FS \subseteq F(S \cup \{v\})$ and $F(S \cup \{v\}) \subseteq FS$ by direct computation.

Linear (in)dependence Let $S \subseteq V$. We say S is linearly dependent if there exist (distinct) $s_1, \ldots, s_n \in S$ and $c_1, \ldots, c_n \in F$ not all 0 (i.e. $c_i \neq 0$ for at least one i) such that

 $c_1\mathbf{s}_1+\cdots+c_n\mathbf{s}_n=\mathbf{0}.$

In other words, if there is more than the trivial way to build (or generate) $\mathbf{0}$ out of elements of S. If S is *not* linearly dependent, then we say S is linearly independent. Namely, S is linearly independent if

 $c_1\mathbf{s}_1 + \dots + c_n\mathbf{s}_n = \mathbf{0}$ implies $c_1 = \dots = c_n = 0$ for any $\mathbf{s}_1, \dots, \mathbf{s}_n \in S$.

Ex. The set $S = \{(1,0,0), (2,0,0)\} \subseteq \mathbb{R}^3$ is linearly *dependent* because

$$2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Ex. The set $\{1, x, x^2\} \subseteq \mathbb{Q}[x]$ is linearly *independent* because $c_1 + c_2 x + c_3 x^2 = 0$ (independent of x) implies $c_1 = c_2 = c_3 = 0$.

Lemma. A set $S \subseteq V$ is linearly independent if and only if each element of FS has a *unique* expression as a linear combination of elements of S.

Note: This is closer to the book's definition, but they are equivalent.

To prove that a set S is *dependent*, you must find an example of a (non-trivial) linear combination building **0** out of distinct elements of S.

To prove that a set S is *independent*, you typically start by assuming that you have some linear combination of the form

$$c_1\mathbf{s}_1+\cdots+c_n\mathbf{s}_n=\mathbf{0},$$

with $s_1, \ldots, s_n \in S$ distinct, and prove that $c_1, \ldots, c_n = 0$.

Either way, it's a reasonable start to assume $c_1\mathbf{s}_1 + \cdots + c_n\mathbf{s}_n = \mathbf{0}$ and try to solve for c_1, \ldots, c_n .

You try: For each of the following, decide whether the set if independent or dependent.

(a)
$$S = \left\{ \mathbf{s}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{s}_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \mathbf{s}_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

(b) $S = \{\mathbf{s}_1 = 1 + x, \ \mathbf{s}_2 = 1 + x + x^2, \ \mathbf{s}_3 = 1 - x\} \subseteq \mathbb{Q}[x]$
(c) $S = \{\mathbf{0}\}$
(d) $S = \{\mathbf{v}\}$ for any non-zero $\mathbf{v} \in V$
(e) $S = \{\mathbf{0}, \mathbf{v}\}$ for any non-zero $\mathbf{v} \in V$
(f) $S = \emptyset$

Prop. A set S is linearly dependent if and only if

there exists $\mathbf{v} \in S$ such that $\mathbf{v} \in F(S - {\mathbf{v}})$.

"The set S is dependent exactly when it has superfluous elements." Proof. If $\mathbf{v} \in S$ is in the span of $S - {\mathbf{v}}$, then

$$\mathbf{v} = c_1 \mathbf{s}_1 + \dots + c_n \mathbf{s}_n$$

for some $s_1, \ldots, s_n \in S - \{v\}$. Hence

$$c_1\mathbf{s}_1 + \dots + c_n\mathbf{s}_n + (-1)\mathbf{v} = \mathbf{0}$$

is a non-trivial linear combination of of elements of S. So S is linearly dependent.

