
Lecture 5:
Linear independence
Bases

Unless otherwise stated:
Assume F is a field with more than one element (so that 0 ‰ 1).
Let V be a vector space over F .



Last time: Let V be a vector space (over F ), and let S Ñ V be a subset of
V . The linear closure or span of S is the set

FS “ ta1s1 ` ¨ ¨ ¨ ` ansn | n P Z•0, ai P F, si P Su.

We also denote FS by spanF pSq (book: [S]).

Back to our parameterized planes picture. . .

H “ tau ` bv | a, b P Ru :
0

Lemma. (Two.I.2.15)
Let V be a vector space over F , and let S Ñ V .
Then FS is a subspace of V .

Proof. Use the subspace critereon (See book for proof).
Idea: The span FS is also the smallest vector space in V that contains S.

Given a (finite) set S “ ts1, . . . , snu Ñ V , we might ask if some given v is in
the span of S, i.e. if v is generated by S. In particular, we may ask if there
exist a1, . . . , an P F such that

v “ a1s1 ` ¨ ¨ ¨ ` ansn.

Example: Let V “ R3 and S “ ts1, s2u, where s1 “ p1, 2, 1q and
s2 “ p5, 1,´1q. To discover if v “ p´2, 5, 4q is in the span of S, we must solve

v “ a1s1 ` a2s2 for a1 and a2.

Namely, solve

p´2, 5, 4q “ a1p1, 2, 1q ` a2p5, 1,´1q “ pa1 ` 5a2, 2a1 ` a2, a1 ´ a2q.

This is equivalent to solving the system$
&

%

a1 ` 5a2 “ ´2,
2a1 ` a2 “ 5,
a1 ` p´1qa2 “ 4.

And reducing ¨

˝
1 5 ´2
2 1 5
1 ´1 4

˛

‚ yields

¨

˝
1 0 3
0 1 ´1
0 0 0

˛

‚,

meaning 3s1 ´ s2 “ v, so that v P RS.



Redundancy in spanning sets
Consider

S “ tp1, 0, 0q, p2, 0, 0qu Ñ R3
.

The span of S in R3 is

RS “ tap1, 0, 0q ` bp2, 0, 0q | a, b P Ru

“ tpa ` 2b, 0, 0q | a, b P Ru

“ tpa ` 2bqp1, 0, 0q | a, b P Ru

“ tcp1, 0, 0q | c P Ru. x

y

z

0

s2s1

Geometrically: The vectors p2, 0, 0q and p1, 0, 0q are parallel, and so they both
generate the same line.

Lemma. (Ch. 2, §II, Lemma 1.2) Let V be a v.s. over F , and let S Ñ V .
Then for any v P V , we have

FS “ F pS Y tvuq if and only if v P FS.

Sketch of proof. (See book for full proof)
Since v P F pS Y tvuq, if v R FS, then it must be that F pS Y tvuq ‰ FS.
Conversely, if v P FS, then write v “ c1s1 ` ¨ ¨ ¨ ` cnsn and check that
FS Ñ F pS Y tvuq and F pS Y tvuq Ñ FS by direct computation.

Linear (in)dependence For the rest of today: Let V be a v.s. over a field F .

Let S Ñ V . We say S is linearly dependent if there exist (distinct)
s1, . . . , sn P S and c1, . . . , cn P F not all 0 (i.e. ci ‰ 0 for at least one i) such
that

c1s1 ` ¨ ¨ ¨ ` cnsn “ 0.

In other words, if there is more than the trivial way to build (or generate) 0
out of elements of S. If S is not linearly dependent, then we say S is linearly
independent. Namely, S is linearly independent if

c1s1 ` ¨ ¨ ¨ ` cnsn “ 0 implies c1 “ ¨ ¨ ¨ “ cn “ 0
for any s1, . . . , sn P S.

Ex. The set S “ tp1, 0, 0q, p2, 0, 0qu Ñ R3 is linearly dependent because

2

¨

˝
1
0
0

˛

‚` p´1q

¨

˝
2
0
0

˛

‚“

¨

˝
0
0
0

˛

‚.

Ex. The set t1, x, x2
u Ñ Qrxs is linearly independent because

c1 ` c2x ` c3x
2

“ 0 (independent of x) implies c1 “ c2 “ c3 “ 0.

Lemma. A set S Ñ V is linearly independent if and only if each element of
FS has a unique expression as a linear combination of elements of S.

Note: This is closer to the book’s definition, but they are equivalent.



