The purpose of calculus is twofold:

1. to find how something is changing, given what it's doing;
2. to find what something is doing, given how it's changing.

We did derivatives
(a) algebraically (derivative rules, what is the function?), and
(b) geometrically (slopes, increasing/decreasing, what does it look like?)
We did antiderivatives algebraically (what is the function?). Today: geometric meaning of antiderivatives.

If you travel at 2 mph for 4 hours, how far have you gone?

Answer: 8 miles.
Another way: Area $=8$

(graph of speed, i.e. graph of derivative)

If you travel at 1 mph for 2 hours, and 2 mph for 2 hours, how far have you gone?

(graph of speed, i.e. graph of derivative)

If you travel at
.5 mph for 1 hour,
1 mph for 1 hour,
1.5 mph for 1 hour,

2 mph for 1 hour, how far have you gone?

$$
\text { Area }=.5+1+1.5+2=5
$$

(graph of speed, i.e. graph of derivative)

If you travel at
.175 mph for $1 / 4$ hour,
.25 mph for $1 / 4$ hour,
2 mph for $1 / 4$ hour,
how far have you gone?

(graph of speed, i.e. graph of derivative)

If you travel at $\frac{1}{2} t \mathrm{mph}$ for 4 hours, how far have you gone?
Check our answer using antiderivatives from last time:

$$
\text { position }=s(t)=\int \frac{1}{2} t d t=\frac{1}{4} t^{2}+C
$$

So distance $=s(4)-s(0)=\frac{1}{4} * 16+C-\left(\frac{1}{4} * 0+C\right)=4 \checkmark$

(graph of speed, i.e. graph of derivative)

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 1: pick the highest point
Area ≈ 8

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 2: pick two points
Area $\approx 1+4=5$

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 3: pick four points
Area $\approx \frac{1}{8}+\frac{1}{2}+\frac{9}{8}+2=3.75$

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 4: pick eight points

Estimate the area under the curve $y=\frac{1}{8} x^{2}$ between $x=0$ and $x=4$:

Estimate 5: pick sixteen points Area ≈ 2.921875

Estimating the Area of a Circle with $r=1$

Estimating the Area of a Circle with $r=1$
Divide it up into rectangles:

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$
Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

\# rect.	Area
4	$2^{*} 1=2$
$4^{*} 2$	$\sqrt{3}+1 \approx 2.732$
$4^{* 3}$	
$4^{*} 4$	
$4 * 5$	

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$
Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Estimating the Area of a Circle with $r=1$

Divide it up into rectangles:
Estimate area of the half circle $\left(f(x)=\sqrt{1-x^{2}}\right)$ and mult. by 2 .

Numerical Integration

Big idea: Estimating, and then taking a limit.

Let the number of pieces go to ∞
i.e. let the base of the rectangle for to 0 .

Good for:

1. Approximating accumulated change when the antiderivative is unavailable.
2. Making precise the notion of 'area' (we'll also to lengths and volumes)

Example: estimating volume using data

A small dam breaks on a river. The average flow out of the stream is given by the following:

hours	m^{3} / s	hours	m^{3} / s	hours	m^{3} / s
0	150	4.25	1460	8.25	423
0.25	230	4.5	1350	8.5	390
0.5	310	4.75	1270	8.75	365
0.75	430	5	1150	9	325
1	550	5.25	1030	9.25	300
1.25	750	5.5	950	9.5	280
1.5	950	5.75	892	9.75	260
1.75	1150	6	837	10	233
2	1350	6.25	770	10.25	220
2.25	1550	6.5	725	10.5	199
2.5	1700	6.75	658	10.75	188
2.75	1745	7	610	11	180
3	1750	7.25	579	11.25	175
3.25	1740	7.5	535	11.5	168
3.5	1700	7.75	500	11.75	155
3.75	1630	8	460	12	150
4	1550				

Over each time interval, we estimate the volume of water by Average rate $\times 900 \mathrm{~s}$

Over each time interval, we estimate the volume of water by
Average rate $\times 900 \mathrm{~s}$

