Recall from last time, that the definite integral of a function f over an interval [a, b] is

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i)\Delta x$$

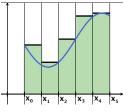
where

1. $\Delta x = \frac{b-a}{n}$,

2.
$$x_i = a + i\Delta x$$
, and

3. c_i is any point in the interval $[x_{i-1}, x_i]$.

To compute, set up a finite Reimann sum

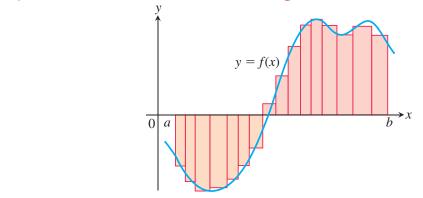


and then take the limit as the number of subdivisions goes to ∞ . Warmup: Set up the limit definition of $\int_{-1}^{5} \sin(x) dx$, using the midpoints of each interval (picking $c_i = \frac{1}{2}(x_i - x_{i-1})$).

Vocabulary:

Reimann sum: $\sum_{i=1}^{n} f(c_i) \Delta x$ Upper sum: Choose c_i so that $f(c_i)$ is maximal over $[x_{i-1}, x_i]$ (overestimate). Lower sum: Choose c_i so that $f(c_i)$ is minimal over $[x_{i-1}, x_i]$ (underestimate). Midpoint rule: Choose c_i halfway between x_{i-1} and x_i . The function f(x) is the integrand. Upper limit of integration Integral sign $\int_{a}^{b} f(x) dx$ Lower limit of integration Lower limit of integration Integral of f from a to bWhen you find the value of the integral, you have evaluated the integral.

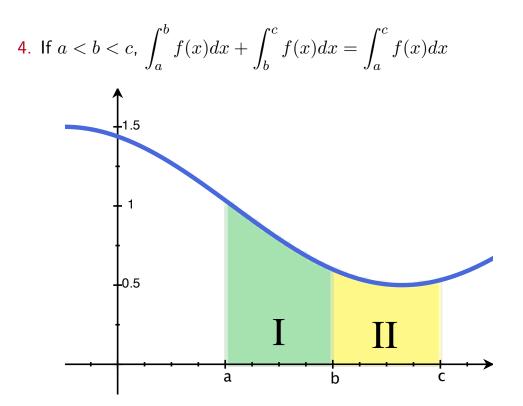
Properties of the Definite Integral



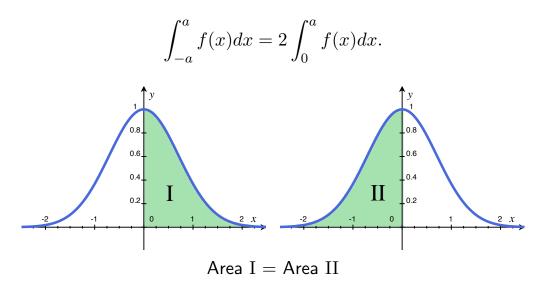
$$1. \int_{a}^{a} f(x) \, dx = 0.$$

- 2. If f is integrable and
 - (a) $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx$ equals the area of the region under the graph of f and above the interval [a, b];
 - (b) $f(x) \leq 0$ on [a, b], then $\int_a^b f(x) dx$ equals the **negative** of the area of the region between the interval [a, b] and the graph of f.

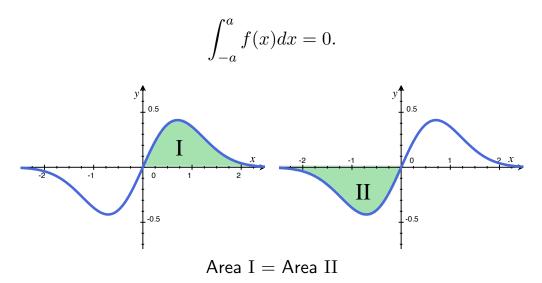
3.
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$



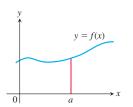
5. If f is an **even** function, then

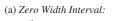


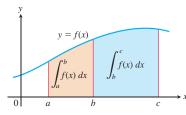
6. If f is an **odd** function, then



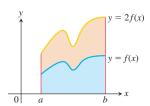
See book:

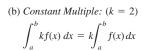


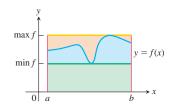


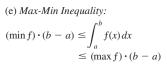


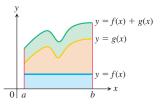
(d) Additivity for Definite Integrals: $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$

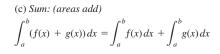


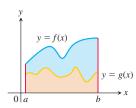






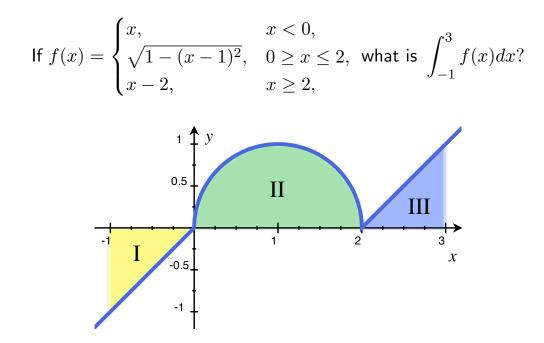






(f) Domination: If $f(x) \ge g(x)$ on [a, b] then $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$

Example



You try: Show $1 \le \int_0^1 \sqrt{1 + \cos(x)} \, dx \le \sqrt{2}$.

Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval [a, b]. Then there exists c in [a, b] such that

$$\int_{a}^{b} f(x)dx = (b-a)f(c).$$

Compare to the mean value theorem from before!

Definition

The average value of a continuous function on the interval [a, b] is

$$\frac{1}{b-a}\int_{a}^{b}f(x)dx.$$

Warm-up

Suppose a particle is traveling at velocity $v(t) = t^2$ from t = 1 to t = 2. if the particle starts at $y(0) = y_0$,

- 1. what is the function y(t) which gives the particles position as a function of time (will have a y_0 in it)?
- 2. how far does the particle travel from t = 1 to t = 2?

Compare your answer to the upper and lower estimates of the area under the curve $f(x) = x^2$ from x = 1 to x = 2:

Upper Lower

$$\sum_{i=1}^{n} \left(1 + \frac{i}{n}\right)^2 * \left(\frac{1}{n}\right) \qquad \sum_{i=0}^{n-1} \left(1 + \frac{i}{n}\right)^2 * \left(\frac{1}{n}\right)$$

n	Upper	Lower
10	2.485	2.185
100	2.34835	2.31835
1000	2.33483	2.33183

The Fundamental Theorem of Calculus

Theorem (the baby case)

If F(x) is any function satisfying $\frac{d}{dx}F(x) = f(x)$, then

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{x=a}^{b} = F(b) - F(a)$$

Q. What is
$$\int_{1}^{2} x^{2} dx$$
?
A. $F(x) = \frac{x^{3}}{3} + C$
So

$$\int_{1}^{2} x^{2} dx = F(2) - F(1) \frac{x^{3}}{3} \Big|_{x=1}^{2} = \left(\frac{2^{3}}{3} + C\right) - \left(\frac{1^{3}}{3} + C\right)$$
$$= \frac{8}{3} - \frac{1}{3} = \boxed{\frac{7}{3} \approx 2.333} \qquad \text{(same answer!)}$$

Examples

Use the fundamental theorem of calculus,

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

to calculate

1.
$$\int_{2}^{3} 3x \, dx$$

2. $\int_{-1}^{1} x^{3} \, dx$
3. $\int_{0}^{\pi} \sin(x) \, dx$

$$4. \ \int_{\pi}^{0} \sin(x) \ dx$$

The Fundamental Theorem of Calculus

Theorem (the big case)

If F(x) is any function satisfying $\frac{d}{dt}F(t)=f(t),$ then

$$\int_{a(x)}^{b(x)} f(t)dt = F(t)\Big|_{t=a(x)}^{b(x)} = F(b(x)) - F(a(x))$$

Q. What is
$$\int_{\sin(x)}^{\ln(x)} t^2 dt$$
?
A. $F(t) = \frac{1}{3}t^3 + C$.
So

$$\int_{\sin(x)}^{\ln(x)} t^2 dt = \frac{1}{3} t^3 \bigg|_{t=\sin(x)}^{\ln(x)} = \left(\frac{1}{3} (\ln(x))^3\right) - \left(\frac{1}{3} (\sin(x))^3\right).$$

Examples

Use the fundamental theorem of calculus,

$$\int_{a(x)}^{b(x)} f(t)dt = F(b(x)) - F(a(x))$$

to calculate

1.
$$\int_{\sin(x)}^{\cos(x)} 3t \, dt$$

2.
$$\int_{x+1}^{5x^2-3} t^3 \, dt$$

3.
$$\int_{\arccos(x)}^{0} \sin(t) \, dt$$

For reference, we calculated $\int_{a(x)}^{b(x)} f(t) \; dt$ where

$$f(t) = t^2$$
 $a(x) = \sin(x)$ $b(x) = \ln(x)$.

Notice:

$$\frac{d}{dx}\left(\frac{1}{3}(\ln(x))^3 - \frac{1}{3}(\sin(x))^3\right) = \frac{1}{x}(\ln(x))^2 - \cos(x)(\sin(x))^2$$
$$= b'(x)f(b(x)) - a'(x)f(a(x)).$$

In general:

$$\frac{d}{dx} \int_{a(x)}^{b(x)} f(t) \ dt = b'(x)f(b(x)) - a'(x)f(a(x)).$$

(Don't even have to know F(t)!)

Why?

Example: Calculate $\frac{d}{dx} \int_{\tan(x)}^{\sin(x)} e^{t^2} dt$. **Answer:** We can't even calculate $\int e^{t^2} dt!$ (There is no elementary function F(t) which satisfies $F'(t) = e^{t^2}$) But we know $\int e^{t^2} dt$ is a function. Call it F(t).

So
$$\int_{\tan(x)}^{\sin(x)} e^{t^2} dt = F(\sin(x)) - F(\tan(x)).$$

Therefore
$$\frac{d}{dx} \int_{\tan(x)}^{\sin(x)} e^{t^2} dt = \frac{d}{dx} \left(F(\sin(x)) - F(\tan(x)) \right)$$

= $\cos(x) F'(\sin(x)) - \sec^2(x) F'(\tan(x))$
= $\cos(x) f(\sin(x)) - \sec^2(x) f(\tan(x))$
= $\cos(x) e^{(\sin(x))^2} - \sec^2(x) e^{(\tan(x))^2}$