
Lecture 2
Warmup:
Consider the function fpxq “ ax

2 ` bx ` c. Suppose I know that fpxq passes
through the points

p1 “ p1, 0q, p2 “ p´1, 6q, and p3 “ p2, 3q.
Plugging in the point p1 “ p1, 0q gives me the equation

ap1q2 ` bp1q ` c “ 0, i.e. a ` b ` c “ 0.

Note that this is a linear equation in the variables a, b, and c (even through
fpxq thinks of x as its variable and a, b, and c as constants).

1. Plug in the points p2 and p3 to get two more linear equations.

2. Write the augmented matrix associated to the three linear equations
we’ve found.

3. Put the associated augmented matrix into reduced echelon form (where
every pivot is a 1 and every other entry in the same column is a 0).

4. What quadratic function passes through the points p1, p2, and p3?

5. How many points would you need to know to in order to uniquely identify
the coe�cients of a polynomial of degree n (or less), i.e. of the form
fpxq “ cnx

n ` cn´1x
n´1 ` ¨ ¨ ¨ ` c0?



(Column) vectors
We call an n ˆ 1 matrix a (column) vector:

¨

˚̊
˚̋

a1

a2
...
an

˛

‹‹‹‚.

Two kinds of operations involving vectors that we’ll use a lot are addition and
scaling, both performed entry-by-entry:

addition:

¨

˚̊
˚̋

a1

a2
...
an

˛

‹‹‹‚`

¨

˚̊
˚̋

b1

b2
...
bn

˛

‹‹‹‚“

¨

˚̊
˚̋

a1 ` b1

a2 ` b2
...

an ` bn

˛

‹‹‹‚ (vector dimensions must match)

scaling: �

¨

˚̊
˚̋

a1

a2
...
an

˛

‹‹‹‚“

¨

˚̊
˚̋

�a1

�a2
...

�an

˛

‹‹‹‚

(where ai, bi,� P R are all real numbers. . . for now).



Back to our warmup

Note that if I only knew that fpxq “ ax
2 ` bx ` c passed through

p1 “ p1, 0q and p2 “ p´1, 6q,
then I would have only had two equations:"

a ` b ` c “ 0,
a ´ b ` c “ 6.

The associated augmented matrix and its reduced row echelon form areˆ
1 1 1 0
1 ´1 1 6

˙
and

ˆ
1 0 1 3
0 1 0 ´3

˙
,

respectively. Converting back into a system of equations, we have"
a ` c “ 3,

b “ ´3,
i.e.

ˆ
a

b

˙
“

ˆ
3 ` cp´1q
´3 ` cp0q

˙
“

ˆ
3

´3

˙
` c

ˆ´1
0

˙

$
&

%

a ` c “ 3,
b “ ´3,
c “ c,

i.e.

¨

˝
a

b

c

˛

‚“
¨

˝
3 ` cp´1q
´3 ` cp0q
0 ` cp1q

˛

‚“
¨

˝
3

´3
0

˛

‚` c

¨

˝
´1
0
1

˛

‚

So there is an infinite family of functions of the form fpxq “ ax
2 ` bx ` c

that pass through p1 “ p1, 0q and p2 “ p´1, 6q, depending on the
parameter/free variable c:¨

˝
a

b

c

˛

‚“
¨

˝
3

´3
0

˛

‚` c

¨

˝
´1
0
1

˛

‚, so that fpxq “ p3 ´ cqx2 ´ 3x ` c.

p2

p1

p3

c “ 0

c “ 4

c “ 1

c “ 3

´1 1 2

´2

´1

1

2

3

4

5

6

7

x

y



Reduced (row) echelon form:
¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

O O O O‹ ‹ ‹ ‹ ‹
1 2 0 0 4 17 0 ´6 0 5

0 0 1 0 0 0 0 ´7 3 ´3

0 0 0 1 0 0 0 ´3 1 ´1

0 0 0 0 0 0 1 0 1
2

1
2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

O: leading variable

‹: free variable

Corresponding system of equations:$
’’&

’’%

x1 ` 2x2 ` 4x5 ` 17x6 ´ 6x8 “ 5
x3 ´ 7x8 ` 3x9 “ ´3
x4 ´ 3x8 ` x9 “ ´1

x7 ` 1
2x9 “ 1

2

Solving for leading variables:
x1 “ 5 ´ 2x2 ´ 4x5 ´ 17x6 ` 6x8

x3 “ ´3 ` 7x8 ´ 3x9

x4 “ ´1 ` 3x8 ´ x9

x7 “ 1
2 ´ 1

2x9

(careful with signs!)