Over each time interval, we estimate the volume of water by
Average rate $\times 900 \mathrm{~s}$

hours	m^{3}	hours	m^{3}	hours	m^{3}
0	135000	4.25	1314000	8.25	380700
0.25	207000	4.5	1215000	8.5	351000
0.5	279000	4.75	1143000	8.75	328500
0.75	387000	5	1035000	9	292500
1	495000	5.25	927000	9.25	270000
1.25	675000	5.5	855000	9.5	252000
1.5	855000	5.75	802800	9.75	234000
1.75	1035000	6	753300	10	209700
2	1215000	6.25	693000	10.25	198000
2.25	1395000	6.5	652500	10.5	179100
2.5	1530000	6.75	592200	10.75	169200
2.75	1570500	7	549000	11	162000
3	1575000	7.25	521100	11.25	157500
3.25	1566000	7.5	481500	11.5	151200
3.5	1530000	7.75	450000	11.75	139500
3.75	1467000	8	414000	12	135000
	1395000			total $=33,319,800$	

Example: functions without nice antiderivatives

From Wikipedia: "In mathematics, the error function (also called the Gauss error function) is a special function (non-elementary) of sigmoid shape which occurs in probability, statistics and partial differential equations.

Upper and Lower Sums

Suppose we want to use rectangles to approximate the area under the graph of $y=x+1$ on the interval $[0,1]$.

Upper Riemann Sum

Lower Riemann Sum

$$
31 / 20>1.5>29 / 20
$$

As you take more and more smaller and smaller rectangles, if f is nice, both of these will approach the real area.

n	U	L
100	1.505000000	1.495000000
150	1.503333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

In general: finding the Area Under a Curve

Let $y=f(x)$ be given and defined on an interval $[a, b]$.

Break the interval into n equal pieces.
Label the endpoints of those pieces $x_{0}, x_{1}, \ldots, x_{n}$.
Let $\Delta x=x_{i}-x_{i-1}=\frac{b-a}{n}$ be the width of each interval.
The Upper Riemann Sum is: let M_{i} be the maximum value of the function on that $i^{\text {th }}$ interval, so

$$
U(f, P)=M_{1} \Delta x+M_{2} \Delta x+\cdots+M_{n} \Delta x .
$$

The Lower Riemann Sum is: let m_{i} be the minimum value of the function on that $i^{\text {th }}$ interval, so

$$
\left.L(f, P)=m_{1} \Delta x+m_{2} \Delta x+\cdots+m_{n} \Delta x\right) .
$$

Take the limit as $n \rightarrow \infty$ or $\Delta x \rightarrow 0$.

Upper

Lower

Last time: sigma notation
If m and n are integers with $m \leq n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^{n} f(i)$, called sigma notation, is means

$$
\sum_{i=m}^{n} f(i)=f(m)+f(m+1)+f(m+2)+\cdots+f(n)
$$

$$
\text { Examples: } \begin{aligned}
\sum_{i=1}^{n} i & =1+2+3+\cdots+n \\
\sum_{i=1}^{n} i^{2} & =1^{2}+2^{2}+3^{2}+\cdots+n^{2} \\
\sum_{i=1}^{n} \sin (i) & =\sin (1)+\sin (2)+\sin (3)+\cdots+\sin (n) \\
\sum_{i=0}^{n-1} x^{i} & =x^{0}+x+x^{2}+x^{2}+x^{3}+x^{4}+\cdots+x^{n-1}
\end{aligned}
$$

The Area Problem Revisited

$$
\begin{aligned}
& \text { Upper Riemann Sum }=\sum_{i=1}^{n} M_{i} \Delta x \\
& \text { Lower Riemann Sum }=\sum_{i=1}^{n} m_{i} \Delta x,
\end{aligned}
$$

where M_{i} and m_{i} are, respectively, the maximum and minimum values of f on the i th subinterval $\left[x_{i-1}, x_{i}\right], 1 \leq i \leq n$.

Example

1. Write, in sigma notation, the upper and lower Riemann sums for the area under the graph of $f(x)=x^{2}$ on the interval $[0,1]$, first with 8 subdivisions, and then with 10 subdivisions.

