
Lecture 4:
Properties of vector spaces
Subspaces
Linear combinations
Span

Unless otherwise stated:

Assume F is a field with more than one element (so that 0 ‰ 1).

Last time: A field F , much like R or C, is a set with addition and

multiplication, with lots of familiar properties (commutative, associative, and

distributive properties, identity elements 0 and 1, inverses).
More examples: Q, F2.

A vector space V (over a field F ), much like Rn
, is a set with addition and

scaling from F , with properties like distributivity, associativity of scaling, and

1 ¨ v “ v for all v P V . More examples: Fn
, F rxs, tf P F rxs | degpfq § nu,

Mm,npF q. The trivial vector space (over any field F ) is 0 “ t0u (with

0 ` 0 “ 0 and c ¨ 0 “ 0 for all c P F ).

We proved (in a specific case) that for all v P V , we have

V “ tpx, y, zq P R3 | x ` y ` z “ 0u
1. 0 ¨ v “ 0; and

Specific case: For any px, y, zq P V , we have

0 ¨ px, y, zq “ p0 ¨ x, 0 ¨ y, 0 ¨ zq “ p0, 0, 0q;
and p0, 0, 0q is the additive identity in R3

, and hence is the additive identity in

V Ñ R3
.

2. v ` p´1q ¨ v “ 0.
Specific case: For any px, y, zq P V , we have

p´1q ¨ px, y, zq “ pp´1qx, p´1q ¨ y, p´1q ¨ zq “ p´x,´y,´zq;
and p´x,´y,´zq is the additive inverse of px, y, zq in R3

, and hence is the

additive inverse of px, y, zq in V Ñ R3
.



More generally, let V be a vector space over a field F . Then for any v P V ,

we have. . .

1. 0 ¨ v “ 0; and

General proof. Let v P V . Since 0 ` 0 “ 0 in F , we have

0 ¨ v “ p0 ` 0q ¨ v “ 0 ¨ v ` 0 ¨ v p˚q
by the distributive property. Whatever 0 ¨ v is, it has an additive inverse

´p0 ¨ vq; adding that to both sides gives

0 “ 0 ¨ v ` p´p0 ¨ vqq by the definition of ´p0 ¨ vq,
“ p0 ¨ v ` 0 ¨ vq ` p´p0 ¨ vqq by p˚q,
“ 0 ¨ v ` p0 ¨ v ` p´p0 ¨ vqqq by associativity of `,

“ 0 ¨ v, by the definition of ´p0 ¨ vq.

Hence, 0 “ 0 ¨ v, as desired.

2. v ` p´1q ¨ v “ 0.

General proof. Let v P V . We have

v ` p´1q ¨ v “ 1 ¨ v ` p´1q ¨ v, since 1 ¨ v “ v,

“ p1 ´ 1q ¨ v by the distributive property, “ 0 ¨ v.

But 0 ¨v “ 0 by the previous part. And hence, v` p´1q ¨v “ 0, as desired.

Lemma
Let F be a field, and let V be a vector space over F .

1. The additive identity is unique (i.e. if a ` v “ v and b ` v “ v for all

v P V , then a “ b).

2. For any v P V ,

(a) the additive inverse of v is unique (i.e. if a ` v “ 0 and b ` v “ 0 then
a “ b);

(b) 0 ¨ v “ 0; and X
(c) ´v “ p´1q ¨ v. X

3. For any c P F , we have c ¨ 0 “ 0.



Subspaces
Let V be a vector space (over a field F ), and let W Ñ V be a nonempty

subset of V . We say W is a subspace of V if it is also a vector space under

the same addition and scaling as V .

Necessary conditions:

§ 0 P W

§ W is closed under addition and scaling: for all u,w P W and c P F , we

have

u ` w P W and c ¨ u P W.

For any u1, . . . ,un P W and a1, . . . , an P F , we call

a1 ¨ u1 ` ¨ ¨ ¨ ` an ¨ un

a linear combination of u1, . . . , un P W .

[Think: the sorts of expressions you’ll get via iteratively applying scalars and sums.]

Prop. A subset W Ñ V is a subspace if and only if (1) it’s non-empty, and (2)

W is closed under linear combinations of any pair of elements (and hence

under linear combinations in general).

Proof.

(ñ) Assume W is a subspace. . .

() Assume W ‰ H and is closed under linear combinations. . .

For any u1, . . . ,un P W and a1, . . . , an P F , we call

a1 ¨ u1 ` ¨ ¨ ¨ ` an ¨ un

a linear combination of u and w.

[Think: the sorts of expressions you’ll get via iteratively applying scalars and sums.]

Prop. A subset W Ñ V is a subspace if and only if (1) it’s non-empty, and (2)

W is closed under linear combinations of any pair of elements (and hence

under linear combinations in general).

Proof.

(ñ) Assume W is a subspace. . .

() Assume W ‰ H and is closed under linear combinations. . .

Cor. (Subspace critreon) A subset W Ñ V is a subspace if and only if

(1) it’s non-empty, and

(2) for all u,w P W and c P F we have u ` c ¨ w P W .



You try

Let V “ R2
, and let a, b, c P R. Consider W “ tpx, yq P R2

| ax ` by “ cu.

(a) Under what circumstances could W be empty?

(b) Under what circumstances could 0 P W?

