Lecture 4:

Properties of vector spaces
 Subspaces
 Linear combinations
 Span

Unless otherwise stated:
Assume F is a field with more than one element (so that $0 \neq 1$).

Last time: A field F, much like \mathbb{R} or \mathbb{C}, is a set with addition and multiplication, with lots of familiar properties (commutative, associative, and distributive properties, identity elements 0 and 1 , inverses).

$$
\text { More examples: } \mathbb{Q}, \mathbb{F}_{2}
$$

A vector space V (over a field F), much like \mathbb{R}^{n}, is a set with addition and scaling from F, with properties like distributivity, associativity of scaling, and $1 \cdot \mathbf{v}=\mathbf{v}$ for all $\mathbf{v} \in V$. More examples: $F^{n}, F[x],\{f \in F[x] \mid \operatorname{deg}(f) \leqslant n\}$, $M_{m, n}(F)$. The trivial vector space (over any field F) is $0=\{0\}$ (with $0+0=0$ and $c \cdot 0=0$ for all $c \in F)$.
We proved (in a specific case) that for all $\mathbf{v} \in V$, we have

$$
V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}
$$

1. $0 \cdot \mathbf{v}=\mathbf{0}$; and

Specific case: For any $(x, y, z) \in V$, we have

$$
0 \cdot(x, y, z)=(0 \cdot x, 0 \cdot y, 0 \cdot z)=(0,0,0) ;
$$

and $(0,0,0)$ is the additive identity in \mathbb{R}^{3}, and hence is the additive identity in $V \subseteq \mathbb{R}^{3}$.
2. $\mathbf{v}+(-1) \cdot \mathbf{v}=\mathbf{0}$.

Specific case: For any $(x, y, z) \in V$, we have

$$
(-1) \cdot(x, y, z)=((-1) x,(-1) \cdot y,(-1) \cdot z)=(-x,-y,-z)
$$

and $(-x,-y,-z)$ is the additive inverse of (x, y, z) in \mathbb{R}^{3}, and hence is the additive inverse of (x, y, z) in $V \subseteq \mathbb{R}^{3}$.

More generally, let V be a vector space over a field F. Then for any $v \in V$, we have...

1. $0 \cdot \mathbf{v}=\mathbf{0}$; and

General proof. Let $\mathbf{v} \in V$. Since $0+0=0$ in F, we have

$$
\begin{equation*}
0 \cdot \mathbf{v}=(0+0) \cdot \mathbf{v}=0 \cdot \mathbf{v}+0 \cdot \mathbf{v} \tag{*}
\end{equation*}
$$

by the distributive property. Whatever $0 \cdot \mathbf{v}$ is, it has an additive inverse $-(0 \cdot \mathbf{v})$; adding that to both sides gives

$$
\begin{aligned}
\mathbf{0} & =0 \cdot \mathbf{v}+(-(0 \cdot \mathbf{v})) \\
& =(0 \cdot \mathbf{v}+0 \cdot \mathbf{v})+(-(0 \cdot \mathbf{v})) \\
& =0 \cdot \mathbf{v}+(0 \cdot \mathbf{v}+(-(0 \cdot \mathbf{v}))) \\
& =0 \cdot \mathbf{v},
\end{aligned}
$$

by the definition of $-(0 \cdot \mathbf{v})$,

$$
\text { by }(*) \text {, }
$$

by associativity of + ,
by the definition of $-(0 \cdot \mathbf{v})$.

Hence, $\mathbf{0}=0 \cdot \mathbf{v}$, as desired.
2. $\mathbf{v}+(-1) \cdot \mathbf{v}=\mathbf{0}$.

General proof. Let $\mathbf{v} \in V$. We have

$$
\mathbf{v}+(-1) \cdot \mathbf{v}=1 \cdot \mathbf{v}+(-1) \cdot \mathbf{v}
$$

$$
=(1-1) \cdot \mathbf{v} \quad \text { by the distributive property, }=0 \cdot \mathbf{v} .
$$

But $0 \cdot \mathbf{v}=\mathbf{0}$ by the previous part. And hence, $\mathbf{v}+(-1) \cdot \mathbf{v}=\mathbf{0}$, as desired.

Lemma

Let F be a field, and let V be a vector space over F.

