Recall from last time, that the definite integral of a function f over an interval $[a, b]$ is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where

1. $\Delta x=\frac{b-a}{n}$,
2. $x_{i}=a+i \Delta x$, and
3. c_{i} is any point in the interval $\left[x_{i-1}, x_{i}\right]$.

To compute, set up a finite Reimann sum

and then take the limit as the number of subdivisions goes to ∞.
Warmup: Set up the limit definition of $\int_{-1}^{5} \sin (x) d x$, using the midpoints of each interval (picking $c_{i}=\frac{1}{2}\left(x_{i}-x_{i-1}\right)$).

Vocabulary:

Reimann sum: $\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x$ Upper sum: Choose c_{i} so that $f\left(c_{i}\right)$ is maximal over $\left[x_{i-1}, x_{i}\right]$ (overestimate).
Lower sum: Choose c_{i} so that $f\left(c_{i}\right)$ is minimal over $\left[x_{i-1}, x_{i}\right]$ (underestimate).
Midpoint rule: Choose c_{i} halfway between x_{i-1} and x_{i}.
The function $f(x)$ is the integrand.

Properties of the Definite Integral

1. $\int_{a}^{a} f(x) d x=0$.

Properties of the Definite Integral

1. $\int_{a}^{a} f(x) d x=0$.
2. If f is integrable and
(a) $f(x) \geq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the area of the region under the graph of f and above the interval $[a, b]$;
(b) $f(x) \leq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the negative of the area of the region between the interval $[a, b]$ and the graph of f.

Properties of the Definite Integral

1. $\int_{a}^{a} f(x) d x=0$.
2. If f is integrable and
(a) $f(x) \geq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the area of the region under the graph of f and above the interval $[a, b]$;
(b) $f(x) \leq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ equals the negative of the area of the region between the interval $[a, b]$ and the graph of f.
3. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.
4. If $a<b<c, \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$

5. If f is an even function, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

Area $I=$ Area $I I$
6. If f is an odd function, then

$$
\int_{-a}^{a} f(x) d x=0
$$

Area $I=$ Area $I I$

See book:

(a) Zero Width Interval:

$$
\int_{a}^{a} f(x) d x=0
$$

(d) Additivity for Definite Integrals:
$\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$

(b) Constant Multiple: $(k=2)$

$$
\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x
$$

(e) Max-Min Inequality:

$$
\begin{aligned}
(\min f) \cdot(b-a) & \leq \int_{a}^{b} f(x) d x \\
& \leq(\max f) \cdot(b-a)
\end{aligned}
$$

(c) Sum: (areas add)
$\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$

(f) Domination:

If $f(x) \geq g(x)$ on $[a, b]$ then
$\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x$

Example

If $f(x)=\left\{\begin{array}{ll}x, & x<0, \\ \sqrt{1-(x-1)^{2}}, & 0 \geq x \leq 2, \\ x-2, & x \geq 2,\end{array}\right.$ what is $\int_{-1}^{3} f(x) d x ?$

Example

$$
\text { If } f(x)= \begin{cases}x, & x<0 \\ \sqrt{1-(x-1)^{2}}, & 0 \geq x \leq 2, \text { what is } \int_{-1}^{3} f(x) d x ? \\ x-2, & x \geq 2,\end{cases}
$$

You try: Show $1 \leq \int_{0}^{1} \sqrt{1+\cos (x)} d x \leq \sqrt{2}$.

Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval $[a, b]$. Then there exists c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=(b-a) f(c) .
$$

Compare to the mean value theorem from before!

Mean Value Theorem for Definite Integrals

Theorem

Let f be continuous on the interval $[a, b]$. Then there exists c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=(b-a) f(c)
$$

Compare to the mean value theorem from before!
Definition
The average value of a continuous function on the interval $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Warm-up

Suppose a particle is traveling at velocity $v(t)=t^{2}$ from $t=1$ to $t=2$. if the particle starts at $y(0)=y_{0}$,

1. what is the function $y(t)$ which gives the particles position as a function of time (will have a y_{0} in it)?
2. how far does the particle travel from $t=1$ to $t=2$?

