

Warmup:

Consider the function $f(x) = ax^2 + bx + c$. Suppose I know that f(x) passes through the points

$$p_1 = (1,0), \quad p_2 = (-1,6), \text{ and } p_3 = (2,3).$$

Plugging in the point $p_1 = (1, 0)$ gives me the equation

 $a(1)^2 + b(1) + c = 0$, i.e. a + b + c = 0.

Note that this is a linear equation in the variables a, b, and c (even through f(x) thinks of x as its variable and a, b, and c as constants).

- 1. Plug in the points p_2 and p_3 to get two more linear equations.
- 2. Write the augmented matrix associated to the three linear equations we've found.
- 3. Put the associated augmented matrix into reduced echelon form (where every pivot is a 1 and every other entry in the same column is a 0).
- 4. What quadratic function passes through the points p_1 , p_2 , and p_3 ?
- 5. How many points would you need to know to in order to uniquely identify the coefficients of a polynomial of degree n (or less), i.e. of the form $f(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_0$?

(Column) vectors

We call an $n \times 1$ matrix a *(column) vector*.

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}.$$

Two kinds of operations involving vectors that we'll use a *lot* are addition and scaling, both performed entry-by-entry:

addition:
$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}$$
 (vector dimensions must match)
scaling:
$$\beta \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \beta a_1 \\ \beta a_2 \\ \vdots \\ \beta a_n \end{pmatrix}$$

(where $a_i, b_i, \beta \in \mathbb{R}$ are all real numbers... for now).

Back to our warmup

Note that if I only knew that $f(x)=ax^2+bx+c$ passed through $p_1=(1,0) \quad {\rm and} \quad p_2=(-1,6),$

then I would have only had two equations:

$$\begin{cases} a+b+c=0, \\ a-b+c=6. \end{cases}$$

The associated augmented matrix and its reduced row echelon form are

(1)	1	$1 \mid 0$	and	(1)	0	1	3	
$\backslash 1$	-1	$1 \mid 6$	anu	$\left(0 \right)$	1	0	$\left -3 \right $,

respectively. Converting back into a system of equations, we have

$$\begin{cases} a + c = 3, \\ b = -3, \end{cases} \quad \text{i.e.} \quad \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 + c(-1) \\ -3 + c(0) \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \end{pmatrix} \\ \begin{cases} a + c = 3, \\ b = -3, \\ c = c, \end{cases} \quad \text{i.e.} \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 + c(-1) \\ -3 + c(0) \\ 0 + c(1) \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

So there is an infinite family of functions of the form $f(x) = ax^2 + bx + c$ that pass through $p_1 = (1,0)$ and $p_2 = (-1,6)$, depending on the parameter/free variable c:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \text{ so that } f(x) = (3-c)x^2 - 3x + c.$$

Reduced (row) echelon form:

	∇	\star	\bigtriangledown	\bigtriangledown	\star	\star	\bigtriangledown	\star	\star	1	`
(\bigcirc	(2)	0	0	4	17	0	-6	0	5	
	0	0	1	0	0	0	0	-7	3	-3	
	0	0	0	1	0	0	0	-3	1	$^{-1}$	
	0	0	0	0	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	
	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	

 \bigtriangledown : leading variable

 \star : free variable

Corresponding system of equations:

$$\begin{cases} x_1 + 2x_2 + 4x_5 + 17x_6 - 6x_8 = 5\\ x_3 - 7x_8 + 3x_9 = -3\\ x_4 - 3x_8 + x_9 = -1\\ x_7 + \frac{1}{2}x_9 = \frac{1}{2} \end{cases}$$

Solving for leading variables:

$$\begin{aligned} x_1 &= 5 - 2x_2 - 4x_5 - 17x_6 + 6x_8 \\ x_3 &= -3 + 7x_8 - 3x_9 \\ x_4 &= -1 + 3x_8 - x_9 \\ x_7 &= \frac{1}{2} - \frac{1}{2}x_9 \end{aligned} (careful with signs!)$$

The solution set (in set notation):

$$\left\{\begin{array}{c|c} \underbrace{(5-2x_2-4x_5-17x_6+6x_8, x_2, -3+7x_8-3x_9,}_{x_4}, \underbrace{-1+3x_8-x_9, x_5, x_6, \frac{1}{2}-\frac{1}{2}x_9, x_8, x_9}_{x_7}\end{array}\right| x_2, x_5, x_6, x_8, x_9 \in \mathbb{R}\right\}$$

The solution set (in column vector form):

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_9 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ -3 \\ -1 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_6 \begin{pmatrix} -17 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_8 \begin{pmatrix} 6 \\ 0 \\ 7 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_9 \begin{pmatrix} 0 \\ 0 \\ -3 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} ,$$

 $x_2, x_5, x_6, x_8, x_9 \in \mathbb{R}.$

Example

Suppose your linear system has reduced echelon form

$$A = \begin{pmatrix} 1 & 2 & 0 & 3 & | & 5 \\ 0 & 0 & 1 & 4 & | & 6 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

 $1. \ \mbox{Describe the solution sets both in set notation}$

$$\{\,(_,_,_,_)|\,__\in\mathbb{R}\}$$

and in vector form

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \cdots$$

2. Give a few examples of points in your solution set, and test them. [Namely, pick a couple of examples of values for all your free variables (e.g. $x_{??} = 2$). Then check: do they satisfy the system of equations associated to the matrix A?] Remark: In the solution set

$$\left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 6 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -3 \\ 0 \\ -4 \\ 1 \end{pmatrix} \middle| x_2, x_4 \in \mathbb{R} \right\}$$

we can get one very special solution, called the particular solution, by setting $x_2 = x_4 = 0$:

$$\boxed{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \\ 6 \\ 0 \end{pmatrix}} + 0 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + 0 \begin{pmatrix} -3 \\ 0 \\ -4 \\ 1 \end{pmatrix}.$$

In general, the general solution is where we treat all the free variables as parameters/variables, and the particular solution is where we set all the free variables to 0.