To prove that a set S is dependent, you must find an example of a
(non-trivial) linear combination building 0 out of distinct elements of S.

To prove that a set S is independent, you typically start by assuming that you
have some linear combination of the form

c1s1 ` ¨ ¨ ¨ ` cnsn “ 0,

with s1, . . . , sn P S distinct, and prove that c1, . . . , cn “ 0.

Either way, it’s a reasonable start to assume c1s1 ` ¨ ¨ ¨ ` cnsn “ 0 and try to
solve for c1, . . . , cn.

You try: For each of the following, decide whether the set if independent or
dependent.

(a) S “

$
&

%s1 “

¨

˝
1
1
1

˛

‚, s2 “

¨

˝
2
1
1

˛

‚, s3 “

¨

˝
3
1
1

˛

‚

,
.

- Ñ R3

(b) S “ ts1 “ 1 ` x, s2 “ 1 ` x ` x
2
, s3 “ 1 ´ xu Ñ Qrxs

(c) S “ t0u

(d) S “ tvu for any non-zero v P V

(e) S “ t0,vu for any non-zero v P V

(f) S “ H



Prop. A set S is linearly dependent if and only if

there exists v P S such that v P F pS ´ tvuq.

“The set S is dependent exactly when it has superfluous elements.”
Proof. If v P S is in the span of S ´ tvu, then

v “ c1s1 ` ¨ ¨ ¨ ` cnsn

for some s1, . . . , sn P S ´ tvu. Hence

c1s1 ` ¨ ¨ ¨ ` cnsn ` p´1qv “ 0

is a non-trivial linear combination of of elements of S. So S is linearly
dependent.

Conversely, suppose

c1s1 ` ¨ ¨ ¨ ` cnsn “ 0 p˚q

is a non-trivial linear combination. Then there is some ` for which c` ‰ 0. In
particular,

´c`s` “ c1s1 ` ¨ ¨ ¨ ` c`´1s`´1 ` c``1s``1 ` ¨ ¨ ¨ ` cnsn,

so that

s` “

ÿ

i“1,...,n
i‰`

ˆ
´
ci

c`

˙
si P F pS ´ ts`uq

(i.e. we can solve for s` in p˚q).



Prop. A set S is linearly dependent if and only if

there exists v P S such that v P F pS ´ tvuq.

“The set S is dependent exactly when it has superfluous elements.”

Corollary. If S Ñ V is finite, then it contains a linearly independent subset.

Proof. Use induction on |S|, throwing elements out until you can’t without
changing the span.

Example.

S “

$
&

%

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
2
2
0

˛

‚,

¨

˝
0
3
1

˛

‚,

¨

˝
3
0
1

˛

‚

,
.

- Ñ R3

Check in: RS Ñ R3. Why?
Look for linear dependence: solve

c1

¨

˝
2
0
0

˛

‚` c2

¨

˝
0
1
0

˛

‚` c3

¨

˝
2
2
0

˛

‚` c4

¨

˝
0
3
1

˛

‚` c5

¨

˝
3
0
1

˛

‚“

¨

˝
0
0
0

˛

‚.

Reduce ¨

˝
2 0 2 0 3 0
0 1 2 3 0 0
0 0 0 1 1 0

˛

‚ fiÑ

¨

˝
1 0 1 0 3{2 0
0 1 2 0 ´3 0
0 0 0 1 1 0

˛

‚

Solution set:
$
’’’&

’’’%

¨

˚̊
˚̋

c1
c2
c3
c4
c5

˛

‹‹‹‚“ c3

¨

˚̊
˚̋

´1
´2
1
0
0

˛

‹‹‹‚` c5

¨

˚̊
˚̋

´3{2
3
0

´1
1

˛

‹‹‹‚

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

c3, c5 P R

,
///.

///-

Choosing c3 “ 1 and c5 “ 0 (so that c1 “ ´1, c2 “ ´2, and c4 “ 0) tells us
that

p´1q

¨

˝
2
0
0

˛

‚` p´2q

¨

˝
0
1
0

˛

‚`

¨

˝
2
2
0

˛

‚“

¨

˝
0
0
0

˛

‚, so that

¨

˝
2
2
0

˛

‚“

¨

˝
2
0
0

˛

‚` 2

¨

˝
0
1
0

˛

‚,

and hence RS “ RpS ´ p2, 2, 0qq. Similarly, choosing c3 “ 0 and c5 “ 1 (so
that c1 “ ´3{2, c2 “ 3, and c4 “ ´1) tells us that¨

˝
3
0
1

˛

‚“ p3{2q

¨

˝
2
0
0

˛

‚` p´3q

¨

˝
0
1
0

˛

‚`

¨

˝
0
3
1

˛

‚P R

¨

˝S ´

¨

˝
2
2
0

˛

‚´

¨

˝
0
3
1

˛

‚

˛

‚.