Compare your answer to the upper and lower estimates of the area under the curve $f(x)=x^{2}$ from $x=1$ to $x=2$:

$$
\begin{array}{cc}
\text { Upper } & \begin{array}{c}
\text { Lower } \\
\sum_{i=1}^{n}\left(1+\frac{i}{n}\right)^{2} *\left(\frac{1}{n}\right)
\end{array} \sum_{i=0}^{n-1}\left(1+\frac{i}{n}\right)^{2} *\left(\frac{1}{n}\right)
\end{array}
$$

n	Upper	Lower
10	2.485	2.185
100	2.34835	2.31835
1000	2.33483	2.33183

The Fundamental Theorem of Calculus

Theorem (the baby case)

If $F(x)$ is any function satisfying $\frac{d}{d x} F(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

The Fundamental Theorem of Calculus

Theorem (the baby case)

If $F(x)$ is any function satisfying $\frac{d}{d x} F(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Q. What is $\int_{1}^{2} x^{2} d x$?
A. $F(x)=\frac{x^{3}}{3}+C$

So

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =F(2)-F(1)=\left(\frac{2^{3}}{3}+C\right)-\left(\frac{1^{3}}{3}+C\right) \\
& =\frac{8}{3}-\frac{1}{3}=\frac{7}{3} \approx 2.333
\end{aligned}
$$

The Fundamental Theorem of Calculus

Theorem (the baby case)

If $F(x)$ is any function satisfying $\frac{d}{d x} F(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Q. What is $\int_{1}^{2} x^{2} d x$?
A. $F(x)=\frac{x^{3}}{3}+C$

So

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =F(2)-F(1)=\left(\frac{2^{3}}{3}+C\right)-\left(\frac{1^{3}}{3}+C\right) \\
& =\frac{8}{3}-\frac{1}{3}=\frac{7}{3} \approx 2.333
\end{aligned}
$$

The Fundamental Theorem of Calculus

Theorem (the baby case)

If $F(x)$ is any function satisfying $\frac{d}{d x} F(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Q. What is $\int_{1}^{2} x^{2} d x$?
A. $F(x)=\frac{x^{3}}{3}$

So

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =F(2)-F(1)=\left(\frac{2^{3}}{3}\right)-\left(\frac{1^{3}}{3}\right) \\
& =\frac{8}{3}-\frac{1}{3}=\frac{7}{3} \approx 2.333 \quad \text { (same answer!) }
\end{aligned}
$$

The Fundamental Theorem of Calculus

Theorem (the baby case)

If $F(x)$ is any function satisfying $\frac{d}{d x} F(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{x=a} ^{b}=F(b)-F(a)
$$

Q. What is $\int_{1}^{2} x^{2} d x$?
A. $F(x)=\frac{x^{3}}{3}$

So

$$
\begin{aligned}
\int_{1}^{2} x^{2} d x & =\left.\frac{x^{3}}{3}\right|_{x=1} ^{2}=\left(\frac{2^{3}}{3}\right)-\left(\frac{1^{3}}{3}\right) \\
& =\frac{8}{3}-\frac{1}{3}=\frac{7}{3} \approx 2.333 \quad \text { (same answer!) }
\end{aligned}
$$

Examples

Use the fundamental theorem of calculus,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

to calculate

1. $\int_{2}^{3} 3 x d x$
2. $\int_{-1}^{1} x^{3} d x$
3. $\int_{0}^{\pi} \sin (x) d x$
4. $\int_{\pi}^{0} \sin (x) d x$

Examples

Use the fundamental theorem of calculus,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

to calculate

1. $\int_{2}^{3} 3 x d x=\left.3 \frac{x^{2}}{2}\right|_{x=4} ^{6}=3 * \frac{9}{2}-3 * \frac{4}{2}=15 / 2$
2. $\int_{-1}^{1} x^{3} d x=\left.\frac{x^{4}}{4}\right|_{x=-1} ^{1}=\frac{1^{4}}{4}-\frac{(-1)^{4}}{4}=0 \quad$ (odd function!!)
3. $\int_{0}^{\pi} \sin (x) d x=-\left.\cos (x)\right|_{x=0} ^{\pi}=-\cos (\pi)-(-\cos (0))$

$$
=-(-1)-(-1)=2
$$

4. $\int_{\pi}^{0} \sin (x) d x=-\left.\cos (x)\right|_{x=\pi} ^{0}=-\cos (0)-(-\cos (\pi))$

$$
=-(1)-(-(-1))=-2
$$

The Fundamental Theorem of Calculus

Theorem (the big case)

