The purpose of calculus is twofold:

- 1. to find how something is changing, given what it's doing;
- 2. to find what something is doing, given how it's changing.

We did derivatives

- (a) algebraically (derivative rules, what is the function?), and
- (b) **geometrically** (slopes, increasing/decreasing, what does it look like?)

We did antiderivatives algebraically (what is the function?).

Today: geometric meaning of antiderivatives.

If you travel at 2 mph for 4 hours, how far have you gone?

If you travel at 1 mph for 2 hours, and 2 mph for 2 hours, how far have you gone?

If you travel at

.5 mph for 1 hour, 1 mph for 1 hour, 1.5 mph for 1 hour, 2 mph for 1 hour,

how far have you gone?

If you travel at

.175 mph for 1/4 hour, .25 mph for 1/4 hour,

. . .

2 mph for 1/4 hour,

how far have you gone?

If you travel at $\frac{1}{2}t$ mph for 4 hours, how far have you gone?

Check our answer using antiderivatives from last time:

$$\mathsf{position} = s(t) = \int \frac{1}{2}t \ dt = \frac{1}{4}t^2 + C$$

So distance $=s(4)-s(0)=\frac{1}{4}*16+C-(\frac{1}{4}*0+C)=4$ \checkmark

Estimate the area under the curve $y=\frac{1}{8}x^2$ between x=0 and x=4:

Estimate the area under the curve $y=\frac{1}{8}x^2$ between x=0 and x=4:

Estimate 1: pick the highest point

Estimate the area under the curve $y = \frac{1}{8}x^2$ between x = 0 and x = 4:

Estimate 2: pick two points $\text{Area} \approx 1 + 4 = \boxed{5}$

Estimate the area under the curve $y=\frac{1}{8}x^2$ between x=0 and x=4:

Estimate the area under the curve $y=\frac{1}{8}x^2$ between x=0 and x=4:

Estimate the area under the curve $y=\frac{1}{8}x^2$ between x=0 and x=4:

Estimating the Area of a Circle with $r=1\,$

Estimating the Area of a Circle with $r=1\,$

Divide it up into rectangles:

Estimating the Area of a Circle with r=1

Divide it up into rectangles:

Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Estimating the Area of a Circle with $r=1\,$

Divide it up into rectangles:

Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Estimating the Area of a Circle with $r=1\,$

Divide it up into rectangles:

Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Estimating the Area of a Circle with $r=1\,$

Divide it up into rectangles:

Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Estimating the Area of a Circle with r=1

Divide it up into rectangles:

Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Estimating the Area of a Circle with $r=1\,$

Divide it up into rectangles:

Estimate area of the half circle $(f(x) = \sqrt{1-x^2})$ and mult. by 2.

Numerical Integration

Big idea: Estimating, and then taking a limit.

Let the number of pieces go to ∞ i.e. let the base of the rectangle for to 0.

Good for:

- 1. Approximating accumulated change when the antiderivative is unavailable.
- 2. Making precise the notion of 'area' (we'll also to lengths and volumes)

Example: estimating volume using data

A small dam breaks on a river. The average flow out of the stream is given by the following:

hours	m^3/s	hours	m^3/s	hours	m^3/s
0	150	4.25	1460	8.25	423
0.25	230	4.5	1350	8.5	390
0.5	310	4.75	1270	8.75	365
0.75	430	5	1150	9	325
1	550	5.25	1030	9.25	300
1.25	750	5.5	950	9.5	280
1.5	950	5.75	892	9.75	260
1.75	1150	6	837	10	233
2	1350	6.25	770	10.25	220
2.25	1550	6.5	725	10.5	199
2.5	1700	6.75	658	10.75	188
2.75	1745	7	610	11	180
3	1750	7.25	579	11.25	175
3.25	1740	7.5	535	11.5	168
3.5	1700	7.75	500	11.75	155
3.75	1630	8	460	12	150
4	1550				

Over each time interval, we estimate the volume of water by Average rate \times 900 s

