
Recall from last time, that the definite integral of a function fover
an interval [a, b] is∫ b

a
f(x)dx = lim

n→∞

n∑
i=1

f(ci)∆x

where

1. ∆x = b−a
n ,

2. xi = a+ i∆x, and

3. ci is any point in the interval [xi−1, xi].

To compute, set up a finite Reimann sum

x0 x1 x2 x3 x4 x5

and then take the limit as the number of subdivisions goes to ∞.

Warmup: Set up the limit definition of

∫ 5

−1
sin(x)dx, using the

midpoints of each interval (picking ci = 1
2(xi − xi−1)).



Vocabulary:

Reimann sum:
∑n

i=1 f(ci)∆x Upper sum: Choose ci so that f(ci)
is maximal over [xi−1, xi] (overestimate).
Lower sum: Choose ci so that f(ci) is minimal over [xi−1, xi]
(underestimate).
Midpoint rule: Choose ci halfway between xi−1 and xi.
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sums approach a limiting value J. We introduce the symbol e as a small positive number 
that specifies how close to J the Riemann sum must be, and the symbol d as a second 
small positive number that specifies how small the norm of a partition must be in order for 
convergence to happen. We now define this limit precisely.

DEFINITION Let ƒ(x) be a function defined on a closed interval 3 a, b4 . We 
say that a number J is the definite integral of ƒ  over 3a, b 4  and that J is the limit 
of the Riemann sums gn

k = 1  ƒ(ck) ∆xk if the following condition is satisfied:
Given any number e 7 0  there is a corresponding number d 7 0  such 

that for every partition P = 5x0 , x1 ,c , xn6  of 3 a, b4  with }P } 6 d and any 
choice of ck in 3 xk - 1 , xk 4 , we have2 an

k = 1
ƒ(ck) ∆xk - J 2 6 e.

The definition involves a limiting process in which the norm of the partition goes to zero.
We have many choices for a partition P with norm going to zero, and many choices of 

points ck for each partition. The definite integral exists when we always get the same limit 
J, no matter what choices are made. When the limit exists we write

J = lim0 0P 0 0S 0
 an

k = 1
ƒ(ck) ∆xk ,

and we say that the definite integral exists. The limit of any Riemann sum is always taken 
as the norm of the partitions approaches zero and the number of subintervals goes to infin-
ity, and furthermore the same limit J must be obtained no matter what choices we make for 
the points ck.

Leibniz introduced a notation for the definite integral that captures its construction as 
a limit of Riemann sums. He envisioned the finite sums gn

k = 1  ƒ(ck) ∆xk becoming an infi-
nite sum of function values ƒ(x) multiplied by “infinitesimal” subinterval widths dx. The 
sum symbol g  is replaced in the limit by the integral symbol 1 , whose origin is in the 
letter “S” (for sum). The function values ƒ(ck) are replaced by a continuous selection of 
function values ƒ(x). The subinterval widths ∆xk become the differential dx. It is as if we 
are summing all products of the form ƒ(x) # dx as x goes from a to b. While this notation 
captures the process of constructing an integral, it is Riemann’s definition that gives a pre-
cise meaning to the definite integral.

If the definite integral exists, then instead of writing J we write

L
b

a
ƒ(x) dx.

We read this as “the integral from a to b of ƒ of x dee x” or sometimes as “the integral from 
a to b of ƒ of x with respect to x.” The component parts in the integral symbol also have 
names:

L

The function f (x) is the integrand.

x is the variable of integration. 

Upper limit of integration

Integral sign

Lower limit of integration
Integral of f from a to b

a

b
f (x) dx

When you find the value
of the integral, you have
evaluated the integral.
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subintervals. For instance, we could choose n subintervals all having equal width 
∆x = (b - a)>n to partition 3 a, b4 , and then choose the point ck to be the right-hand 
endpoint of each subinterval when forming the Riemann sum (as we did in Example 5). 
This choice leads to the Riemann sum formula

Sn = an

k = 1
ƒ aa + k 

(b - a)
n b # ab - a

n b .

Similar formulas can be obtained if instead we choose ck to be the left-hand endpoint, or 
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width ∆x = (b - a)>n, we can 
make them thinner by simply increasing their number n. When a partition has subintervals 
of varying widths, we can ensure they are all thin by controlling the width of a widest 
 (longest) subinterval. We define the norm of a partition P, written }P } , to be the largest 
of all the subinterval widths. If }P } is a small number, then all of the subintervals in the 
partition P have a small width.