Conversely, suppose

$$c_1 \mathbf{s}_1 + \dots + c_n \mathbf{s}_n = \mathbf{0} \tag{(*)}$$

is a non-trivial linear combination. Then there is some ℓ for which $c_{\ell} \neq 0$. In particular,

$$-c_{\ell}\mathbf{s}_{\ell} = c_1\mathbf{s}_1 + \dots + c_{\ell-1}\mathbf{s}_{\ell-1} + c_{\ell+1}\mathbf{s}_{\ell+1} + \dots + c_n\mathbf{s}_n,$$

so that

$$\mathbf{s}_{\ell} = \sum_{\substack{i=1,\dots,n\\i\neq\ell}} \left(-\frac{c_i}{c_\ell}\right) \mathbf{s}_i \in F(S - \{\mathbf{s}_\ell\})$$

(i.e. we can solve for s_{ℓ} in (*)).

Prop. A set S is linearly dependent if and only if

there exists $\mathbf{v} \in S$ such that $\mathbf{v} \in F(S - {\mathbf{v}})$.

"The set S is dependent exactly when it has superfluous elements."

Corollary. If $S \subseteq V$ is finite, then it contains a linearly independent subset. Proof. Use induction on |S|, throwing elements out until you can't without changing the span.

Example.

$$S = \left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix}, \begin{pmatrix} 3\\0\\1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

Check in: $\mathbb{R}S \subseteq \mathbb{R}^3$. Why?

Look for linear dependence: solve

$$c_1 \begin{pmatrix} 2\\0\\0 \end{pmatrix} + c_2 \begin{pmatrix} 0\\1\\0 \end{pmatrix} + c_3 \begin{pmatrix} 2\\2\\0 \end{pmatrix} + c_4 \begin{pmatrix} 0\\3\\1 \end{pmatrix} + c_5 \begin{pmatrix} 3\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$

Reduce

$$\begin{pmatrix} 2 & 0 & 2 & 0 & 3 & | & 0 \\ 0 & 1 & 2 & 3 & 0 & | & 0 \\ 0 & 0 & 0 & 1 & 1 & | & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 1 & 0 & 3/2 & | & 0 \\ 0 & 1 & 2 & 0 & -3 & | & 0 \\ 0 & 0 & 0 & 1 & 1 & | & 0 \end{pmatrix}$$

Solution set:

$$\left\{ \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \end{pmatrix} = c_3 \begin{pmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + c_5 \begin{pmatrix} -3/2 \\ 3 \\ 0 \\ -1 \\ 1 \end{pmatrix} \middle| c_3, c_5 \in \mathbb{R} \right\}$$

Choosing $c_3 = 1$ and $c_5 = 0$ (so that $c_1 = -1$, $c_2 = -2$, and $c_4 = 0$) tells us that

$$(-1)\begin{pmatrix} 2\\0\\0 \end{pmatrix} + (-2)\begin{pmatrix} 0\\1\\0 \end{pmatrix} + \begin{pmatrix} 2\\2\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \text{ so that } \begin{pmatrix} 2\\2\\0 \end{pmatrix} = \begin{pmatrix} 2\\0\\0 \end{pmatrix} + 2\begin{pmatrix} 0\\1\\0 \end{pmatrix},$$

and hence $\mathbb{R}S = \mathbb{R}(S - (2, 2, 0))$. Similarly, choosing $c_3 = 0$ and $c_5 = 1$ (so that $c_1 = -3/2$, $c_2 = 3$, and $c_4 = -1$) tells us that

$$\begin{pmatrix} 3\\0\\1 \end{pmatrix} = (3/2) \begin{pmatrix} 2\\0\\0 \end{pmatrix} + (-3) \begin{pmatrix} 0\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\3\\1 \end{pmatrix} \in \mathbb{R} \left(S - \begin{pmatrix} 2\\2\\0 \end{pmatrix} - \begin{pmatrix} 0\\3\\1 \end{pmatrix} \right)$$

So

$$\mathbb{R}\left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix}, \begin{pmatrix} 3\\0\\1 \end{pmatrix} \right\} = \mathbb{R}\left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix} \right\}$$

Example.

$$S = \left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix}, \begin{pmatrix} 3\\0\\1 \end{pmatrix} \right\} \subseteq \mathbb{R}^3$$

