
Antiderivatives and Initial Value Problems

Definition: An antiderivative of a function f on an interval [a, b]
is another function F such that F 0(x) = f(x) for all x in [a, b].

Examples:

1. An antiderivative of f(x) = 2x is F (x) = x2.

2. Another antiderivative of f(x) = 2x is F (x) = x2 + 1.

3. There are lots of antiderivatives of f(x) = 2x which look like

F (x) = x2 + C.



Finding all antiderivatives

Suppose that h is di↵erentiable and h0(x) = 0 for all x . Then h is

a constant function, i.e. h(x) = C, for some fixed number C.

Now, suppose F (x) and G(x) are both antiderivatives of a

function f(x), i.e. F 0(x) = f(x) and G0(x) = f(x). Then F (x)
and G(x) are both di↵erentiable (their derivatives are f(x)), so
G(x)� F (x) is di↵erentiable. Also,

d

dx
(G(x)� F (x)) = G0(x)� F 0(x) = f(x)� f(x) = 0.

So G(x)� F (x) = C for some fixed number C, i.e.

G(x) = F (x) + C.

In summary: If F (x) is one antiderivative of f(x), then every other

antiderivative must be of the form F (x) + C for some number C.

Example: All of the antiderivatives of f(x) = 2x look like

F (x) = x2 + C

for some constant C.

Notice: Every function f(x) that has at least one antiderivative

F (x) has infinitely many antiderivatives

F (x) + C.

(We say
dy
dx = f(x) has an infinite family of solutions (for y).)

We refer to F (x) +C as the general antiderivative or the indefinite

integral of f(x), and denote it by

F (x) + C =

Z
f(x) dx.

Example: Z
2x dx = x2 + C.



Examples

Z
x2 dx = 1

3x
3 + C, because

d
dx(

1
3x

3 + C) = 1
3 ⇤ 3x2 = x2

Z
x3 dx = 1

4x
4 + C, because

d
dx(

1
4x

4 + C) = 1
4 ⇤ 4x3 = x3

Z
x5 dx =

1
6x

6 + C, because
d
dx(

1
6x

6 + C) = 1
6 ⇤ 6x5 = x5

Z
x�3 dx =

1
�2x

�2 + C, because
d
dx(

1
�2x

�2 + C) = x�3

Z
xk dx =

1
k+1x

k+1 + C, because
d
dx(

1
k+1x

k+1 + C) = xk

Except!! What if k = �1?

Some important basic integrals

Z
xk dx =

1

k + 1
xk+1 + C if k 6= �1 ⇤

Z
sin(x) dx =

� cos(x) + C

Z
cos(x) dx =

sin(x) + C

Z
ex dx =

ex + C

Z
sec2(x) dx =

tan(x) + C

Z
1p

1� x2
dx =

arcsin(x) + C



⇤The antiderivative of 1/x

Note: 1/x is defined over all real numbers 6= 0, but ln(x) is only
defined over positive real numbers!

Calculate
d
dx ln |x|.

Recall

|x| =
(
x x � 0,

�x x < 0.

So (1) the domain of ln |x| is (�1, 0) [ (0,1), and

(2) ln |x| =
(
ln(x) x � 0,

ln(�x) x < 0.

Compute the derivative one piece at a time, using chain rule:

d

dx
ln |x| =

(
1/x x � 0,

�(1/(�x)) = 1/x x < 0,
= 1/x.

Therefore, Z
1

x
dx = ln |x|+ C.

⇤The antiderivative of 1/x

Note: 1/x is defined over all real numbers 6= 0, but ln(x) is only
defined over positive real numbers!

y = 1/x

y = ln(x) y = ln |x|



Theorem (Opposite of sum and constant rules). Suppose the

functions f(x) and g(x) both have antiderivatives on the interval

[a, b]. Then for any constant a, the functions af(x) and
f(x) + g(x) have antiderivatives on [a, b], given byZ

af(x) dx = a

Z
f(x) dx

and Z
f(x) + g(x) dx =

Z
f(x) dx+

Z
g(x) dx

Example: Since
R
2x dx = x2 +A and

R
cos(x) dx = sin(x) +B,

we have Z
2x+ 3 cos(x) dx =

Z
2x dx+

Z
3 cos(x) dx

=

Z
2x dx+ 3

Z
cos(x) dx = x2 + 3 sin(x) + C.