(c) Under what circumstances could W be closed under addition?

[Hint: Assume px1, y1q, px2, y2q P W , so that ax1 ` by1 “ c and

ax2 ` by2 “ c. Now, take px, yq “ px1, y1q ` px2, y2q “ px1 `x2, y1 ` y2q

and plug it into ax ` yb and compute.]

(d) Under what circumstances would W be closed under scaling?



A linear equation

a1x1 ` ¨ ¨ ¨ ` anxn “ b

is homogeneous if b “ 0. (We say terms like aixi have degree 1 since xi “ x1
i , and b “ bx0

i

has degree 0. So ever non-zero term in a linear equation has the same degree exactly when b “ 0.)

Lemma. Consider a linear equation in n variables with coe�cients in F . The

solution set to that system is a subspace of Fn
if and only if that equation is

homogeneous. [Otherwise it’s a “shift” of a v.s.]

Proof. Consider the equation a1x1 ` ¨ ¨ ¨ ` anxn “ b p˚q. First, 0 is a solution

exactly when b “ 0. Next, if y “ py1, . . . , ynq and z “ pz1, . . . , znq are both

solutions, that means

a1y1 ` ¨ ¨ ¨ ` anyn “ b and a1z1 ` ¨ ¨ ¨ ` anzn “ b.

So

a1py1 ` z1q ` ¨ ¨ ¨ ` anpyn ` znq “ pa1y1 ` a1z1q ` ¨ ¨ ¨ ` panyn ` anznq
“ pa1y1 ` ¨ ¨ ¨ ` anynq ` pa1z1 ` ¨ ¨ ¨ ` anznq
“ b ` b “ 2b.

So y ` z is a solution to p˚q if and only if 2b “ b, i.e. b “ 0.
Similarly, for c P F ,

a1pcy1q ` ¨ ¨ ¨ ` anpcynq “ cpa1y1 ` ¨ ¨ ¨ ` anynq “ cb.

So c ¨ y is a solution to p˚q if and only if cb “ b; so my solution set is closed under

scaling by any c P F if and only if b “ 0.

Lemma. Consider a linear equation in n variables with coe�cients in F . The

solution set to that system is a subspace of Fn
if and only if that equation is

homogeneous. [Otherwise it’s a “shift” of a v.s.]

Lemma. Let U and W be subspaces of a vector space V (over a field F ).

Then U X W is also a subspace of V . [See practice exercises.]

Proposition. Consider a system of linear equations with coe�cients in F :

p˚q

$
’&

’%

a1,1x1 ` ¨ ¨ ¨ ` a1,nxn “ b1,
.
.
.

.

.

.

am,1x1 ` ¨ ¨ ¨ ` am,nxn “ bm.

Then the set of solutions W is a subspace of Fn
if and only if

b1 “ ¨ ¨ ¨ “ bm “ 0 (all of the equations are homogeneous).

(ñ: 0 P W implies bi “ 0 for all i.)

Note: From the reading, we saw that the solutions to p˚q in general look like

t (fixed particular solution) ` (any solution to associated homogeneous) u

“

¨

˚̊
˚̋

b1
b2
.
.
.

bm

˛

‹‹‹‚` (vector space of solutions to associated homogeneous)



Let V be a vector space (over F ), and let S Ñ V be a subset of V . The

closure of S (under linear combinations) is the set

rSs “ ta1s1 ` ¨ ¨ ¨ ` ansn | n P Z•0, ai P F, si P Su.

We also call rSs the span of S, which is also denoted FS or spanF pSq.

Convention: If S “ H, we set rSs “ t0u, then empty linear combination.

Example: Let v P R3
´ 0 and let S “ tvu. Then

RS “ Rv “ ttv | t P Ru.

Geometrically: rSs is a line through 0 in the direction of v.

Example: Let u,v P R3
´ 0 (not parallel) and let S “ tu,vu. Then

RS “ Rtu,vu “ tsu ` tv | s, t P Ru.

Geometrically: RS is a plane through 0 with direction vectors u and v.

Lemma. (Two.I.2.15)

Let V be a vector space over F , and let S Ñ V .

Then FS is a subspace of V .

Proof. Use the subspace critereon.

Remark. The span FS is also the

smallest vector space in V that

contains S. (Uniqueness!)



Let V be a v.s. over F , and let S Ñ V .

Question: For a given v P V , how do we know if v P FS?

Example: Let V “ Rrxs, F “ R, and S “ tp, qu, where

p “ x2
` 3x ´ 2 and q “ 2x2

` 5x ´ 3.

Is f “ ´x2
´ 4x ` 1 in RS?

Namely, do there exist a, b P R such that f “ ap ` bq? i.e.

´x2
´ 4x ` 1 “ apx2

` 3x ´ 2q ` bp2x2
` 5x ´ 3q

“ pa ` 2bqx2
` p3a ` 5bqx ` p´2a ´ 3bq?

Two polynomials are equal exactly when the coe�cients match; so comparing

coe�cients produces the three equations$
&

%

a ` 2b “ ´1
3a ` 5b “ ´4

´2a ´ 3b “ 1
which encodes as

¨

˝
1 2 ´1
3 5 ´4

´2 ´3 1

˛

‚

To finish up: Put into reduced echelon form. If there are solutions, then yes,

f P FS. If not, then no, f R FS.