Reduce

$$\begin{pmatrix} 2 & 0 & 2 & 0 & 3 \\ 0 & 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ \end{pmatrix} \stackrel{\Theta}{\mapsto} \begin{pmatrix} 1 & 0 & 1 & 0 & 3/2 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 \\ \end{pmatrix} \stackrel{\Theta}{\mapsto} b_3 \stackrel{\Theta}{\mapsto} \begin{pmatrix} 1 & 0 & 1 & 0 & 3/2 \\ 0 & 1 & 2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 \\ \end{array} \stackrel{\Theta}{\mapsto} b_2 - 3b_3 \stackrel{\Theta}{\mapsto} b_3$$

Discard (2, 2, 0) and (3, 0, 1) to get $\mathbb{R}S = \mathbb{R}S'$, where $S' = \left\{ \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} \right\}$

Big things to notice:

- 1. We ended up
 - discarding vectors corresponding to free variables, and
 - keeping the vectors corresponding to pivot terms.

So in retrospect, we could have spotted a linearly independent subset from the point that we reached row echelon form (no need to reduce)!

- 2. Columns don't interact with each other in row operations, so I've already reduced the "sub-array" corresponding to the subset S'. Outcome:
 - We're done! Discarding the "free columns" leaves a lin. indep. set. Observe, in *this* example, changing the 0's in the right-hand column to other constants, I reduce to a solvable system! $\mathbb{R}S' = \mathbb{R}^3$

Bases

Still: Let V be a vector space over F.

A spanning set for V is a subset $S \subseteq V$ such that FS = V. *Think:* S is "enough" to build/generate V.

A basis for V is a linearly independent spanning set.

Think: S is minimal in being "enough" to build/generate V.

Example: We just showed that
$$\left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix} \right\}$$
 is a basis of \mathbb{R}^3 .

Example: Another basis of \mathbb{R}^3 is the natural or canonical basis

$$\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$$
 where $\mathbf{e}_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$, and $\mathbf{e}_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$.

Consider for next time:

- 1. We have lots of examples of vector spaces now. Can you come up with a basis for each of them? For example, can you find a basis for...
 - $V = \mathcal{P}_n(\mathbb{R}) = \{ f \in \mathbb{R}[x] \mid \deg(f) \leq n \} \text{ over } F = \mathbb{R};$
 - $V = M_{2,2}(\mathbb{R}) = \{ 2 \times 2 \text{ matrices w/ coefs in } \mathbb{R} \}, \text{ over } F = \mathbb{R};$
 - $V = 0 = \{0\}$, the trivial vector space over a field F;
- 2. Many vector spaces have more than one basis. Under what circumstances will a basis of V be unique?
- 3. Does every vector space even *have* a basis? (How could you prove or disprove?)

Epilog: Some tips for translating between lecture and the book.

- The notation for span in the book is [S].
 - ▶ Pro: this is one common mathematical notation for the "*closure*" of a set.
 - Cons:
 - We'll need [] elsewhere later;
 - [S] is not as ubiquitous in the literature;
 - [S] doesn't specify the field.
- The book is using \vec{v} for vectors; $PTEX: \vec{v}$.

We're using v; ET_EX : \mathbf{v} or \vv using my shortcuts. Either is fine for the homework. The arrow notation is great for hand-written math (boldface is harder to write); I avoid it in ET_EX because it can get aesthetically busy and can align strangely on some symbols. *But*, the book is about to start using greek letters for basis vectors...

The book defines a basis as an ordered set (that spans and is independent)—i.e. what we're calling an ordered basis. This isn't standard, so we'll differentiate between the two. It also notationally distinguishes between a set:

$$B = \{\vec{\beta}_1, \vec{\beta}_2, \dots, \vec{\beta}_n\}; \quad \text{(set)}$$

and an ordered set (a list):

$$B = \langle \vec{\beta}_1, \vec{\beta}_2, \dots, \vec{\beta}_n \rangle.$$
 (ordered set)

There is no standard convention for what to use for notation in the second case.