If $F(x)$ is any function satisfying $\frac{d}{d t} F(t)=f(t)$, then

$$
\int_{a(x)}^{b(x)} f(t) d t=\left.F(t)\right|_{t=a(x)} ^{b(x)}=F(b(x))-F(a(x))
$$

The Fundamental Theorem of Calculus

Theorem (the big case)

If $F(x)$ is any function satisfying $\frac{d}{d t} F(t)=f(t)$, then

$$
\int_{a(x)}^{b(x)} f(t) d t=\left.F(t)\right|_{t=a(x)} ^{b(x)}=F(b(x))-F(a(x))
$$

Q. What is $\int_{\sin (x)}^{\ln (x)} t^{2} d t$?

The Fundamental Theorem of Calculus

Theorem (the big case)

If $F(x)$ is any function satisfying $\frac{d}{d t} F(t)=f(t)$, then

$$
\int_{a(x)}^{b(x)} f(t) d t=\left.F(t)\right|_{t=a(x)} ^{b(x)}=F(b(x))-F(a(x))
$$

Q. What is $\int_{\sin (x)}^{\ln (x)} t^{2} d t$?
A. $F(t)=\frac{1}{3} t^{3}+C$.

The Fundamental Theorem of Calculus

Theorem (the big case)

If $F(x)$ is any function satisfying $\frac{d}{d t} F(t)=f(t)$, then

$$
\int_{a(x)}^{b(x)} f(t) d t=\left.F(t)\right|_{t=a(x)} ^{b(x)}=F(b(x))-F(a(x))
$$

Q. What is $\int_{\sin (x)}^{\ln (x)} t^{2} d t$?
A. $F(t)=\frac{1}{3} t^{3}+C$.

So

$$
\int_{\sin (x)}^{\ln (x)} t^{2} d t=\left.\frac{1}{3} t^{3}\right|_{t=\sin (x)} ^{\ln (x)}=\left(\frac{1}{3}(\ln (x))^{3}\right)-\left(\frac{1}{3}(\sin (x))^{3}\right) .
$$

Examples

Use the fundamental theorem of calculus,

$$
\int_{a(x)}^{b(x)} f(t) d t=F(b(x))-F(a(x))
$$

to calculate

1. $\int_{\sin (x)}^{\cos (x)} 3 t d t$
2. $\int_{x+1}^{5 x^{2}-3} t^{3} d t$
3. $\int_{\arccos (x)}^{0} \sin (t) d t$

Examples

Use the fundamental theorem of calculus,

$$
\int_{a(x)}^{b(x)} f(t) d t=F(b(x))-F(a(x))
$$

to calculate

1. $\int_{\sin (x)}^{\cos (x)} 3 t d t=\left.\frac{3}{2} t^{2}\right|_{t=\sin (x)} ^{\cos (x)}=\frac{3}{2}(\cos (x))^{2}-\frac{3}{2}(\sin (x))^{2}$
2. $\int_{x+1}^{5 x^{2}-3} t^{3} d t=\left.\frac{1}{4} t^{4}\right|_{t=x+1} ^{5 x^{2}-3}=\frac{1}{4}\left(5 x^{2}-3\right)^{4}-\frac{1}{4}(x+1)^{4}$
3. $\int_{\arccos (x)}^{0} \sin (t) d t=-\left.\cos (t)\right|_{t=\arccos (x)} ^{0}$
$=-\cos (0)-(-\cos (\arccos (x)))=-(1)-(-(x))=x-1$

