
Lecture 3:
Fields
Vector spaces

Warmup: Last time, we thought about Rn as a set of vectors, written either as
lists/n-tuples or as column vectors. We defined addition and scaling of vectors, and
explored their meaning a little geometrically. Today our job is going to be a bit of
algebraic abstraction on Rn—isolating the properties of Rn that we care about as
algebraists, so that we can think more generally about their consequences and
behavior.

Some language:
A binary operation on a set X is a function that takes in a pair px, yq in X ˆ X and
returns a single element of X (binary because a pair has two things).

[Ex: ` is a binary op. on R]
An action of a set A on a set X is a function that takes in a pair pa, xq in A ˆ X
and returns a single element of X. [Ex: scaling is an action of R on Rn.]

Brainstorm:

1. Besides addition on R and Rn, what other sets and binary operations have you
seen? What sets have multiple familiar binary operations?

2. Besides R acting on Rn, what other examples of actions have you seen?

3. For the binary operations, what are some properties you’ve come to care about?
What are some examples and non-examples? [e.g. the commutative property]

4. Are there any circumstances where a function can be a binary operation and an
action?



Fields
A “field” is essentially a number system that is most like R and C in an

algebraic sense: you can add, subtract, multiply, and divide (except by 0).

Namely, for a set F , we define the binary operations

` : F ˆ F Ñ F,
p↵,�q fiÑ ↵ ` �,

ˆ : F ˆ F Ñ F,
p↵,�q fiÑ ↵�.

We require that both are associative, and commutative, and that

multiplication distributes across addition. We also assume that the are identity

elements 0 and 1 such that

a ` 0 “ a and a1 “ a for all a P F ,

and that addition and multiplications are (mostly) invertible: for all a P F
there exist ´a and a´1

(unless a “ 0) such that

a ` p´aq “ 0 and apa´1q “ 1

i.e. subtraction and division (by non-zero elements) are well-defined. The

result is called a field. [See Topic: Fields at the end of Ch. Two.]

Examples: Non-examples:

Finite fields

The field F2 is the set t0, 1u with multiplication as usual, but with 1` 1 :“ 0 .

` 0 1

0 0 1

1 1 0

ˆ 0 1

0 0 0

1 0 1

On your own: verify the field axioms.

Next semester: For any prime p • 2, the set Fp “ t0, 1, . . . , p ´ 1u is a field,

where addition and multiplication are defined modulo p (divide by p and

report the remainder).



Vector spaces
Now we abstract Rn. . .

Let F be a field. A vector space (over F ) is a set V with a binary operation

` : V ˆ V Ñ V (vector addition)

and an action

¨ : F ˆ V Ñ V (scalar multiplication/scaling)

that satisfy the following:

addition

‚ commutative

‚ associative

‚ has an identity element 0:
0 ` v “ v “ v ` 0 for all v P V

‚ invertible:

for all v P V there exists ´v P V
such that v ` p´vq “ 0

scaling

‚ associative: a ¨ pb ¨ vq “ pabq ¨ v
for all a, b P F and v P V

‚ 1 P F acts nicely:

1 ¨ v “ v for all v P V

‚ distributes across scalar and

vector addition: for all a, b P F
and u,v P V ,

pa ` bq ¨ v “ a ¨ v ` b ¨ v and

a ¨ pu ` vq “ a ¨ u ` a ¨ v
It can be very helpful to think of these axioms as preserving structure.



Examples of vector spaces
Let F be a field. (Think: F “ R.)

Ex. Let

Fn “

$
’&

’%

¨

˚̋
u1
.
.
.

un

˛

‹‚

ˇ̌
ˇ̌
ˇ̌
ˇ
ui P F for i “ 1, . . . , n

,
/.

/-
.

Then Fn
is a vector space over F with¨

˚̋
u1
.
.
.

un

˛

‹‚`

¨

˚̋
v1
.
.
.

vn

˛

‹‚“

¨

˚̋
u1 ` v1

.

.

.

un ` vn

˛

‹‚ and a ¨

¨

˚̋
u1
.
.
.

un

˛

‹‚“

¨

˚̋
au1
.
.
.

aun

˛

‹‚.

Note: The case where n “ 1 says that F 1 – F is also a vector space (R is a

vector space). What about F 0
?