2. Write, in sigma notation, and estimate of the total displacement of a particle traveling along a straight line from $t=1$ to $t=5$, at a velocity of $v(t)=(t-2)^{3}$, using 20 subdivisions.

The Definite Integral

We say that f is integrable on $[a, b]$ if there exists a number A such that

$$
\text { Lower Riemann Sum } \leq A \leq \text { Upper Riemann Sum }
$$

any number n of subdivisions. We write the number as

$$
A=\int_{a}^{b} f(x) d x
$$

and call it the definite integral of f over $[a, b]$.

Trickiness: Who wants to find maxima/minima over every interval? Especially as $n \rightarrow \infty$? Calculus nightmare!!

More Riemann Sums

Let f be defined on $[a, b]$, and pick a positive integer n.
Let

$$
\Delta x=\frac{b-a}{n}
$$

Notice:

$$
x+0=a, \quad x_{1}=a+\Delta x, \quad x_{2}=a+2 \Delta x, \quad x_{3}=a+3 \Delta x, \ldots
$$

So let

$$
x_{i}=a+i * \Delta x
$$

More Riemann Sums
Let f be defined on $[a, b]$, and pick a positive integer n.
Let

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i * \Delta x .
$$

Then the Right Riemann Sum is

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

and the Left Riemann Sum is

$$
\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x_{i} .
$$

Integrals made easier

Theorem

If f is "Riemann integrable" on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

where c_{i} is any point in the interval $\left[x_{i-1}, x_{i}\right]$.

Punchline: We can calculate integrals by just using right or left sums! (instead of upper or lower sums)

Example: Set up left and right limit definitions of $\int_{1}^{4} e^{x} d x$. Remember that
n is the number of pieces we've divided the interval into, and i indexes the terms in the sum (labels the rectangles).

Each piece:

$$
\Delta x=\frac{4-1}{n}=\frac{3}{n} \quad x_{i}=1+i * \Delta x=1+\frac{3 i}{n}
$$

So, the left Riemann sum is

$$
\sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x=\sum_{i=0}^{n-1} e^{1+\frac{3 i}{n}}\left(\frac{3}{n}\right)=\frac{3 e}{n} \sum_{i=0}^{n-1}\left(e^{3 / n}\right)^{i}
$$

and the right Riemann sum is

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n} e^{1+\frac{3 i}{n}}\left(\frac{3}{n}\right)=\frac{3 e}{n} \sum_{i=1}^{n}\left(e^{3 / n}\right)^{i}
$$

So

$$
\int_{1}^{4} e^{x} d x=\lim _{n \rightarrow \infty} \frac{3 e}{n} \sum_{i=0}^{n-1}\left(e^{3 / n}\right)^{i}=\lim _{n \rightarrow \infty} \frac{3 e}{n} \sum_{i=1}^{n}\left(e^{3 / n}\right)^{i}
$$

On your own:

1. Set up the right limit definition of $\int_{-1}^{5} \sin (x) d x$.
2. Rewrite the following expressions as $\int_{a}^{b} f(x) d x$ by identifying $f(x), a$, and b. Also, identify if I've used the left or right Riemann sums.
(a) $\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1}\left(\left(6+\frac{7 i}{n}\right)^{3}+2\right)\left(\frac{7}{n}\right)$.
(b) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2+\frac{i}{n}}{2-\frac{i}{n}}\left(\frac{1}{n}\right)$.

Recall from the reading that
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
Do we believe it?

$$
\begin{array}{ll}
n=1: & \sum_{i=1}^{1} i=1=\frac{1(2)}{2} \\
n=2: & \sum_{i=1} i=1+2=3=\frac{2(3)}{2} \\
n=3: & \sum_{i=1}^{3} i=1+2+3=6=\frac{3(4)}{2} \\
n=4: & \sum_{i=1}^{4} i=1+2+3+4=10=\frac{4(5)}{2} \\
n=5: & \sum_{i=1}^{5} i=1+2+3+4+5=15=\frac{5(6)}{2}
\end{array}
$$

Recall from the reading that

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

Do we believe it?

