Lecture 3:

Fields

Vector spaces

Warmup: Last time, we thought about \mathbb{R}^{n} as a set of vectors, written either as lists/ n-tuples or as column vectors. We defined addition and scaling of vectors, and explored their meaning a little geometrically. Today our job is going to be a bit of algebraic abstraction on \mathbb{R}^{n}-isolating the properties of \mathbb{R}^{n} that we care about as algebraists, so that we can think more generally about their consequences and behavior.

Some language:

A binary operation on a set X is a function that takes in a pair (x, y) in $X \times X$ and returns a single element of X (binary because a pair has two things).
[$\mathrm{Ex}:+$ is a binary op. on $\mathbb{R}]$
An action of a set A on a set X is a function that takes in a pair (a, x) in $A \times X$ and returns a single element of X.
[Ex : scaling is an action of \mathbb{R} on \mathbb{R}^{n}.]

Brainstorm:

1. Besides addition on \mathbb{R} and \mathbb{R}^{n}, what other sets and binary operations have you seen? What sets have multiple familiar binary operations?
2. Besides \mathbb{R} acting on \mathbb{R}^{n}, what other examples of actions have you seen?
3. For the binary operations, what are some properties you've come to care about? What are some examples and non-examples? [e.g. the commutative property]
4. Are there any circumstances where a function can be a binary operation and an action?

Fields

A "field" is essentially a number system that is most like \mathbb{R} and \mathbb{C} in an algebraic sense: you can add, subtract, multiply, and divide (except by 0).
Namely, for a set F, we define the binary operations

$$
\left.\begin{array}{rlrl}
+: ~ & F \times F & \rightarrow F, & \times: F \times F
\end{array}\right) \rightarrow F,
$$

We require that both are associative, and commutative, and that multiplication distributes across addition. We also assume that the are identity elements 0 and 1 such that

$$
a+0=a \quad \text { and } \quad a 1=a \quad \text { for all } a \in F
$$

and that addition and multiplications are (mostly) invertible: for all $a \in F$ there exist $-a$ and a^{-1} (unless $a=0$) such that

$$
a+(-a)=0 \quad \text { and } \quad a\left(a^{-1}\right)=1
$$

i.e. subtraction and division (by non-zero elements) are well-defined. The result is called a field.
[See Topic: Fields at the end of Ch. Two.]

Examples:

Non-examples:

Finite fields

The field \mathbb{F}_{2} is the set $\{0,1\}$ with multiplication as usual, but with $1+1:=0$.

+	0	1
0	0	1
1	1	0

\times	0	1
0	0	0
1	0	1

On your own: verify the field axioms.
Next semester: For any prime $p \geqslant 2$, the set $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ is a field, where addition and multiplication are defined modulo p (divide by p and report the remainder).

Vector spaces

Now we abstract $\mathbb{R}^{n} \ldots$
Let F be a field. A vector space (over F) is a set V with a binary operation

$$
+: V \times V \rightarrow V \quad \text { (vector addition) }
$$

and an action

$$
\cdot: F \times V \rightarrow V \quad \text { (scalar multiplication/scaling) }
$$

that satisfy the following:

addition

- commutative
- associative
- has an identity element $\mathbf{0}$:
$\mathbf{0}+\mathbf{v}=\mathbf{v}=\mathbf{v}+\mathbf{0}$ for all $\mathbf{v} \in V$
- invertible:
for all $\mathbf{v} \in V$ there exists $-\mathbf{v} \in \mathbb{V}$ such that $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$

scaling

- associative: $a \cdot(b \cdot \mathbf{v})=(a b) \cdot \mathbf{v}$ for all $a, b \in F$ and $\mathbf{v} \in V$
- $1 \in \mathbb{F}$ acts nicely: $1 \cdot \mathbf{v}=\mathbf{v}$ for all $\mathbf{v} \in V$
- distributes across scalar and vector addition: for all $a, b \in F$ and $\mathbf{u}, \mathbf{v} \in V$,

$$
\begin{aligned}
& (a+b) \cdot \mathbf{v}=a \cdot \mathbf{v}+b \cdot \mathbf{v} \text { and } \\
& a \cdot(\mathbf{u}+\mathbf{v})=a \cdot \mathbf{u}+a \cdot \mathbf{v}
\end{aligned}
$$

It can be very helpful to think of these axioms as preserving structure.

Examples of vector spaces

Let F be a field.
(Think: $F=\mathbb{R}$.)
Ex. Let

$$
F^{n}=\left\{\left.\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) \right\rvert\, u_{i} \in F \text { for } i=1, \ldots, n\right\} .
$$

Then F^{n} is a vector space over F with

$$
\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)+\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right) \quad \text { and } \quad a \cdot\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)=\left(\begin{array}{c}
a u_{1} \\
\vdots \\
a u_{n}
\end{array}\right) .
$$

Note: The case where $n=1$ says that $F^{1} \cong F$ is also a vector space (\mathbb{R} is a vector space). What about F^{0} ?