EXAMPLE 6  The set P = 50 , 0 .2, 0 .6, 1 , 1 .5, 26  is a partition of 3 0 , 2 4 . There are 
five subintervals of P: 3 0 , 0 .2 4 , 3 0 .2, 0 .6 4 , 3 0 .6, 1 4 , 3 1 , 1 .5 4 , and 3 1 .5, 2 4 :

x 

Δx1 Δx2 Δx3

0 0.2 0.6 1 1.5 2

Δx4 Δx5

The lengths of the subintervals are   ∆x1 = 0 .2, ∆x2 = 0 .4, ∆x3 = 0 .4, ∆x4 = 0 .5, 
and ∆x5 = 0 .5. The longest subinterval length is 0 .5, so the norm of the partition  
is }P } = 0 .5. In this example, there are two subintervals of this length. 

Any Riemann sum associated with a partition of a closed interval 3 a, b4 defines rect-
angles that approximate the region between the graph of a continuous function ƒ and the 
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.1 0 . We will see in the 
next section that if the function ƒ is continuous over the closed interval 3 a, b4 , then no 
matter how we choose the partition P and the points ck in its subintervals, the Riemann 
sums corresponding to these choices will approach a single limiting value as the subinter-
val widths (which are controlled by the norm of the partition) approach zero.

(a)

(b )

x
0 ba

y

y

x
0 ba

y = f (x)

y = f (x)

FIGURE 5.10  The curve of Figure 5.9 
with rectangles from finer partitions of 3 a, b4 . Finer partitions create collections 
of rectangles with thinner bases that ap-
proximate the region between the graph of 
ƒ and the x-axis with increasing accuracy.

Sigma Notation
Write the sums in Exercises 1 –6 without sigma notation. Then evalu-
ate them.

1. a2

k = 1
 6k
k + 1  2. a3

k = 1
 k - 1

k

 3. a4

k = 1
 cos kp 4. a5

k = 1
 sin kp

 5. a3

k = 1
(- 1 )k + 1  sin pk  6. a4

k = 1
(- 1 )k cos kp

 7. Which of the following express 1 + 2 + 4 + 8 + 1 6 + 32 in 
sigma notation?

a. a6

k = 1
2k - 1  b. a5

k = 0
2k c. a4

k = -1
2k + 1

8. Which of the following express 1 - 2 + 4 - 8 + 1 6 - 32 in 
sigma notation?

a. a6

k = 1
(-2)k - 1  b. a5

k = 0
(- 1 )k 2k c. a3

k = -2
(- 1 )k + 1  2k + 2

9. Which formula is not equivalent to the other two?

a. a4

k = 2
 
(- 1 )k - 1

k - 1  b. a2

k = 0
 
(- 1 )k

k + 1  c. a1

k = -1
 
(- 1 )k

k + 2

10. Which formula is not equivalent to the other two?

a. a4

k = 1
(k - 1 )2 b. a3

k = -1
(k + 1 )2 c. a-1

k = -3
k2

Express the sums in Exercises 1 1 –1 6 in sigma notation. The form of 
your answer will depend on your choice for the starting index.

11. 1 + 2 + 3 + 4 + 5 + 6 12. 1 + 4 + 9 + 1 6

13. 1
2 + 1

4 + 1
8 + 1

1 6 14. 2 + 4 + 6 + 8 + 1 0

EXERCISES 5.2
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1.

∫ a

a
f(x) dx = 0.

2. If f is integrable and

(a) f(x) ≥ 0 on [a, b], then
∫ b

a
f(x) dx equals the area of the

region under the graph of f and above the interval [a, b];

(b) f(x) ≤ 0 on [a, b], then
∫ b

a
f(x) dx equals the negative of the

area of the region between the interval [a, b] and the graph of f .

3.

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.
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subintervals. For instance, we could choose n subintervals all having equal width 
∆x = (b - a)>n to partition 3 a, b4 , and then choose the point ck to be the right-hand 
endpoint of each subinterval when forming the Riemann sum (as we did in Example 5). 
This choice leads to the Riemann sum formula

Sn = an

k = 1
ƒ aa + k 

(b - a)
n b # ab - a

n b .

