Recall: the definite integral $\int_a^b f(x) \ dx$ is the "signed" area under the curve y = f(x). (If the curve is above the x-axis, you get a positive number; and if the curve is below the x-axis, you get a negative number.)

Let
$$f(x) = -x^2 + 5x - 6$$
.

- 1. Calculate the area between the x-axis and the curve y=f(x) between x=1 and x=2.
- 2. Calculate the area of the region enclosed between the curve $y=-x^2+5x-6$ and the x-axis.
- 3. Calculate the area contained between the curve $y=x^2-5x+6$ and the x-axis.

Tip: Before you start, sketch $y=-(x^2-5x+6)$. Also, all of your answers should be positive—we want *area* not "signed" area.)

Compute the following.

4.
$$\int x \sin(x^2) \ dx$$
 5.
$$\int x \sqrt{3-x} \ dx$$

6.
$$\int \tan(x) \ dx \quad \text{[Hint: rewrite } \tan(x) = \frac{\sin(x)}{\cos(x)}.\text{]}$$

Quick note: Putting FTC and substitution together

Q. Calculate $\int_0^{\sqrt{\pi/2}} x \sin(x^2) dx$.

A. Separate your solution into two steps.

Step 1: Find the antiderivative F(x) of $f(x) = x \sin(x^2)$.

Let $u=x^2$. So $du=2x\ dx$, and $\frac{1}{2}\ du=x\ dx$. Therefore

$$\int x \sin(x^2) \, dx = \int \sin(u) * \frac{1}{2} \, du$$
$$= -\frac{1}{2} \cos(u) + C = -\frac{1}{2} \cos(x^2) + C$$

Step 2: Use your answer to compute

$$\int_0^{\sqrt{\pi/2}} x \sin(x^2) dx = F(\sqrt{\pi/2}) - F(0).$$

$$\int_0^{\pi/2} x \sin(x^2) dx = -\frac{1}{2} \cos((\sqrt{\pi/2})^2) - \left(-\frac{1}{2} \cos(0^2)\right) = 1/2$$

You try:

Compute the following.

(a)
$$\int_{-1}^{7} (3x+1)^5 dx$$

(b)
$$\int_{1}^{2} x \sqrt{3-x} \ dx$$

(c)
$$\int_{\pi/4}^{\pi/3} \tan(x) \ dx$$
 [Hint: rewrite $\tan(x) = \frac{\sin(x)}{\cos(x)}$.]

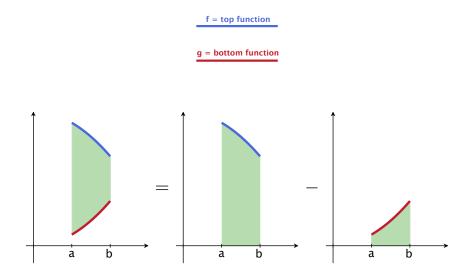
Answers: (a) $\frac{1}{18}(22^6 - (-2)^6)$; (b) $\frac{-2}{5}(3(2)^{3/2} - 4)$; (c) $\frac{1}{2}\ln(2)$.

Areas Between Curves

We know that if f is a continuous nonnegative function on the interval [a,b], then $\int_a^b f(x)dx$ is the area under the graph of f and above the interval.

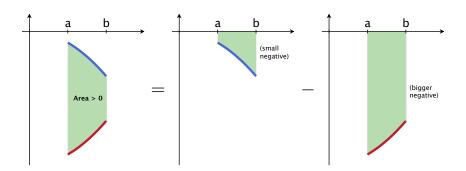
Now suppose we are given two continuous functions, f(x) and g(x) so that $g(x) \leq f(x)$ for all x in the interval [a,b].

How do we find the area bounded by the two functions over that interval?



Area between
$$f$$
 and $g=\int_a^b f(x)dx-\int_a^b g(x)dx=\int_a^b f(x)-g(x)dx$

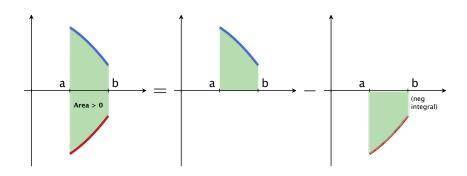
g = bottom function



Area between f and $g=\int_a^b f(x)dx-\int_a^b g(x)dx=\int_a^b f(x)-g(x)dx$

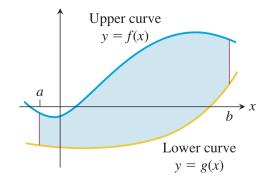
f = top function

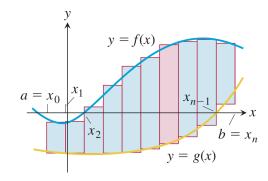
g = bottom function



Area between
$$f$$
 and $g=\int_a^b f(x)dx-\int_a^b g(x)dx=\int_a^b f(x)-g(x)dx$

Looking back at Riemann sums:

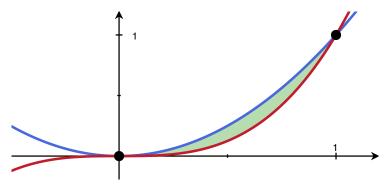




$$\int_a^b f(x) - g(x) dx \approx \sum_i \underbrace{(f(x_i) - g(x_i))}_{\text{height}} \underbrace{\Delta x}_{\text{width}}.$$

Example

Find the area of the region between the graphs of $y=x^2$ and $y = x^3$ for $0 \le x \le 1$.



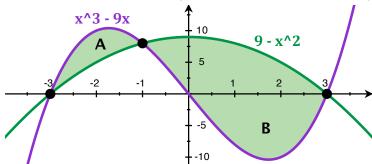
Top: x^2 Bottom: x^3 Intersections: where does $x^2 = x^3$? $\boxed{x = 0 \text{ or } 1}$

So
$$\operatorname{Area} = \int_0^1 x^2 - x^3 dx = \frac{1}{3} x^3 - \frac{1}{4} x^4 \Big|_{x=0}^1 = \boxed{\left(\frac{1}{3} - \frac{1}{4}\right) - 0} > 0 \checkmark$$

Example

Find the area of the region bounded by the two curves $y=x^3-9x$ and $y=9-x^2$.

1. Check for intersection points (Solve $x^3 - 9x = 9 - x^2$).



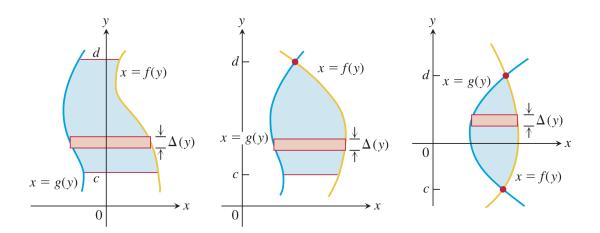
2. Area = Area A + Area B

Area A =
$$\int_{-3}^{-1} (x^3 - 9x) - (9 - x^2) dx = \int_{-3}^{-1} x^3 + x^2 - 9x - 9 \ dx$$

Area B =
$$\int_{-1}^{3} (9-x^2) - (x^3 - 9x) dx = -\int_{-1}^{3} x^3 + x^2 - 9x - 9 \ dx$$

Functions of y

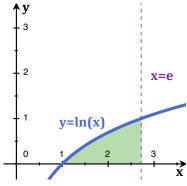
We could just as well consider two functions of y, say, $x = g_{Left}(y)$ and $x = f_{Right}(y)$ defined on the interval [c,d].

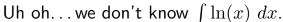


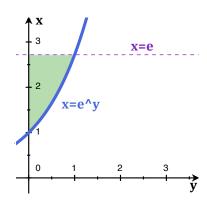
Area =
$$\int_{c}^{d} f(y) - g(y) dy.$$

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval [1,e] on the x-axis.



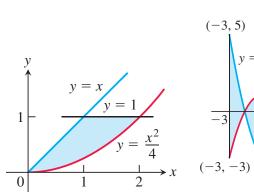


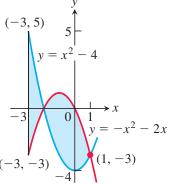


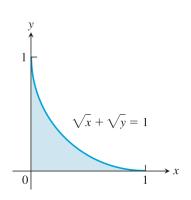
$$\operatorname{Area} = \int_{y=0}^{1} e - e^{y} \ dy = \left. (e * y - e^{y}) \right|_{y=0}^{1} = (e - e) - (0 - 1) = 1.$$

You try

1. Compute the following shaded areas.







- 2. Draw the corresponding pictures and compute the areas of the described regions.
 - (a) The region bounded by $y = x^2 2x$ and $y = 4 x^2$.
 - (b) The region(s) between $\sin x$ and $\cos x$ over $[-3\pi/4, 5\pi/4]$.
 - (c) The region under the curve $y = \arcsin(x)$ over [0, 1].