Ex. Polynomials $F[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid n \in \mathbb{Z}_{\geqslant 0}, a_{i} \in F\right\}$ with regular polynomial addition and scaling. " F adjoin x "

Ex. F-valued functions $V=\{f \mid f: F \rightarrow F\}$ where addition and scaling are defined point-wise: for all $f, g \in V$ and $a, x \in F$,

$$
(f+g)(x):=f(x)+g(x) \quad \text { and } \quad(a \cdot f)(x):=a \cdot(f(x))
$$

Examples of vector spaces

Let F be a field.
(Think: $F=\mathbb{R}$.)

Ex. Matrices!

Let $M_{m, n}(F)=\{m \times n$ matrices with coefficients in $F\}$. Define addition and scaling coordinate-wise:

$$
\begin{aligned}
&\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right)+\left(\begin{array}{ccc}
b_{1,1} & \cdots & b_{1, n} \\
\vdots & \ddots & \vdots \\
b_{m, 1} & \cdots & b_{m, n}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
a_{1,1}+b_{1,1} & \cdots & a_{1, n}+b_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1}+b_{m, 1} & \ldots & a_{m, n}+b_{m, n}
\end{array}\right), \quad \text { and } \\
& c\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{m, 1} & \cdots & a_{m, n}
\end{array}\right)=\left(\begin{array}{ccc}
c a_{1,1} & \cdots & c a_{1, n} \\
\vdots & \ddots & \vdots \\
c a_{m, 1} & \cdots & c a_{m, n}
\end{array}\right)
\end{aligned}
$$

You try:

1. For each of the four examples of vector spaces V we just explored, what is the additive identity element in V ?
2. Pick one of the four example, and briefly try to convince yourself it is actually a vector space. Namely, walk through the axioms and try to check that they hold for the example.
3. Consider

$$
V=\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}, x+y+z=0\right\}
$$

as a subset of \mathbb{R}^{3}.
Claim: V is a vector space.
(a) Check that V is closed under the vector addition and scaling by \mathbb{R} coming from \mathbb{R}^{3} (meaning that if $\mathbf{u}, \mathbf{v} \in V$ and $c \in \mathbb{R}$, then $\mathbf{u}+\mathbf{v} \in V$ and $c \mathbf{u} \in V$.
(b) Check $V \neq \varnothing$.
(c) Check that for all $\mathbf{v} \in V$, we have $0 \cdot \mathbf{v}=\mathbf{0}$, so that $\mathbf{0} \in V$ by part (a).
(d) Check that for all $\mathbf{v} \in V$, we have $(-1) \cdot \mathbf{v}$ is the additive inverse of \mathbb{V},

$$
\text { so that }-\mathbf{v}=(-1) \cdot \mathbf{v} \in V \text { by part (a). }
$$

[Carefu!! A priori, (-1) $\cdot \mathbf{v}$ means "scale \mathbf{v} by scalar $-1 \in \mathbb{R}$ " and $-\mathbf{v}$ means "the thing that adds to \mathbf{v} to get $\mathbf{0}$ "; you're checking that these do, indeed, mean the same thing here.]
(e) Convince yourself that the rest of the axioms of vector spaces now come for free, inherited from \mathbb{R}^{3} being a vector space.

Epilog: Some tips for translating between lecture and the book.

- The book only works over $F=\mathbb{R}$ for now, but everything in Two.l can be done over any field as we have done.
- The book uses notation \vec{v} to mean a vector in F^{n}; we've been using \mathbf{v}. ATEX: \mathbf $\{\mathrm{v}\}$, or $\backslash \mathrm{vv}$ if you use my preamble shortcuts.
- $\mathcal{P}_{n}=\{f \in \mathbb{R}[x] \mid \operatorname{deg}(f) \leqslant n\}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in \mathbb{R}\right\}$ is the set of polynomials of degree $\leqslant n$.

More general: $\mathcal{P}_{n}(F)=\{f \in F[x] \mid \operatorname{deg}(f) \leqslant n\}$.

- The book uses $\mathcal{M}_{m \times n}$ to mean $M_{m, n}(\mathbb{R})$, and sometimes calls it "the space $m \times n^{\prime \prime}$.
- As we used in the exercise above, "closure" is about addition and scaling being well-defined functions. Namely, a function $f: A \rightarrow B$ is well-defined if it satisfies both

1. the image of f really is in B : for all $a \in A$, we have $f(a)=b$; and
2. each element $a \in A$ has exactly one image in $B: f(a)=b$ and $f(a)=b^{\prime}$ implies $b=b^{\prime}$.
Now, we say V is closed under addition if $\mathbf{u}+\mathbf{v} \in V$ for all $\mathbf{u}, \mathbf{v} \in V$. But we embedded this in the fact that $+: V \times V \rightarrow V$ is a function (otherwise it would not have satisfied the first criterion of well-defined).

- We will see next time that if V is a vector space and $U \subseteq V$ is also a vector space under the same operations (like in problem 3 above), U is called a subspace of V.