So

R

$
&

%

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
2
2
0

˛

‚,

¨

˝
0
3
1

˛

‚,

¨

˝
3
0
1

˛

‚

,
.

- “ R

$
&

%

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
0
3
1

˛

‚

,
.

-



Example.

S “
$
&

%

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
2
2
0

˛

‚,

¨

˝
0
3
1

˛

‚,

¨

˝
3
0
1

˛

‚

,
.

- Ñ R3

Reduce ¨

˝
2 0 2 0 3 0 b1
0 1 2 3 0 0 b2
0 0 0 1 1 0 b3

˛

‚ fiÑ
¨

˝
1 0 1 0 3{2 0 b1{2
0 1 2 0 ´3 0 b2 ´ 3b3
0 0 0 1 1 0 b3

˛

‚

Discard p2, 2, 0q and p3, 0, 1q to get RS “ RS1
, where S1 “

$
&

%

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
0
3
1

˛

‚

,
.

-.

Big things to notice:
1. We ended up

‚ discarding vectors corresponding to free variables, and
‚ keeping the vectors corresponding to pivot terms.
This will always work. (Why?)
So in retrospect, we could have spotted a linearly independent subset
from the point that we reached row echelon form (no need to reduce)!

2. Columns don’t interact with each other in row operations, so I’ve already
reduced the “sub-array” corresponding to the subset S1. Outcome:

‚ We’re done! Discarding the “free columns” leaves a lin. indep. set.

Observe, in this example, changing the 0’s in the right-hand column to

other constants, I reduce to a solvable system! RS1
“ R3

Bases Still: Let V be a vector space over F .

A spanning set for V is a subset S Ñ V such that FS “ V .
Think: S is “enough” to build/generate V .

A basis for V is a linearly independent spanning set.
Think: S is minimal in being “enough” to build/generate V .

Example: We just showed that

$
&

%

¨

˝
2
0
0

˛

‚,

¨

˝
0
1
0

˛

‚,

¨

˝
0
3
1

˛

‚

,
.

- is a basis of R3.

Example: Another basis of R3 is the natural or canonical basis

E “ te1, e2, e3u where e1 “
¨

˝
1
0
0

˛

‚, e2 “
¨

˝
0
1
0

˛

‚, and e3 “
¨

˝
0
0
1

˛

‚.

Consider for next time:
1. We have lots of examples of vector spaces now. Can you come up with a

basis for each of them? For example, can you find a basis for. . .
‚ V “ PnpRq “ tf P Rrxs | degpfq § nu over F “ R;
‚ V “ M2,2pRq “ t 2 ˆ 2 matrices w/ coefs in R u, over F “ R;
‚ V “ 0 “ t0u, the trivial vector space over a field F ;

2. Many vector spaces have more than one basis. Under what circumstances
will a basis of V be unique?

3. Does every vector space even have a basis? (How could you prove or disprove?)



Epilog: Some tips for translating between lecture and the book.

§ The notation for span in the book is rSs.
§ Pro: this is one common mathematical notation for the “closure” of a set.
§ Cons:

- We’ll need r s elsewhere later;
- rSs is not as ubiquitous in the literature;
- rSs doesn’t specify the field.

§ The book is using ~v for vectors; LATEX: \vec{v}.
We’re using v; LATEX: \mathbf{v} or \vv using my shortcuts.
Either is fine for the homework. The arrow notation is great for hand-written
math (boldface is harder to write); I avoid it in LATEX because it can get
aesthetically busy and can align strangely on some symbols. But, the book is
about to start using greek letters for basis vectors. . .

§ The book defines a basis as an ordered set (that spans and is independent)—i.e.
what we’re calling an ordered basis. This isn’t standard, so we’ll di↵erentiate
between the two. It also notationally distinguishes between a set:

B “ t~�1, ~�2, . . . , ~�nu; (set)

and an ordered set (a list):

B “ x~�1, ~�2, . . . , ~�ny. (ordered set)

There is no standard convention for what to use for notation in the second case.