Over each time interval, we estimate the volume of water by Average rate $\times\ 900\ s$

Over each time interval, we estimate the volume of water by $\text{Average rate} \times 900 \text{ s}$

hours	m^3	hours	m^3	hours	m^3
0	135000	4.25	1314000	8.25	380700
0.25	207000	4.5	1215000	8.5	351000
0.5	279000	4.75	1143000	8.75	328500
0.75	387000	5	1035000	9	292500
1	495000	5.25	927000	9.25	270000
1.25	675000	5.5	855000	9.5	252000
1.5	855000	5.75	802800	9.75	234000
1.75	1035000	6	753300	10	209700
2	1215000	6.25	693000	10.25	198000
2.25	1395000	6.5	652500	10.5	179100
2.5	1530000	6.75	592200	10.75	169200
2.75	1570500	7	549000	11	162000
3	1575000	7.25	521100	11.25	157500
3.25	1566000	7.5	481500	11.5	151200
3.5	1530000	7.75	450000	11.75	139500
3.75	1467000	8	414000	12	135000
4	1395000			total=3	3,319,800

Example: functions without nice antiderivatives

From Wikipedia: "In mathematics, the error function (also called the Gauss error function) is a special function (non-elementary) of sigmoid shape which occurs in probability, statistics and partial differential equations."

Upper and Lower Sums

Suppose we want to use rectangles to approximate the area under the graph of y=x+1 on the interval [0,1].

As you take more and more smaller and smaller rectangles, if f is nice, both of these will approach the real area.

\overline{n}	U	L
100	1.505000000	1.495000000
150	1.5033333333	1.496666667
200	1.502500000	1.497500000
300	1.501666667	1.498333333
500	1.501000000	1.499000000

In general: finding the Area Under a Curve

Let y = f(x) be given and defined on an interval [a, b].

Break the interval into n equal pieces.

Label the endpoints of those pieces x_0, x_1, \ldots, x_n .

Let $\Delta x = x_i - x_{i-1} = \frac{b-a}{n}$ be the width of each interval.

The **Upper Riemann Sum** is: let M_i be the *maximum* value of the function on that i^{th} interval, so

$$U(f, P) = M_1 \Delta x + M_2 \Delta x + \dots + M_n \Delta x.$$

The **Lower Riemann Sum** is: let m_i be the *minimum* value of the function on that $i^{\rm th}$ interval, so

$$L(f, P) = m_1 \Delta x + m_2 \Delta x + \dots + m_n \Delta x).$$

Take the limit as $n \to \infty$ or $\Delta x \to 0$.

Last time: sigma notation

If m and n are integers with $m \leq n$, and if f is a function defined on the integers from m to n, then the symbol $\sum_{i=m}^n f(i)$, called sigma notation, is means

$$\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \dots + f(n)$$

Examples:
$$\sum_{i=1}^n i = 1 + 2 + 3 + \dots + n$$

$$\sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$

$$\sum_{i=1}^n \sin(i) = \sin(1) + \sin(2) + \sin(3) + \dots + \sin(n)$$

$$\sum_{i=1}^{n-1} x^i = x^0 + x + x^2 + x^2 + x^3 + x^4 + \dots + x^{n-1}$$

The Area Problem Revisited

Upper Riemann Sum
$$=\sum_{i=1}^n M_i \Delta x$$

Lower Riemann Sum $=\sum_{i=1}^n m_i \Delta x$,

where M_i and m_i are, respectively, the maximum and minimum values of f on the ith subinterval $[x_{i-1}, x_i]$, $1 \le i \le n$.

Example

1. Write, in sigma notation, the upper and lower Riemann sums for the area under the graph of $f(x)=x^2$ on the interval [0,1], first with 8 subdivisions, and then with 10 subdivisions.

2. Write, in sigma notation, and estimate of the total displacement of a particle traveling along a straight line from t=1 to t=5, at a velocity of $v(t)=(t-2)^3$, using 20 subdivisions.