Similar formulas can be obtained if instead we choose ck to be the left-hand endpoint, or 
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width ∆x = (b - a)>n, we can 
make them thinner by simply increasing their number n. When a partition has subintervals 
of varying widths, we can ensure they are all thin by controlling the width of a widest 
 (longest) subinterval. We define the norm of a partition P, written }P } , to be the largest 
of all the subinterval widths. If }P } is a small number, then all of the subintervals in the 
partition P have a small width.

EXAMPLE 6  The set P = 50 , 0 .2, 0 .6, 1 , 1 .5, 26  is a partition of 3 0 , 2 4 . There are 
five subintervals of P: 3 0 , 0 .2 4 , 3 0 .2, 0 .6 4 , 3 0 .6, 1 4 , 3 1 , 1 .5 4 , and 3 1 .5, 2 4 :

x 

Δx1 Δx2 Δx3

0 0.2 0.6 1 1.5 2

Δx4 Δx5

The lengths of the subintervals are   ∆x1 = 0 .2, ∆x2 = 0 .4, ∆x3 = 0 .4, ∆x4 = 0 .5, 
and ∆x5 = 0 .5. The longest subinterval length is 0 .5, so the norm of the partition  
is }P } = 0 .5. In this example, there are two subintervals of this length. 

Any Riemann sum associated with a partition of a closed interval 3 a, b4 defines rect-
angles that approximate the region between the graph of a continuous function ƒ and the 
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.1 0 . We will see in the 
next section that if the function ƒ is continuous over the closed interval 3 a, b4 , then no 
matter how we choose the partition P and the points ck in its subintervals, the Riemann 
sums corresponding to these choices will approach a single limiting value as the subinter-
val widths (which are controlled by the norm of the partition) approach zero.
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x
0 ba

y

y

x
0 ba

y = f (x)

y = f (x)

FIGURE 5.10  The curve of Figure 5.9 
with rectangles from finer partitions of 3 a, b4 . Finer partitions create collections 
of rectangles with thinner bases that ap-
proximate the region between the graph of 
ƒ and the x-axis with increasing accuracy.

Sigma Notation
Write the sums in Exercises 1 –6 without sigma notation. Then evalu-
ate them.

1. a2

k = 1
 6k
k + 1  2. a3

k = 1
 k - 1

k

 3. a4

k = 1
 cos kp 4. a5

k = 1
 sin kp

 5. a3

k = 1
(- 1 )k + 1  sin pk  6. a4

k = 1
(- 1 )k cos kp

 7. Which of the following express 1 + 2 + 4 + 8 + 1 6 + 32 in 
sigma notation?

a. a6

k = 1
2k - 1  b. a5

k = 0
2k c. a4

k = -1
2k + 1

8. Which of the following express 1 - 2 + 4 - 8 + 1 6 - 32 in 
sigma notation?

a. a6

k = 1
(-2)k - 1  b. a5

k = 0
(- 1 )k 2k c. a3

k = -2
(- 1 )k + 1  2k + 2

9. Which formula is not equivalent to the other two?

a. a4

k = 2
 
(- 1 )k - 1

k - 1  b. a2

k = 0
 
(- 1 )k

k + 1  c. a1

k = -1
 
(- 1 )k

k + 2

10. Which formula is not equivalent to the other two?

a. a4

k = 1
(k - 1 )2 b. a3

k = -1
(k + 1 )2 c. a-1

k = -3
k2

Express the sums in Exercises 1 1 –1 6 in sigma notation. The form of 
your answer will depend on your choice for the starting index.

11. 1 + 2 + 3 + 4 + 5 + 6 12. 1 + 4 + 9 + 1 6

13. 1
2 + 1

4 + 1
8 + 1

1 6 14. 2 + 4 + 6 + 8 + 1 0

EXERCISES 5.2
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1.

∫ a

a
f(x) dx = 0.

2. If f is integrable and

(a) f(x) ≥ 0 on [a, b], then
∫ b

a
f(x) dx equals the area of the

region under the graph of f and above the interval [a, b];

(b) f(x) ≤ 0 on [a, b], then
∫ b

a
f(x) dx equals the negative of the

area of the region between the interval [a, b] and the graph of f .

3.

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.
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subintervals. For instance, we could choose n subintervals all having equal width 
∆x = (b - a)>n to partition 3 a, b4 , and then choose the point ck to be the right-hand 
endpoint of each subinterval when forming the Riemann sum (as we did in Example 5). 
This choice leads to the Riemann sum formula

Sn = an

k = 1
ƒ aa + k 

(b - a)
n b # ab - a

n b .