To come later: “Opposite of chain rule” is called u-substitution, and

“opposite of product rule” is called integration by parts. For now: most

derivative rules make a mess; antiderivatives have to clean up that mess,

which is not always possible using elementary functions!



Di↵erential equations

A di↵erential equation is an equation involving derivatives.

The goal is usually to solve for y.
Just like you could use algebra to solve

y2 + x2 = 1

for y, you can use calculus (and algebra) to solve things like

dy

dx
� 5y = 0 for y.

A solution to a di↵erential equation is a function you can plug in

that satisfies the equation.

For example, y = e5x is a solution to the di↵erential equation

above since

d

dx
e5x = 5e5x,

so

dy

dx
� 5y = (5e5x)� 5(e5x) = 0. X

Simplest di↵erential equations: antiderivatives

Finding an antiderivative can also be thought of as solving a

di↵erential equation:

“Solve the di↵erential equation
d
dxy = x2.”

Answer: y =

Z
x2dx =

1

3
x3 + C.

Check:
d

dx

1

3
x3 + C. =

1

3
⇤ 3 ⇤ x2 + 0 = x2 X



Examples

(1) Solve the di↵erential equation y0 = 2x+ sin(x).

y = x2 � cos(x) + C

(2) Check that cos(x) + sin(x) is a solution to
d2y

dx2
+ y = 0.

d

dx
y =

d

dx
(cos(x) + sin(x)) = � sin(x) + cos(x), so

d2

dx2
y = � cos(x)� sin(x) = �(cos(x) + sin(x)).

Therefore,
d2y

dx2
+y = �(cos(x)+sin(x))+(cos(x)+sin(x)) = 0 X

Definition

An initial-value problem is a di↵erential equation together with

enough additional conditions to specify the constants of

integration that appear in the general solution.

The particular solution of the problem is then a function that

satisfies both the di↵erential equation and also the additional

conditions.



Initial value problems

Find a solution to the di↵erential equation
d
dxy = x2 + 1 which

also satisfies y(2) = 8/3.

general solution: y = 1
3x

3 + x+ C

particular solution: y = 1
3x

3 + x� 2

Each color corresponds to a choice of C.

Red cuve is the particular solution.

Initial value problems

Find a solution to the di↵erential equation
d
dxy = x2 + 1 which

also satisfies y(2) = 8/3.

general solution: y = 1
3x

3 + x+ C

particular solution: y = 1
3x

3 + x� 2

Each color corresponds to a choice of C.

Red cuve is the particular solution.



Solve the initial value problem

dy

dx
= 2x+ sin(x)

subject to y(0) = 0.

general solution: y = x2 � cos(x) + C

Algebraically: get a particular solution by solving

0 = y(0) = (0)2 � cos(0) + C = �1 + C (for C)

C = 1, so y = x2 � cos(x) + 1.

Solve the initial value problem

dy

dx
= 2x+ sin(x)

subject to y(0) = 0.

general solution: y = x2 � cos(x) + C

Algebraically: get a particular solution by solving

0 = y(0) = (0)2 � cos(0) + C = �1 + C (for C)

C = 1, so y = x2 � cos(x) + 1.



Solve the initial-value problem y00 = cosx, y0(⇡2 ) = 2, y(⇡2 ) = 3⇡.

Step 1: Calculate the antiderivative of cos(x) to find the general

solution for y0.

Ans: y0 = sin(x) + C

Step 2: Plug in the values y0(⇡2 ) = 2 to calculate C.

Ans: 2 = sin(⇡/2) + C = 1 + C, so C = 1

Step 3: Write down the particular solution for y0.

Ans: y0 = sin(x) + 1

Step 4: Calculate the antiderivative of your particular solution in Step

3 to find the general solution for y.

Ans: y = � cos(x) + x+D

Step 5: Plug in the values y(⇡2 ) = 3⇡ to solve for the new constant.