The Definite Integral

We say that f is integrable on $\left[a,b\right]$ if there exists a number A such that

Lower Riemann Sum $\leq A \leq$ Upper Riemann Sum

any number n of subdivisions. We write the number as

$$A = \int_{a}^{b} f(x)dx$$

and call it the **definite integral** of f over [a, b].

Trickiness: Who wants to find maxima/minima over every interval? Especially as $n \to \infty$? Calculus nightmare!!

More Riemann Sums

Let f be defined on [a,b], and pick a positive integer n.

Let

$$\Delta x = \frac{b-a}{n}$$

Notice:

$$x + 0 = a$$
, $x_1 = a + \Delta x$, $x_2 = a + 2\Delta x$, $x_3 = a + 3\Delta x$,...

So let

$$x_i = a + i * \Delta x.$$

More Riemann Sums

Let f be defined on [a,b], and pick a positive integer n. Let

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i * \Delta x$.

$$x_i = a + i * \Delta x.$$

Then the Right Riemann Sum is

$$\sum_{i=1}^{n} f(x_i) \Delta x,$$

and the Left Riemann Sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x_i.$$

Integrals made easier

Theorem

If f is "Riemann integrable" on [a,b], then

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

where c_i is any point in the interval $[x_{i-1}, x_i]$.

Punchline: We can calculate integrals by just using right or left sums! (instead of upper or lower sums)

Example: Set up left and right limit definitions of $\int_1^4 e^x dx$. Remember that

n is the number of pieces we've divided the interval into, and i indexes the terms in the sum (labels the rectangles).

Each piece:

$$\Delta x = \frac{4-1}{n} = \frac{3}{n}$$
 $x_i = 1 + i * \Delta x = 1 + \frac{3i}{n}$

So, the left Riemann sum is

$$\sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} e^{1 + \frac{3i}{n}} \left(\frac{3}{n} \right) = \frac{3e}{n} \sum_{i=0}^{n-1} \left(e^{3/n} \right)^i$$

and the right Riemann sum is

$$\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} e^{1 + \frac{3i}{n}} \left(\frac{3}{n} \right) = \frac{3e}{n} \sum_{i=1}^{n} \left(e^{3/n} \right)^{i}$$

So

$$\int_{1}^{4} e^{x} dx = \lim_{n \to \infty} \frac{3e}{n} \sum_{i=0}^{n-1} \left(e^{3/n} \right)^{i} = \lim_{n \to \infty} \frac{3e}{n} \sum_{i=1}^{n} \left(e^{3/n} \right)^{i}.$$

On your own:

- 1. Set up the right limit definition of $\int_{-1}^{5} \sin(x) dx$.
- 2. Rewrite the following expressions as $\int_a^b f(x)dx$ by identifying f(x), a, and b. Also, identify if I've used the left or right Riemann sums.

(a)
$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \left((6 + \frac{7i}{n})^3 + 2 \right) \left(\frac{7}{n} \right)$$
.

(b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2 + \frac{i}{n}}{2 - \frac{i}{n}} \left(\frac{1}{n}\right).$$

Recall from the reading that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Do we believe it?

$$n=1:$$
 $\sum_{i=1}^{1} i = 1 = \frac{1(2)}{2}$

$$n=2:$$
 $\sum_{i=1}^{\infty} i = 1+2=3=\frac{2(3)}{2}$

$$n=3:$$
 $\sum_{i=1}^{3} i = 1+2+3=6=\frac{3(4)}{2}$

$$n=4:$$
 $\sum_{i=1}^{4} i = 1+2+3+4=10 = \frac{4(5)}{2}$

$$n = 5:$$
 $\sum_{i=1}^{5} i = 1 + 2 + 3 + 4 + 5 = 15 = \frac{5(6)}{2}$

Recall from the reading that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Do we believe it?