The solution set (in set notation):$
’’&

’’%

p
x1hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

5 ´ 2x2 ´ 4x5 ´ 17x6 ` 6x8, x2,

x3hkkkkkkkkikkkkkkkkj
´3 ` 7x8 ´ 3x9,

´1 ` 3x8 ´ x9looooooomooooooon
x4

, x5, x6,
1
2 ´ 1

2x9looomooon
x7

, x8, x9q

ˇ̌
ˇ̌
ˇ̌
ˇ̌
x2, x5, x6, x8, x9 P R

,
//.

//-

The solution set (in column vector form):
¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

x1

x2

x3

x4

x5

x6

x7

x8

x9

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

“

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

5
0

´3
´1
0
0
1
2
0
0

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

` x2

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´2
1
0
0
0
0
0
0
0

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

` x5

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´4
0
0
0
1
0
0
0
0

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

` x6

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´17
0
0
0
0
1
0
0
0

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

` x8

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

6
0
7
3
0
0
0
1
0

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

` x9

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0
0

´3
´1
0
0

´ 1
2
0
1

˛

‹‹‹‹‹‹‹‹‹‹‹‹‚

,

x2, x5, x6, x8, x9 P R.



Example

Suppose your linear system has reduced echelon form

A “

¨

˚̊
˝

1 2 0 3 5
0 0 1 4 6
0 0 0 0 0
0 0 0 0 0

˛

‹‹‚.

1. Describe the solution sets both in set notation

tp , , , q| P Ru
and in vector form ¨

˚̊
˝

x1

x2

x3

x4

˛

‹‹‚“ ¨ ¨ ¨

2. Give a few examples of points in your solution set, and test them.
[Namely, pick a couple of examples of values for all your free variables
(e.g. x?? “ 2). Then check: do they satisfy the system of equations
associated to the matrix A?]



Remark: In the solution set$
’’&

’’%

¨

˚̊
˝

x1

x2

x3

x4

˛

‹‹‚“

¨

˚̊
˝

5
0
6
0

˛

‹‹‚` x2

¨

˚̊
˝

´2
1
0
0

˛

‹‹‚` x4

¨

˚̊
˝

´3
0

´4
1

˛

‹‹‚

ˇ̌
ˇ̌
ˇ̌
ˇ̌
x2, x4 P R

,
//.

//-

we can get one very special solution, called the particular solution, by setting
x2 “ x4 “ 0: ¨

˚̊
˝

x1

x2

x3

x4

˛

‹‹‚“

¨

˚̊
˝

5
0
6
0

˛

‹‹‚ `0

¨

˚̊
˝

´2
1
0
0

˛

‹‹‚` 0

¨

˚̊
˝

´3
0

´4
1

˛

‹‹‚.

In general, the general solution is where we treat all the free variables as
parameters/variables, and the particular solution is where we set all the free
variables to 0.
Note: A system doesn’t have a unique particular solution until we choose the order
of our variables.
Challenge example: Go back to the augmented matrix in our last example, but now
put the columns in the order x4, x3, x2, x1. You should see that your matrix isn’t in
reduced echelon form anymore! Put it in reduced form (use computational
software?), and re-write your solution set. What’s the “particular solution” now?
Check that your particular solution is still a specific example of the general solution
we found above. (What values to the free variables take on to get this solution?)

Geometry in Rn

Recall that we write R to mean the set of real numbers. Then

Rn “ tpa1, . . . , anq | ai P R for i “ 1, . . . , nu.
Note: Depending on context, we may list points as n-tuples, or we might
write them as column vectors

pa1, . . . , anq –Ñ

¨

˚̋
a1
...
an

˛

‹‚.