Similar formulas can be obtained if instead we choose ck to be the left-hand endpoint, or 
the midpoint, of each subinterval.

In the cases in which the subintervals all have equal width ∆x = (b - a)>n, we can 
make them thinner by simply increasing their number n. When a partition has subintervals 
of varying widths, we can ensure they are all thin by controlling the width of a widest 
 (longest) subinterval. We define the norm of a partition P, written }P } , to be the largest 
of all the subinterval widths. If }P } is a small number, then all of the subintervals in the 
partition P have a small width.

EXAMPLE 6  The set P = 50 , 0 .2, 0 .6, 1 , 1 .5, 26  is a partition of 3 0 , 2 4 . There are 
five subintervals of P: 3 0 , 0 .2 4 , 3 0 .2, 0 .6 4 , 3 0 .6, 1 4 , 3 1 , 1 .5 4 , and 3 1 .5, 2 4 :
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Δx1 Δx2 Δx3

0 0.2 0.6 1 1.5 2

Δx4 Δx5

The lengths of the subintervals are   ∆x1 = 0 .2, ∆x2 = 0 .4, ∆x3 = 0 .4, ∆x4 = 0 .5, 
and ∆x5 = 0 .5. The longest subinterval length is 0 .5, so the norm of the partition  
is }P } = 0 .5. In this example, there are two subintervals of this length. 

Any Riemann sum associated with a partition of a closed interval 3 a, b4 defines rect-
angles that approximate the region between the graph of a continuous function ƒ and the 
x-axis. Partitions with norm approaching zero lead to collections of rectangles that approx-
imate this region with increasing accuracy, as suggested by Figure 5.1 0 . We will see in the 
next section that if the function ƒ is continuous over the closed interval 3 a, b4 , then no 
matter how we choose the partition P and the points ck in its subintervals, the Riemann 
sums corresponding to these choices will approach a single limiting value as the subinter-
val widths (which are controlled by the norm of the partition) approach zero.

(a)

(b )

x
0 ba

y

y

x
0 ba

y = f (x)

y = f (x)

FIGURE 5.10  The curve of Figure 5.9 
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of rectangles with thinner bases that ap-
proximate the region between the graph of 
ƒ and the x-axis with increasing accuracy.
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k = 1
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k = 1
 cos kp 4. a5
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k = 1
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 7. Which of the following express 1 + 2 + 4 + 8 + 1 6 + 32 in 
sigma notation?

a. a6

k = 1
2k - 1  b. a5

k = 0
2k c. a4

k = -1
2k + 1

8. Which of the following express 1 - 2 + 4 - 8 + 1 6 - 32 in 
sigma notation?

a. a6

k = 1
(-2)k - 1  b. a5

k = 0
(- 1 )k 2k c. a3

k = -2
(- 1 )k + 1  2k + 2

9. Which formula is not equivalent to the other two?
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k = 2
 
(- 1 )k - 1
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k = 0
 
(- 1 )k

k + 1  c. a1

k = -1
 
(- 1 )k
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10. Which formula is not equivalent to the other two?
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k = 1
(k - 1 )2 b. a3

k = -1
(k + 1 )2 c. a-1

k = -3
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Express the sums in Exercises 1 1 –1 6 in sigma notation. The form of 
your answer will depend on your choice for the starting index.
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13. 1
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4 + 1
8 + 1
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1.

∫ a

a
f(x) dx = 0.

2. If f is integrable and

(a) f(x) ≥ 0 on [a, b], then
∫ b

a
f(x) dx equals the area of the

region under the graph of f and above the interval [a, b];

(b) f(x) ≤ 0 on [a, b], then
∫ b

a
f(x) dx equals the negative of the

area of the region between the interval [a, b] and the graph of f .

3.

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.



4. If a < b < c,

∫ b

a
f(x)dx+

∫ c

b
f(x)dx =

∫ c

a
f(x)dx

0.5

1

1.5

a b c

III



5. If f is an even function, then∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx.

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1

I
-2 -1 0 1 2

0.2

0.4

0.6

0.8

1

II

Area I = Area II



6. If f is an odd function, then∫ a

−a
f(x)dx = 0.