Note: A system doesn't have a unique particular solution *until* we choose the order of our variables.

Challenge example: Go back to the augmented matrix in our last example, but now put the columns in the order x_4, x_3, x_2, x_1 . You should see that your matrix isn't in reduced echelon form anymore! Put it in reduced form (use computational software?), and re-write your solution set. What's the "particular solution" now? Check that your particular solution is still a specific example of the general solution we found above. (What values to the free variables take on to get this solution?)

Geometry in \mathbb{R}^n

Recall that we write ${\mathbb R}$ to mean the set of real numbers. Then

$$\mathbb{R}^n = \{ (a_1, \dots, a_n) \mid a_i \in \mathbb{R} \text{ for } i = 1, \dots, n \}.$$

Note: Depending on context, we may list points as *n*-tuples, or we might write them as column vectors

$$(a_1,\ldots,a_n) \quad \longleftrightarrow \quad \begin{pmatrix} a_1\\ \vdots\\ a_n \end{pmatrix}$$

(There are Good Reasons for this correspondence...we'll get there.) We also *think* of elements $\mathbf{v} \in \mathbb{R}^n$ as two different kinds of physical objects: as points and as vectors (an arrow with a magnitude and direction corresponding to starting at the origin and pointing to the point \mathbf{v}).

(vectors don't depend on placement)

Geometry of vector addition and scaling

Let ${\bf u}$ and ${\bf v}$ be vectors. In general. . .

- Geometrically, the vector $\mathbf{u} + \mathbf{v}$ looks like the result of traveling along \mathbf{u} , followed by traveling along \mathbf{v} .
- Addition is commutative, even when we think geometrically.

Geometry of vector addition and scaling

Let \mathbf{u} be a vector. In general, geometrically speaking...

- If c > 0 is a real number, then cu is the result of stretching (or squishing) the magnitude of u by c.
- The vector $-\mathbf{u}$ is the result of traveling backwards along \mathbf{u} .
- For c < 0, we have c = -|c|. So geometrically, $c\mathbf{u}$ is traveling backwards along $|c|\mathbf{u}$.

You try:

- 1. Convince yourself both algebraically and geometrically that $\mathbf{u} + (-1)\mathbf{u} = \mathbf{0}$, where $\mathbf{0}$ is the vector of all 0's. [Algebraically means start with $\mathbf{u} = (u_1, \ldots, u_n)$ and compute $(-1)\mathbf{u}$ and then $\mathbf{u} + (-1)\mathbf{u}$ directly.]
- 2. Using order-of-operations, $\mathbf{v} \mathbf{u} = \mathbf{v} + (-\mathbf{u})$ means "add \mathbf{v} to backwards-of- \mathbf{u} ". Convince yourself that $\mathbf{v} \mathbf{u}$ is the vector pointing from the tip of \mathbf{u} to the tip of \mathbf{v} (draw pictures).
- 3. Consider the vectors $\mathbf{u} = (2, 1)$ and $\mathbf{v} = (3, -1)$. Compute the points $\mathbf{u} + t\mathbf{v}$ for t = -2, -1, 0, 1, and 2,

and then plot all five points on the same axis. Hypothesize about the shape of the set $% \left({{{\boldsymbol{x}}_{i}}} \right)$

$$\{(2,1) + t(3,-1) \mid t \in \mathbb{R}\}.$$

Lines in \mathbb{R}^n

In 2 dimensions, we have plenty of ways to express lines (e.g. y = mx + b). But in more dimensions, we need vectors!

Prop. Let $\mathbf{p}, \mathbf{d} \in \mathbb{R}^n$ with $\mathbf{d} \neq \mathbf{0}$ (the vector filled with 0's). Then the set $L = \{\mathbf{p} + t\mathbf{d} \mid t \in \mathbb{R}\}$

is a line traveling through the point \mathbf{p} , in the direction of \mathbf{d} .

Example in 3 dimensions:

Another way to think about this: If a system of equations has exactly one free variable, then its solution set is a line! ("One dimension of freedom")

Constructing a parametric equation for a line from points

Working backwards, since v - u is a vector pointing from the point u to the point v, it is a direction vector for the line passing though u and v.

Ex: Find an equation for the line that passes through the points $\mathbf{u} = (1, 1, 1)$ and $\mathbf{v} = (1, 2, 3)$. [Compute $\mathbf{d} = \mathbf{v} - \mathbf{u}$ and use $\mathbf{p} = \mathbf{u}$.]

Planes

Two "dimensions of freedom" / parameters:

$$H = \{\mathbf{p} + s\mathbf{u} + t\mathbf{v} \mid s, t \in \mathbb{R}\}\$$

Useful metaphor: Think of \mathbf{u} and \mathbf{v} as directions of city streets—North/South and East/West. The parameter s says how far you travel along \mathbf{u} and the parameter t says how far you travel along \mathbf{v} .

Further reading: In special circumstances we can convert

2 variables:	parametric lines	\longleftrightarrow	standard equations for lines
3 variables:	parametric planes	\longleftrightarrow	standard equations for planes