(There are Good Reasons for this correspondence. . . we’ll get there.)

We also think of elements v P Rn as two di↵erent kinds of physical objects: as
points and as vectors (an arrow with a magnitude and direction corresponding
to starting at the origin and pointing to the point v).

the point p1, 2q the vector p1, 2q

x

y

´3 ´2 ´1 1 2 3

´1

1

2

3

x

y

´3 ´2 ´1 1 2 3

´1

1

2

3

(vectors don’t depend on placement)



Geometry of vector addition and scaling
ˆ
1
2

˙
`

ˆ
3

´1

˙
“

ˆ
4
1

˙

x

y

1 2 3 4

´1

1

2

1

2

3

´1

ˆ
3

´1

˙
`

ˆ
1
2

˙
“

ˆ
4
1

˙

x

y

1 2 3 4

´1

1

2

1

2

3´1

Let u and v be vectors. In general. . .

§ Geometrically, the vector u ` v looks like the result of traveling along u,
followed by traveling along v.

§ Addition is commutative, even when we think geometrically.

Geometry of vector addition and scaling

1.5

ˆ
2
1

˙
“

ˆ
3
1.5

˙

x

y

1 2 3

1

2

1

p´1q
ˆ
2
1

˙
“

ˆ´2
´1

˙

x

y

´2 ´1 1 2

´1

1

Let u be a vector. In general, geometrically speaking. . .

§ If c ° 0 is a real number, then cu is the result of stretching (or squishing)
the magnitude of u by c.

§ The vector ´u is the result of traveling backwards along u.

§ For c † 0, we have c “ ´|c|. So geometrically, cu is traveling backwards
along |c|u.



You try:

1. Convince yourself both algebraically and geometrically that
u ` p´1qu “ 0, where 0 is the vector of all 0’s. [Algebraically means
start with u “ pu1, . . . , unq and compute p´1qu and then u ` p´1qu
directly.]

2. Using order-of-operations, v ´ u “ v ` p´uq means “add v to
backwards-of-u”. Convince yourself that v ´ u is the vector pointing
from the tip of u to the tip of v (draw pictures).

3. Consider the vectors u “ p2, 1q and v “ p3,´1q. Compute the points

u ` tv for t “ ´2,´1, 0, 1, and 2,

and then plot all five points on the same axis. Hypothesize about the
shape of the set

tp2, 1q ` tp3,´1q | t P Ru.

x

y

t “ ´2

t “ ´1

t “ 0

t “ 1

t “ 2



Lines in Rn

In 2 dimensions, we have plenty of ways to express lines (e.g. y “ mx ` b).
But in more dimensions, we need vectors!

Prop. Let p,d P Rn with d ‰ 0 (the vector filled with 0’s). Then the set

L “ tp ` td | t P Ru
is a line traveling through the point p, in the direction of d.

Example in 3 dimensions:

L “

$
&

%

¨

˝
3

´3
0

˛

‚` t

¨

˝
´1
0
1

˛

‚

ˇ̌
ˇ̌
ˇ̌ t P R

,
.

-

L

x

y

z

Another way to think about this: If a system of equations has exactly one free
variable, then its solution set is a line! (“One dimension of freedom”)

Constructing a parametric equation for a line from points

Working backwards, since v ´ u is a vector pointing from the point u to the
point v, it is a direction vector for the line passing though u and v.

0

L

u
v

d “ v ´ u

L “ tu ` td | t P Ru

Ex: Find an equation for the line that passes through the points u “ p1, 1, 1q
and v “ p1, 2, 3q. [Compute d “ v ´ u and use p “ u.]



Planes
Two “dimensions of freedom”/parameters:

H “ tp ` su ` tv | s, t P Ru
Useful metaphor: Think of u and v as directions of city streets—North/South and
East/West. The parameter s says how far you travel along u and the parameter t
says how far you travel along v.

0

Further reading: In special circumstances we can convert

2 variables: parametric lines –Ñ standard equations for lines

3 variables: parametric planes –Ñ standard equations for planes