-2 -1 0 1 2

-0.5

0.5

I
-2 -1 0 1 2

-0.5

0.5

II

Area I = Area II
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Proof of Rule 6  Rule 6 says that the integral of ƒ over 3 a, b4  is never smaller than 
the minimum value of ƒ times the length of the interval and never larger than the maximum 
value of ƒ times the length of the interval. The reason is  that for every partition of 3 a, b4
and for every choice of the points ck ,

 (min ƒ) # (b - a) = (min ƒ) # an

k = 1
 ∆xk an

k = 1
∆xk = b - a 

 = an

k = 1
 (min ƒ) # ∆xk  Constant Multiple Rule

… an

k = 1
ƒ(ck) ∆xk  min ƒ … ƒ(ck) 

… an

k = 1
 (max ƒ) # ∆xk ƒ(ck) …  max ƒ  

 = (max ƒ) # an

k = 1
 ∆xk Constant Multiple Rule

 = (max ƒ) # (b - a).

In short, all Riemann sums for ƒ on 3 a, b4  satisfy the inequalities

(min ƒ) # (b - a) … an

k = 1
ƒ(ck) ∆xk …  (max ƒ) # (b - a).

Hence their limit, which is the integral, satisfies the same inequalities. 

x

y

0 a

y = f (x)

x

y

0 a b

y = f (x)

y = 2 f (x)

x

y

0 a b

y = f (x)

y = f (x) + g (x)

y = g (x)

x

y

0 a cb

y = f (x)

b

a
f (x) dx

f (x) dx

c

b
L

L

x

y

0 a b

y = f (x)

max  f

min  f

x

y

0 a b

y = f (x)

y = g (x)

(a) Zero Width Interval:

 L
a

a
ƒ(x) dx = 0

(b) Constant Multiple: (k = 2)

 L
b

a
 kƒ(x) dx = kL

b

a
 ƒ(x) dx

(c) Sum: (areas add)

 L
b

a
(ƒ(x) + g(x)) dx = L

b

a
ƒ(x) dx + L

b

a
g(x) dx

(d) Additivity for Definite Integrals:

 L
b

a
ƒ(x) dx + L

c

b
ƒ(x) dx = L

c

a
ƒ(x) dx

(e) Max-Min Inequality:

(min ƒ) # (b - a) … L
b

a
 ƒ(x) dx 

 … (max ƒ ) # (b - a)

(f ) Domination:
If ƒ(x) Ú g(x) on 3 a, b4  then 

 L
b

a
 ƒ(x) dx Ú L

b

a
 g(x) dx

FIGURE 5.11  Geometric interpretations of Rules 2–7 in Table 5.6.
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Example

If f(x) =


x, x < 0,√

1− (x− 1)2, 0 ≥ x ≤ 2,

x− 2, x ≥ 2,

what is

∫ 3

−1
f(x)dx?

-1 1 2 3

-1

-0.5

0.5

1

I

II
III

You try: Show 1 ≤
∫ 1
0

√
1 + cos(x) dx ≤

√
2.



Example

If f(x) =


x, x < 0,√

1− (x− 1)2, 0 ≥ x ≤ 2,

x− 2, x ≥ 2,

what is

∫ 3

−1
f(x)dx?

-1 1 2 3

-1

-0.5

0.5

1

I

II
III

You try: Show 1 ≤
∫ 1
0

√
1 + cos(x) dx ≤

√
2.



Mean Value Theorem for Definite Integrals

Theorem
Let f be continuous on the interval [a, b]. Then there exists c in
[a, b] such that ∫ b

a
f(x)dx = (b− a)f(c).

Compare to the mean value theorem from before!

Definition
The average value of a continuous function on the interval [a, b] is

1

b− a

∫ b

a
f(x)dx.



Mean Value Theorem for Definite Integrals

Theorem
Let f be continuous on the interval [a, b]. Then there exists c in
[a, b] such that ∫ b

a
f(x)dx = (b− a)f(c).

Compare to the mean value theorem from before!

Definition
The average value of a continuous function on the interval [a, b] is

1

b− a

∫ b

a
f(x)dx.



Warm-up
Suppose a particle is traveling at velocity v(t) = t2 from t = 1 to
t = 2. if the particle starts at y(0) = y0,

1. what is the function y(t) which gives the particles position as
a function of time (will have a y0 in it)?

2. how far does the particle travel from t = 1 to t = 2?

