Recall: the definite integral $\int_{a}^{b} f(x) d x$ is the "signed" area under the curve $y=f(x)$. (If the curve is above the x-axis, you get a positive number; and if the curve is below the x-axis, you get a negative number.)
Let $f(x)=-x^{2}+5 x-6$.

1. Calculate the area between the x-axis and the curve $y=f(x)$ between $x=1$ and $x=2$.
2. Calculate the area of the region enclosed between the curve $y=-x^{2}+5 x-6$ and the x-axis.
3. Calculate the area contained between the curve $y=x^{2}-5 x+6$ and the x-axis.
Tip: Before you start, sketch $y=-\left(x^{2}-5 x+6\right)$. Also, all of your answers should be positive-we want area not "signed" area.)
Compute the following.
4. $\int x \sin \left(x^{2}\right) d x \quad$ 5. $\int x \sqrt{3-x} d x$
5. $\int \tan (x) d x \quad$ [Hint: rewrite $\tan (x)=\frac{\sin (x)}{\cos (x)}$.]

Quick note: Putting FTC and substitution together

 Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.A. Separate your solution into two steps.

Quick note: Putting FTC and substitution together

 Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

Quick note: Putting FTC and substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x=F(\sqrt{\pi / 2})-F(0)
$$

Quick note: Putting FTC and substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

$$
\text { Let } u=x^{2} \text {. }
$$

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x=F(\sqrt{\pi / 2})-F(0)
$$

Quick note: Putting FTC and substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

$$
\text { Let } u=x^{2} \text {. So } d u=2 x d x \text {, and } \frac{1}{2} d u=x d x \text {. }
$$

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x=F(\sqrt{\pi / 2})-F(0)
$$

Quick note: Putting FTC and substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

$$
\text { Let } u=x^{2} \text {. So } d u=2 x d x \text {, and } \frac{1}{2} d u=x d x \text {. }
$$

Therefore

$$
\begin{aligned}
\int x \sin \left(x^{2}\right) d x & =\int \sin (u) * \frac{1}{2} d u \\
& =-\frac{1}{2} \cos (u)+C=-\frac{1}{2} \cos \left(x^{2}\right)+C
\end{aligned}
$$

Step 2: Use your answer to compute

$$
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x=F(\sqrt{\pi / 2})-F(0)
$$

Quick note: Putting FTC and substitution together

Q. Calculate $\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x$.
A. Separate your solution into two steps.

Step 1: Find the antiderivative $F(x)$ of $f(x)=x \sin \left(x^{2}\right)$.

$$
\text { Let } u=x^{2} . \quad \text { So } d u=2 x d x, \text { and } \frac{1}{2} d u=x d x .
$$

Therefore

$$
\begin{aligned}
\int x \sin \left(x^{2}\right) d x & =\int \sin (u) * \frac{1}{2} d u \\
& =-\frac{1}{2} \cos (u)+C=-\frac{1}{2} \cos \left(x^{2}\right)+C
\end{aligned}
$$

Step 2: Use your answer to compute

$$
\begin{gathered}
\int_{0}^{\sqrt{\pi / 2}} x \sin \left(x^{2}\right) d x=F(\sqrt{\pi / 2})-F(0) \\
\int_{0}^{\pi / 2} x \sin \left(x^{2}\right) d x=-\frac{1}{2} \cos \left((\sqrt{\pi / 2})^{2}\right)-\left(-\frac{1}{2} \cos \left(0^{2}\right)\right)=1 / 2
\end{gathered}
$$

You try:

Compute the following.
(a) $\int_{-1}^{7}(3 x+1)^{5} d x$
(b) $\int_{1}^{2} x \sqrt{3-x} d x$
(c) $\int_{\pi / 4}^{\pi / 3} \tan (x) d x \quad$ [Hint: rewrite $\tan (x)=\frac{\sin (x)}{\cos (x)}$].

Answers: (a) $\frac{1}{18}\left(22^{6}-(-2)^{6}\right)$; (b) $\frac{-2}{5}\left(3(2)^{3 / 2}-4\right)$; (c) $\frac{1}{2} \ln (2)$.