1. The additive identity is unique (i.e. if $\mathbf{a}+\mathbf{v}=\mathbf{v}$ and $\mathbf{b}+\mathbf{v}=\mathbf{v}$ for all $\mathbf{v} \in V$, then $\mathbf{a}=\mathbf{b})$.
2. For any $\mathbf{v} \in V$,
(a) the additive inverse of \mathbf{v} is unique (i.e. if $\mathbf{a}+\mathbf{v}=\mathbf{0}$ and $\mathbf{b}+\mathbf{v}=\mathbf{0}$ then $\mathbf{a}=\mathbf{b}$);
(b) $0 \cdot \mathbf{v}=\mathbf{0}$; and
(c) $-\mathbf{v}=(-1) \cdot \mathbf{v}$.
3. For any $c \in F$, we have $c \cdot \mathbf{0}=\mathbf{0}$.

Subspaces

Let V be a vector space (over a field F), and let $W \subseteq V$ be a nonempty subset of V. We say W is a subspace of V if it is also a vector space under the same addition and scaling as V.
Necessary conditions:

- $\mathbf{0} \in W$
- W is closed under addition and scaling: for all $\mathbf{u}, \mathbf{w} \in W$ and $c \in F$, we have

$$
\mathbf{u}+\mathbf{w} \in W \quad \text { and } \quad c \cdot \mathbf{u} \in W
$$

For any $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in W$ and $a_{1}, \ldots, a_{n} \in F$, we call

$$
a_{1} \cdot \mathbf{u}_{1}+\cdots+a_{n} \cdot \mathbf{u}_{n}
$$

a linear combination of $u_{1}, \ldots, u_{n} \in W$.
[Think: the sorts of expressions you'll get via iteratively applying scalars and sums.]
Prop. A subset $W \subseteq V$ is a subspace if and only if (1) it's non-empty, and (2) W is closed under linear combinations of any pair of elements (and hence under linear combinations in general).
Proof.
(\Rightarrow) Assume W is a subspace. .
(\Leftarrow) Assume $W \neq \varnothing$ and is closed under linear combinations...

Cor. (Subspace critreon) A subset $W \subseteq V$ is a subspace if and only if
(1) it's non-empty, and
(2) for all $\mathbf{u}, \mathbf{w} \in W$ and $c \in F$ we have $\mathbf{u}+c \cdot \mathbf{w} \in W$.

You try

Let $V=\mathbb{R}^{2}$, and let $a, b, c \in \mathbb{R}$. Consider $W=\left\{(x, y) \in \mathbb{R}^{2} \mid a x+b y=c\right\}$.
(a) Under what circumstances could W be empty?
(b) Under what circumstances could $\mathbf{0} \in W$?
(c) Under what circumstances could W be closed under addition?
[Hint: Assume $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in W$, so that $a x_{1}+b y_{1}=c$ and $a x_{2}+b y_{2}=c$. Now, take $(x, y)=\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$ and plug it into $a x+y b$ and compute.]
(d) Under what circumstances would W be closed under scaling?

A linear equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

is homogeneous if $b=0$. (We say terms like $a_{i} x_{i}$ have degree 1 since $x_{i}=x_{i}^{1}$, and $b=b x_{i}^{0}$ has degree 0 . So ever non-zero term in a linear equation has the same degree exactly when $b=0$.)

Lemma. Consider a linear equation in n variables with coefficients in F. The solution set to that system is a subspace of F^{n} if and only if that equation is homogeneous.
[Otherwise it's a "shift" of a v.s.]
Proof. Consider the equation $a_{1} x_{1}+\cdots+a_{n} x_{n}=b(*)$. First, $\mathbf{0}$ is a solution exactly when $b=0$. Next, if $\mathrm{y}=\left(y_{1}, \ldots, y_{n}\right)$ and $\mathrm{z}=\left(z_{1}, \ldots, z_{n}\right)$ are both solutions, that means

$$
a_{1} y_{1}+\cdots+a_{n} y_{n}=b \quad \text { and } \quad a_{1} z_{1}+\cdots+a_{n} z_{n}=b .
$$

So

$$
\begin{aligned}
a_{1}\left(y_{1}+z_{1}\right)+\cdots+a_{n}\left(y_{n}+z_{n}\right) & =\left(a_{1} y_{1}+a_{1} z_{1}\right)+\cdots+\left(a_{n} y_{n}+a_{n} z_{n}\right) \\
& =\left(a_{1} y_{1}+\cdots+a_{n} y_{n}\right)+\left(a_{1} z_{1}+\cdots+a_{n} z_{n}\right) \\
& =b+b=2 b .
\end{aligned}
$$

So $\mathrm{y}+\mathrm{z}$ is a solution to $(*)$ if and only if $2 b=b$, i.e. $b=0$.
Similarly, for $c \in F$,

$$
a_{1}\left(c y_{1}\right)+\cdots+a_{n}\left(c y_{n}\right)=c\left(a_{1} y_{1}+\cdots+a_{n} y_{n}\right)=c b .
$$

So $c \cdot \mathrm{y}$ is a solution to $(*)$ if and only if $c b=b$; so my solution set is closed under scaling by any $c \in F$ if and only if $b=0$.