Compare your answer to the upper and lower estimates of the area
under the curve f(x) = x2 from x = 1 to x = 2:

Upper Lower
n∑
i=1

(
1 +

i

n

)2

∗
(

1

n

) n−1∑
i=0

(
1 +

i

n

)2

∗
(

1

n

)

n Upper Lower

10 2.485 2.185
100 2.34835 2.31835

1000 2.33483 2.33183



The Fundamental Theorem of Calculus

Theorem (the baby case)

If F (x) is any function satisfying d
dxF (x) = f(x), then∫ b

a
f(x)dx = F (b)− F (a)

Q. What is

∫ 2

1
x2dx?

A. F (x) = x3

3 + C
So ∫ 2

1
x2dx = F (2)− F (1) =

(
23

3
+ C

)
−
(

13

3
+ C

)
=

8

3
− 1

3
=

7

3
≈ 2.333
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Examples
Use the fundamental theorem of calculus,∫ b

a
f(x)dx = F (b)− F (a)

to calculate

1.

∫ 3

2
3x dx

= 3
x2

2

∣∣∣6
x=4

= 3 ∗ 9

2
− 3 ∗ 4

2
= 15/2

2.

∫ 1

−1
x3 dx

=
x4

4

∣∣∣1
x=−1

=
14

4
− (−1)4

4
= 0 (odd function!!)

3.

∫ π

0
sin(x) dx

= − cos(x)
∣∣∣π
x=0

= − cos(π)− (− cos(0))

= −(−1)− (−1) = 2

4.

∫ 0

π
sin(x) dx

= − cos(x)
∣∣∣0
x=π

= − cos(0)− (− cos(π))

= −(1)− (−(−1)) = −2
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The Fundamental Theorem of Calculus

Theorem (the big case)

If F (x) is any function satisfying d
dtF (t) = f(t), then∫ b(x)

a(x)
f(t)dt = F (t)

∣∣∣b(x)
t=a(x)

= F (b(x))− F (a(x))

Q. What is

∫ ln(x)

sin(x)
t2dt?

A. F (t) =
1

3
t3 + C.

So ∫ ln(x)

sin(x)
t2dt =

1

3
t3

∣∣∣∣∣
ln(x)

t=sin(x)

=

(
1

3
(ln(x))3

)
−
(

1

3
(sin(x))3

)
.
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Examples

Use the fundamental theorem of calculus,∫ b(x)

a(x)
f(t)dt = F (b(x))− F (a(x))

to calculate

1.

∫ cos(x)

sin(x)
3t dt

=
3

2
t2
∣∣∣cos(x)
t=sin(x)

=
3

2
(cos(x))2 − 3

2
(sin(x))2

2.

∫ 5x2−3

x+1
t3 dt

=
1

4
t4
∣∣∣5x2−3
t=x+1

=
1

4
(5x2 − 3)4 − 1

4
(x+ 1)4

3.

∫ 0

arccos(x)
sin(t) dt

= − cos(t)
∣∣∣0
t=arccos(x)

= − cos(0)− (− cos(arccos(x))) = −(1)− (−(x)) = x− 1
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For reference, we calculated

∫ b(x)

a(x)
f(t) dt where

f(t) = t2 a(x) = sin(x) b(x) = ln(x).

Notice:

d

dx

(
1

3
(ln(x))3 − 1

3
(sin(x))3

)

=
1

x
(ln(x))2 − cos(x)(sin(x))2

= b′(x)f(b(x))− a′(x)f(a(x)).

In general:

d

dx

∫ b(x)

a(x)
f(t) dt = b′(x)f(b(x))− a′(x)f(a(x)).

(Don’t even have to know F (t)!)
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Why?

Example: Calculate
d

dx

∫ sin(x)

tan(x)

et
2

dt.

Answer: We can’t even calculate

∫
et

2

dt!

(There is no elementary function F (t) which satisfies F ′(t) = et
2

)

But we know

∫
et

2

dt is a function. Call it F (t).

So

∫ sin(x)

tan(x)

et
2

dt = F (sin(x))− F (tan(x)).

Therefore
d

dx

∫ sin(x)

tan(x)

et
2

dt =
d

dx
(F (sin(x))− F (tan(x)))

= cos(x)F ′(sin(x))− sec2(x)F ′(tan(x))

= cos(x)f(sin(x))− sec2(x)f(tan(x))

= cos(x)e(sin(x))
2

− sec2(x)e(tan(x))
2
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