Ans: 3⇡ = � cos(⇡/2) + ⇡/2 +D = ⇡/2 +D so D = 5⇡/2

Step 6: Write down the particular solution for y.

Ans: y = � cos(x) + x+ 5⇡/2



Word problem:
An object dropped from a cli↵ has acceleration a = �9.8 m/sec2

under the influence of gravity. What is the function s(t) that
models its height at time t?

Initial value problem:
Solve

d2s

dt2
= �9.8, s(0) = s0, s

0(0) = 0.

Word problem:
Suppose that a baseball is thrown upward from the roof of a 100
meter high building. It hits the street below eight seconds later.

What was the initial velocity of the baseball, and how high did it

rise above the street before beginning its descent?

Initial value problem:
Solve

d2s

dt2
= �9.8, s(0) = 100, s(8) = 0.

Use your solution to

(1) calculate s0(0), and
(2) solve s0(t1) = 0 for t1 and calculate s(t1).



And now for something completely di↵erent. . .
(Help with reading sections 5.1 and 5.2.)

1 + 2 = 3 = 2
2 · (2 + 1)

1 + 2 + 3 = 6 = 3
2 · (3 + 1)

1 + 2 + 3 + 4 = 10 = 4
2 · (4 + 1)

1 + 2 + 3 + 4 + 5 = 15 = 5
2 · (5 + 1)

1 + 2 + · · ·+ 99 + 100 = (1 + 100) + (2 + 99) + (3 + 98)

+ · · ·+ (50 + 51)

= 101 + 101 + 101 + · · ·+ 101

= 50 · 101 =
100

2
· (100 + 1)

1 + 2 + · · ·+ 100 + 101 = (1 + 101) + (2 + 100) + (3 + 99)

+ · · ·+ (50 + 52) + 51

= 102 + 102 + 102 + · · ·+ 102 + 51

= 50 · 102 + 51 = (50.5) · 102 =
101

2
· (101 + 1)

And now for something completely di↵erent. . .
(Help with reading sections 5.1 and 5.2.)

1 + 2 + · · ·+ 99 + 100= (1 + 100) + (2 + 99) + (3 + 98) + · · ·+ (50 + 51)

= 101 + 101 + 101 + · · ·+ 101

= 50 · 101= 100
2

· (100 + 1)

1 + 2 + · · ·+ 100 + 101= (1 + 101) + (2 + 100) + (3 + 99) + · · ·+ (50 + 52) + 51

= 102 + 102 + 102 + · · ·+ 102 + 51

= 50 · 102 + 51= (50.5) · 102= 101
2

· (101 + 1)

Thing 1: In general, for n � 0 an integer,

1 + 2 + · · ·+ n =
n

2
(n+ 1).

Thing 2: We have a notation for writing long sums compactly,

called sigma notation.



Sigma notation
Let f(x) be a function of integers, and let a  b be integers. Then

bX

i=a

f(i) = f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(b).

Namely,

X
means add up (sum)

i = means i is your variable (index)

i = a means start plugging in at a

bX
means stop plugging in at b

f(i) means plug i into f(x)

Sigma notation

Let f(x) be a function of integers, and let a  b be integers. Then

bX

i=a

f(i) = f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(b).

For example,

5X

i=1

i = 1 + 2 + 3 + 4 + 5,

5X

i=�2

i2 = (�2)1 + (�1)2 + 02 + 12 + 22 + 32 + 42 + 52,

and
3X

i=0

i2 + 1 = (02 + 1) + (12 + 1) + (22 + 1) + (32 + 1)

= (02 + 12 + 22 + 32) + (1 + 1 + 1 + 1) =
3X

i=0

i2 +
3X

i=0

1.



Sigma notation: some identities

We’ve seen
nX

i=1

i =
n

2
(n+ 1)

bX

i=a

f(i) + g(i) =
bX

i=a

f(i) +
bX

i=a

g(i).

Distributive law:
bX

i=a

cf(i) = c
bX

i=a

f(i).

More identities in Section 5.2.

Why??? It turns out that antiderivatives are related to area trapped

between curves. We’ll both see why this is true, and learn how to

estimate antiderivatives when computing them exactly is impossible.

(Think: derivative rules are great, but sometimes you just need limits.)