Lemma. Consider a linear equation in n variables with coefficients in F. The solution set to that system is a subspace of F^{n} if and only if that equation is homogeneous.
[Otherwise it's a "shift" of a v.s.]
Lemma. Let U and W be subspaces of a vector space V (over a field F). Then $U \cap W$ is also a subspace of V.
[See practice exercises.]
Proposition. Consider a system of linear equations with coefficients in F :

$$
(*)\left\{\begin{array}{c}
a_{1,1} x_{1}+\cdots+a_{1, n} x_{n}=b_{1} \\
\vdots \\
\vdots \\
a_{m, 1} x_{1}+\cdots+a_{m, n} x_{n}=b_{m}
\end{array}\right.
$$

Then the set of solutions W is a subspace of F^{n} if and only if $b_{1}=\cdots=b_{m}=0$ (all of the equations are homogeneous).

$$
\left(\Rightarrow: \mathbf{0} \in W \text { implies } b_{i}=0 \text { for all } i .\right)
$$

Note: From the reading, we saw that the solutions to $(*)$ in general look like $\{$ (fixed particular solution) + (any solution to associated homogeneous) \}

$$
=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)+\text { (vector space of solutions to associated homogeneous) }
$$

Let V be a vector space (over F), and let $S \subseteq V$ be a subset of V. The closure of S (under linear combinations) is the set

$$
[S]=\left\{a_{1} s_{1}+\cdots+a_{n} s_{n} \mid n \in \mathbb{Z}_{\geqslant 0}, a_{i} \in F, s_{i} \in S\right\}
$$

We also call $[S]$ the span of S, which is also denoted $F S$ or $\operatorname{span}_{F}(S)$.
Convention: If $S=\varnothing$, we set $[S]=\{0\}$, then empty linear combination.
Example: Let $\mathbf{v} \in \mathbb{R}^{3} \mathbf{- 0}$ and let $S=\{\mathbf{v}\}$. Then

$$
\mathbb{R} S=\mathbb{R} \mathbf{v}=\{t \mathbf{v} \mid t \in \mathbb{R}\}
$$

Geometrically: $[S]$ is a line through $\mathbf{0}$ in the direction of \mathbf{v}.
Example: Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}-\mathbf{0}$ (not parallel) and let $S=\{\mathbf{u}, \mathbf{v}\}$. Then

$$
\mathbb{R} S=\mathbb{R}\{\mathbf{u}, \mathbf{v}\}=\{s \mathbf{u}+t \mathbf{v} \mid s, t \in \mathbb{R}\}
$$

Geometrically: $\mathbb{R} S$ is a plane through $\mathbf{0}$ with direction vectors \mathbf{u} and \mathbf{v}.
Lemma. (Two.I.2.15)
Let V be a vector space over F, and let $S \subseteq V$.
Then $F S$ is a subspace of V.
Proof. Use the subspace critereon.
Remark. The span $F S$ is also the smallest vector space in V that contains S. (Uniqueness!)

Let V be a v.s. over F, and let $S \subseteq V$.
Question: For a given $\mathbf{v} \in V$, how do we know if $\mathbf{v} \in F S$?
Example: Let $V=\mathbb{R}[x], F=\mathbb{R}$, and $S=\{p, q\}$, where

$$
p=x^{2}+3 x-2 \text { and } q=2 x^{2}+5 x-3 .
$$

Is $f=-x^{2}-4 x+1$ in $\mathbb{R} S$?
Namely, do there exist $a, b \in \mathbb{R}$ such that $f=a p+b q$? i.e.

$$
\begin{aligned}
-x^{2}-4 x+1 & =a\left(x^{2}+3 x-2\right)+b\left(2 x^{2}+5 x-3\right) \\
& =(a+2 b) x^{2}+(3 a+5 b) x+(-2 a-3 b) ?
\end{aligned}
$$

Two polynomials are equal exactly when the coefficients match; so comparing coefficients produces the three equations

$$
\left\{\begin{aligned}
a+2 b & =-1 \\
3 a+5 b & =-4 \\
-2 a-3 b & =1
\end{aligned} \quad \text { which encodes as } \quad\left(\begin{array}{cc|c}
1 & 2 & -1 \\
3 & 5 & -4 \\
-2 & -3 & 1
\end{array}\right)\right.
$$

To finish up: Put into reduced echelon form. If there are solutions, then yes, $f \in F S$. If not, then no, $f \notin F S$.