For reference, we calculated $\int_{a(x)}^{b(x)} f(t) d t$ where

$$
f(t)=t^{2} \quad a(x)=\sin (x) \quad b(x)=\ln (x)
$$

Notice:

$$
\left(\frac{1}{3}(\ln (x))^{3}-\frac{1}{3}(\sin (x))^{3}\right)
$$

For reference, we calculated $\int_{a(x)}^{b(x)} f(t) d t$ where

$$
f(t)=t^{2} \quad a(x)=\sin (x) \quad b(x)=\ln (x)
$$

Notice:

$$
\frac{d}{d x}\left(\frac{1}{3}(\ln (x))^{3}-\frac{1}{3}(\sin (x))^{3}\right)=\frac{1}{x}(\ln (x))^{2}-\cos (x)(\sin (x))^{2}
$$

For reference, we calculated $\int_{a(x)}^{b(x)} f(t) d t$ where

$$
f(t)=t^{2} \quad a(x)=\sin (x) \quad b(x)=\ln (x)
$$

Notice:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{3}(\ln (x))^{3}-\frac{1}{3}(\sin (x))^{3}\right) & =\frac{1}{x}(\ln (x))^{2}-\cos (x)(\sin (x))^{2} \\
& =b^{\prime}(x) f(b(x))-a^{\prime}(x) f(a(x))
\end{aligned}
$$

For reference, we calculated $\int_{a(x)}^{b(x)} f(t) d t$ where

$$
f(t)=t^{2} \quad a(x)=\sin (x) \quad b(x)=\ln (x)
$$

Notice:

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{3}(\ln (x))^{3}-\frac{1}{3}(\sin (x))^{3}\right) & =\frac{1}{x}(\ln (x))^{2}-\cos (x)(\sin (x))^{2} \\
& =b^{\prime}(x) f(b(x))-a^{\prime}(x) f(a(x))
\end{aligned}
$$

In general:

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(t) d t=b^{\prime}(x) f(b(x))-a^{\prime}(x) f(a(x))
$$

(Don't even have to know $F(t)$!)

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.
So $\int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=F(\sin (x))-F(\tan (x))$.

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.
So $\int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=F(\sin (x))-F(\tan (x))$.

Therefore $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.
So $\int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=F(\sin (x))-F(\tan (x))$.

Therefore $\quad \frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=\frac{d}{d x}(F(\sin (x))-F(\tan (x)))$

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.
So $\int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=F(\sin (x))-F(\tan (x))$.

Therefore $\quad \frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=\frac{d}{d x}(F(\sin (x))-F(\tan (x)))$

$$
=\cos (x) F^{\prime}(\sin (x))-\sec ^{2}(x) F^{\prime}(\tan (x))
$$

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.
So $\int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=F(\sin (x))-F(\tan (x))$.

Therefore $\quad \frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=\frac{d}{d x}(F(\sin (x))-F(\tan (x)))$

$$
\begin{aligned}
& =\cos (x) F^{\prime}(\sin (x))-\sec ^{2}(x) F^{\prime}(\tan (x)) \\
& =\cos (x) f(\sin (x))-\sec ^{2}(x) f(\tan (x))
\end{aligned}
$$

Why?

Example: Calculate $\frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t$.
Answer: We can't even calculate $\int e^{t^{2}} d t$!
(There is no elementary function $F(t)$ which satisfies $F^{\prime}(t)=e^{t^{2}}$)
But we know $\int e^{t^{2}} d t$ is a function. Call it $F(t)$.
So $\int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=F(\sin (x))-F(\tan (x))$.

Therefore $\quad \frac{d}{d x} \int_{\tan (x)}^{\sin (x)} e^{t^{2}} d t=\frac{d}{d x}(F(\sin (x))-F(\tan (x)))$

$$
\begin{aligned}
& =\cos (x) F^{\prime}(\sin (x))-\sec ^{2}(x) F^{\prime}(\tan (x)) \\
& =\cos (x) f(\sin (x))-\sec ^{2}(x) f(\tan (x)) \\
& =\cos (x) e^{(\sin (x))^{2}}-\sec ^{2}(x) e^{(\tan (x))^{2}}
\end{aligned}
$$