Ex. Polynomials F rxs “ ta0 ` a1x ` ¨ ¨ ¨ ` anxn | n P Z•0, ai P F u with

regular polynomial addition and scaling. “F adjoin x”

Ex. F -valued functions V “ tf | f : F Ñ F u where addition and scaling are

defined point-wise: for all f, g P V and a, x P F ,

pf ` gqpxq :“ fpxq ` gpxq and pa ¨ fqpxq :“ a ¨ pfpxqq.

Examples of vector spaces
Let F be a field. (Think: F “ R.)

Ex. Matrices!

Let Mm,npF q “ tm ˆ n matrices with coe�cients in F u. Define addition

and scaling coordinate-wise:

¨

˚̋
a1,1 ¨ ¨ ¨ a1,n
.
.
.

. . .
.
.
.

am,1 . . . am,n

˛

‹‚`

¨

˚̋
b1,1 ¨ ¨ ¨ b1,n
.
.
.

. . .
.
.
.

bm,1 . . . bm,n

˛

‹‚

“

¨

˚̋
a1,1 ` b1,1 ¨ ¨ ¨ a1,n ` b1,n

.

.

.
. . .

.

.

.

am,1 ` bm,1 . . . am,n ` bm,n

˛

‹‚, and

c

¨

˚̋
a1,1 ¨ ¨ ¨ a1,n
.
.
.

. . .
.
.
.

am,1 . . . am,n

˛

‹‚“

¨

˚̋
ca1,1 ¨ ¨ ¨ ca1,n
.
.
.

. . .
.
.
.

cam,1 . . . cam,n

˛

‹‚.



You try:

1. For each of the four examples of vector spaces V we just explored, what

is the additive identity element in V ?

2. Pick one of the four example, and briefly try to convince yourself it is
actually a vector space. Namely, walk through the axioms and try to

check that they hold for the example.

3. Consider

V “

$
&

%

¨

˝
x
y
z

˛

‚

ˇ̌
ˇ̌
ˇ̌ x, y, z P R, x ` y ` z “ 0

,
.

-

as a subset of R3
. Claim: V is a vector space.

(a) Check that V is closed under the vector addition and scaling by R coming
from R3 (meaning that if u,v P V and c P R, then u`v P V and cu P V .

(b) Check V ‰ H.
(c) Check that for all v P V , we have 0 ¨ v “ 0, so that 0 P V by part (a).
(d) Check that for all v P V , we have p´1q ¨ v is the additive inverse of V,

so that ´v “ p´1q ¨ v P V by part (a).
[Careful! A priori, p´1q ¨ v means “scale v by scalar ´1 P R” and ´v means

“the thing that adds to v to get 0”; you’re checking that these do, indeed, mean

the same thing here.]

(e) Convince yourself that the rest of the axioms of vector spaces now come
for free, inherited from R3 being a vector space.



Epilog: Some tips for translating between lecture and the book.

§ The book only works over F “ R for now, but everything in Two.I can be

done over any field as we have done.

§ The book uses notation ~v to mean a vector in Fn
; we’ve been using v.

LATEX: \mathbf{v}, or \vv if you use my preamble shortcuts.

§ Pn “ tf P Rrxs | degpfq § nu “ ta0 ` a1x ` ¨ ¨ ¨ ` anxn | ai P Ru is the

set of polynomials of degree § n.
More general: PnpF q “ tf P F rxs | degpfq § nu.

§ The book uses Mmˆn to mean Mm,npRq, and sometimes calls it “the

space m ˆ n”.
§ As we used in the exercise above, “closure” is about addition and scaling

being well-defined functions. Namely, a function f : A Ñ B is

well-defined if it satisfies both

1. the image of f really is in B: for all a P A, we have fpaq “ b; and
2. each element a P A has exactly one image in B: fpaq “ b and fpaq “ b1

implies b “ b1.
Now, we say V is closed under addition if u ` v P V for all u,v P V . But

we embedded this in the fact that ` : V ˆ V Ñ V is a function
(otherwise it would not have satisfied the first criterion of well-defined).

§ We will see next time that if V is a vector space and U Ñ V is also a

vector space under the same operations (like in problem 3 above), U is

called a subspace of V .