$$
\begin{array}{ll}
n=1: & \sum_{i=1}^{1} i^{2}=1^{2}=1=\frac{1(2)(2+1)}{6} \\
n=2: & \sum_{i=1}^{2} i^{2}=1^{2}+2^{2}=5=\frac{2(3)(4+1)}{6} \\
n=3: & \sum_{i=1}^{3} i^{2}=1^{2}+2^{2}+3^{2}=14=\frac{3(4)(6+1)}{6} \\
n=4: & \sum_{i=1}^{4} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}=30=\frac{4(5)(8+1)}{6} \\
n=5: & \sum_{i=1}^{5} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55=\frac{5(6)(10+1)}{6}
\end{array}
$$

Recall from the reading that
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
Do we believe it?

$$
\begin{aligned}
& n=1: \\
& n=2: \quad \sum_{i=1}^{1} i^{3}=1^{3}=1=\left(\frac{1(2)}{2}\right)^{2}=1^{3}+2^{3}=9=\left(\frac{2(3)}{2}\right)^{2} \\
& n=3: \\
& n=4: \quad \sum_{i=1}^{3} i^{3}=1^{3}+2^{3}+3^{3}=36=\left(\frac{3(4)}{2}\right)^{2}=1^{3}+2^{3}+3^{3}+4^{3}=100=\left(\frac{4(5)}{2}\right)^{2} \\
& n=5: \\
& \sum_{i=1}^{5} i^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}=225=\left(\frac{5(6)}{2}\right)^{2}
\end{aligned}
$$

Recall from the reading that
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
Notice that this says

$$
\sum_{i=1}^{n} i^{3}=\left(\sum_{i=1}^{n} i\right)^{2}
$$

Now, let's compute

$$
\int_{1}^{3} 5 x^{2} d x
$$

Start by constructing the finite Riemann sum, with n subintervals:
Interval: $[1,3] . \quad \Delta x=\frac{3-1}{n}=\frac{2}{n}$
Endpoints: $x_{i}=a+\Delta x \cdot i=1+\frac{2}{n} \cdot i$
Rectangle area: $f\left(x_{i}\right) \Delta x=5\left(1+\frac{2}{n} i\right)^{2}\left(\frac{2}{n}\right)=\frac{10}{n}\left(1+2 \cdot \frac{2 i}{n}+\frac{2^{2}}{n^{2}} i^{2}\right)$
Finite Reimann sum:
Lots of simplifying first!

$$
\begin{aligned}
& \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n} \frac{10}{n}\left(1+2 \cdot \frac{2 i}{n}+\frac{2^{2}}{n^{2}} i^{2}\right) \\
& =\frac{10}{n} \sum_{i=1}^{n}\left(1+\frac{4}{n} i+\frac{4}{n^{2}} i^{2}\right)=\frac{10}{n}\left(\sum_{i=1}^{n} 1+\frac{4}{n} \sum_{i=1}^{n} i+\frac{4}{n^{2}} \sum_{i=1}^{n} i^{2}\right) \\
& \quad=\frac{10}{n}\left(n+\frac{4}{n} \cdot \frac{n(n+1)}{2}+\frac{4}{n^{2}} \cdot \frac{n(n+1)(2 n+1)}{6}\right) \\
& \quad=10+20 \frac{n+1}{n}+\frac{20}{3} \cdot \frac{(n+1)(2 n+1)}{n^{2}}
\end{aligned}
$$

Now, let's compute

$$
\int_{1}^{3} 5 x^{2} d x
$$

Start by constructing the finite Riemann sum, with n subintervals:

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\cdots=10+20 \frac{n+1}{n}+\frac{20}{3} \cdot \frac{(n+1)(2 n+1)}{n^{2}}
$$

Then, take the limit:

$$
\begin{aligned}
& \int_{1}^{3} 5 x^{2} d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
&=\lim _{n \rightarrow \infty}(10\left.+20 \frac{n+1}{n}+\frac{20}{3} \cdot \frac{(n+1)(2 n+1)}{n^{2}}\right) \\
&=10+20 \cdot 1+\frac{20}{3} \cdot 2
\end{aligned}
$$

You try: Compute

$$
\int_{3}^{7} 2 x^{2}-x d x
$$