$$n=1:$$
 $\sum_{i=1}^{1} i^2 = 1^2 = 1 = \frac{1(2)(2+1)}{6}$

$$n=2:$$
 $\sum_{i=1}^{2} i^2 = 1^2 + 2^2 = 5 = \frac{2(3)(4+1)}{6}$

$$n = 3:$$
 $\sum_{i=1}^{3} i^2 = 1^2 + 2^2 + 3^2 = 14 = \frac{3(4)(6+1)}{6}$

$$n = 4$$
: $\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30 = \frac{4(5)(8+1)}{6}$

$$n = 5:$$
 $\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55 = \frac{5(6)(10+1)}{6}$ \checkmark

Recall from the reading that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Do we believe it?

$$n=1:$$
 $\sum_{i=1}^{1} i^3 = 1^3 = 1 = \left(\frac{1(2)}{2}\right)^2$

$$n=2:$$
 $\sum_{i=1}^{3} i^3 = 1^3 + 2^3 = 9 = \left(\frac{2(3)}{2}\right)^2$

$$n = 3:$$
 $\sum_{i=1}^{3} i^3 = 1^3 + 2^3 + 3^3 = 36 = \left(\frac{3(4)}{2}\right)^2$

$$n = 4$$
: $\sum_{i=1}^{4} i^3 = 1^3 + 2^3 + 3^3 + 4^3 = 100 = \left(\frac{4(5)}{2}\right)^2$

$$n = 5:$$
 $\sum_{i=1}^{5} i^3 = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 225 = \left(\frac{5(6)}{2}\right)^2$ \checkmark

Recall from the reading that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Notice that this says

$$\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2.$$

Now, let's compute

$$\int_{1}^{3} 5x^2 \ dx.$$

Start by constructing the finite Riemann sum, with n subintervals:

Interval: [1,3]. $\Delta x = \frac{3-1}{n} = \frac{2}{n}$

Endpoints: $x_i = a + \Delta x \cdot i = 1 + \frac{2}{n} \cdot i$

Rectangle area: $f(x_i)\Delta x = 5(1+\frac{2}{n}i)^2\left(\frac{2}{n}\right) = \frac{10}{n}(1+2\cdot\frac{2i}{n}+\frac{2^2}{n^2}i^2)$

Finite Reimann sum:

Lots of simplifying first!

$$\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \frac{10}{n} \left(1 + 2 \cdot \frac{2i}{n} + \frac{2^2}{n^2} i^2 \right)$$

$$= \frac{10}{n} \sum_{i=1}^{n} \left(1 + \frac{4}{n} i + \frac{4}{n^2} i^2 \right) = \frac{10}{n} \left(\sum_{i=1}^{n} 1 + \frac{4}{n} \sum_{i=1}^{n} i + \frac{4}{n^2} \sum_{i=1}^{n} i^2 \right)$$

$$= \frac{10}{n} \left(n + \frac{4}{n} \cdot \frac{n(n+1)}{2} + \frac{4}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} \right)$$

$$= 10 + 20 \frac{n+1}{n} + \frac{20}{3} \cdot \frac{(n+1)(2n+1)}{n^2}$$

Now, let's compute

$$\int_{1}^{3} 5x^{2} dx$$
.

Start by constructing the finite Riemann sum, with n subintervals:

$$\sum_{i=1}^{n} f(x_i) \Delta x = \dots = \boxed{10 + 20 \frac{n+1}{n} + \frac{20}{3} \cdot \frac{(n+1)(2n+1)}{n^2}}$$

Then, take the limit:

$$\int_{1}^{3} 5x^{2} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

$$= \lim_{n \to \infty} \left(10 + 20 \frac{n+1}{n} + \frac{20}{3} \cdot \frac{(n+1)(2n+1)}{n^{2}} \right)$$

$$= \left[10 + 20 \cdot 1 + \frac{20}{3} \cdot 2 \right].$$

You try: Compute

$$\int_{3}^{7} 2x^2 - x \ dx.$$