Areas Between Curves

We know that if f is a continuous nonnegative function on the interval $[a, b]$, then $\int_{a}^{b} f(x) d x$ is the area under the graph of f and above the interval.

Now suppose we are given two continuous functions, $f(x)$ and $g(x)$ so that $g(x) \leq f(x)$ for all x in the interval $[a, b]$.

How do we find the area bounded by the two functions over that interval?
$f=$ top function
$g=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

```
f=top function
g= bottom function
```


Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$
$\underline{f}=$ top function
$\mathbf{g}=$ bottom function

Area between f and $g=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b} f(x)-g(x) d x$

Looking back at Riemann sums:

$$
\int_{a}^{b} f(x)-g(x) d x \approx \sum_{i} \underbrace{\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right)}_{\text {height }} \underbrace{\Delta x}_{\text {width }}
$$

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Intersections: where does $x^{2}=x^{3}$?

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Intersections: where does $x^{2}=x^{3}$? $x=0$ or 1

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Intersections: where does $x^{2}=x^{3}$? $x=0$ or 1

So \quad Area $=\int_{0}^{1} x^{2}-x^{3} d x$

Example

Find the area of the region between the graphs of $y=x^{2}$ and $y=x^{3}$ for $0 \leq x \leq 1$.

Top: $x^{2} \quad$ Bottom: x^{3}
Intersections: where does $x^{2}=x^{3}$? $x=0$ or 1

So \quad Area $=\int_{0}^{1} x^{2}-x^{3} d x=\frac{1}{3} x^{3}-\left.\frac{1}{4} x^{4}\right|_{x=0} ^{1}=\left(\frac{1}{3}-\frac{1}{4}\right)-0>0 \checkmark$

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

$$
\text { Area } \mathrm{A}=\int_{-3}^{-1}\left(x^{3}-9 x\right)-\left(9-x^{2}\right) d x=\int_{-3}^{-1} x^{3}+x^{2}-9 x-9 d x
$$

Example

Find the area of the region bounded by the two curves $y=x^{3}-9 x$ and $y=9-x^{2}$.

1. Check for intersection points (Solve $x^{3}-9 x=9-x^{2}$).

2. Area $=$ Area $A+$ Area B

$$
\begin{aligned}
& \text { Area } \mathrm{A}=\int_{-3}^{-1}\left(x^{3}-9 x\right)-\left(9-x^{2}\right) d x=\int_{-3}^{-1} x^{3}+x^{2}-9 x-9 d x \\
& \text { Area } \mathrm{B}=\int_{-1}^{3}\left(9-x^{2}\right)-\left(x^{3}-9 x\right) d x=-\int_{-1}^{3} x^{3}+x^{2}-9 x-9 d x
\end{aligned}
$$

Functions of y

We could just as well consider two functions of y, say, $x=g_{\text {Left }}(y)$ and $x=f_{\text {Right }}(y)$ defined on the interval $[c, d]$.

$$
\text { Area }=\int_{c}^{d} f(y)-g(y) d y
$$

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval $[1, e]$ on the x-axis.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval $[1, e]$ on the x-axis.

Uh oh. . . we don't know $\int \ln (x) d x$.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval
$[1, e]$ on the x-axis.

Uh oh. . . we don't know $\int \ln (x) d x$.

Area Between the Two Curves

Find the area under the graph of $y=\ln x$ and above the interval
$[1, e]$ on the x-axis.

Uh oh. . . we don't know $\int \ln (x) d x$.

Area $=\int_{y=0}^{1} e-e^{y} d y=\left.\left(e * y-e^{y}\right)\right|_{y=0} ^{1}=(e-e)-(0-1)=1$.

You try

1. Compute the following shaded areas.

2. Draw the corresponding pictures and compute the areas of the described regions.
(a) The region bounded by $y=x^{2}-2 x$ and $y=4-x^{2}$.
(b) The region(s) between $\sin x$ and $\cos x$ over $[-3 \pi / 4,5 \pi / 4]$.
(c) The region under the curve $y=\arcsin (x)$ over $[0,1]$.
