
Antiderivatives and Initial Value Problems



Warm up
If

d

dx
f(x) = 2x, what is f(x)?

f(x) = x2

Can you think of another function that f(x) could be?

Some other candidates:

f(x) = x2 + 1, x2 − 2, x2 + 13π, x2 − 143.7

If
d

dx
f(x) = 3x2 + 1, what is f(x)?

f(x) = x3 + x

Can you think of another function that f(x) could be?

Some other candidates:

f(x) = x3 + x+ 1, x3 + x− 2, x3 + x+ 13π, x3 + x− 143.7
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Definition: An antiderivative of a function f on an interval [a, b]
is another function F such that F ′(x) = f(x) for all x in [a, b].

Examples:

1. An antiderivative of f(x) = 2x is F (x) = x2.

2. Another antiderivative of f(x) = 2x is F (x) = x2 + 1.

3. There are lots of antiderivatives of f(x) = 2x which look like
F (x) = x2 + C.
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Finding all antiderivatives

Suppose that h is differentiable and h′(x) = 0 for all x .

Then h is
a constant function, i.e. h(x) = C, for some fixed number C.

Now, suppose F (x) and G(x) are both antiderivatives of a
function f(x), i.e. F ′(x) = f(x) and G′(x) = f(x). Then F (x)
and G(x) are both differentiable (their derivatives are f(x)), so
G(x)− F (x) is differentiable. Also,

d

dx
(G(x)− F (x)) = G′(x)− F ′(x) = f(x)− f(x) = 0.

So G(x)− F (x) = C for some fixed number C, i.e.

G(x) = F (x) + C.

In summary: If F (x) is one antiderivative of f(x), then every other
antiderivative must be of the form F (x) + C for some number C.

Example: All of the antiderivatives of f(x) = 2x look like

F (x) = x2 + C

for some constant C.
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Notice: Every function f(x) that has at least one antiderivative
F (x) has infinitely many antiderivatives

F (x) + C.

(We say dy
dx = f(x) has an infinite family of solutions (for y).)

We refer to F (x) +C as the general antiderivative or the indefinite
integral of f(x), and denote it by

F (x) + C =

∫
f(x) dx.

Example: ∫
2x dx = x2 + C.
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Examples∫
x2 dx = 1

3x
3 + C, because d

dx(
1
3x

3 + C) = 1
3 ∗ 3x

2 = x2

∫
x3 dx = 1

4x
4 + C, because d

dx(
1
4x

4 + C) = 1
4 ∗ 4x

3 = x3

∫
x5 dx =

1
6x

6 + C, because d
dx(

1
6x

6 + C) = 1
6 ∗ 6x

5 = x5

∫
x−3 dx =

1
−2x

−2 + C, because d
dx(

1
−2x

−2 + C) = x−3

∫
xk dx =

1
k+1x

k+1 + C, because d
dx(

1
k+1x

k+1 + C) = xk

Except!! What if k = −1?
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Some important basic integrals

∫
xk dx =

1

k + 1
xk+1 + C if k 6= −1

∗∫
sin(x) dx = − cos(x) + C∫
cos(x) dx = sin(x) + C∫

ex dx = ex + C∫
sec2(x) dx = tan(x) + C∫
1√

1− x2
dx = arcsin(x) + C
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∗The antiderivative of 1/x

Note: 1/x is defined over all real numbers 6= 0, but ln(x) is only
defined over positive real numbers!

Calculate d
dx ln |x|.

Recall

|x| =

{
x x ≥ 0,

−x x < 0.

So (1) the domain of ln |x| is (−∞, 0) ∪ (0,∞), and

(2) ln |x| =

{
ln(x) x ≥ 0,

ln(−x) x < 0.

Compute the derivative one piece at a time, using chain rule:

d

dx
ln |x| =

{
1/x x ≥ 0,

−(1/(−x)) = 1/x x < 0,
= 1/x.

Therefore, ∫
1

x
dx = ln |x|+ C.
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∗The antiderivative of 1/x

Note: 1/x is defined over all real numbers 6= 0, but ln(x) is only
defined over positive real numbers!
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Theorem (Opposite of sum and constant rules). Suppose the
functions f(x) and g(x) both have antiderivatives on the interval
[a, b]. Then for any constant a, the functions af(x) and
f(x) + g(x) have antiderivatives on [a, b], given by∫

af(x) dx = a

∫
f(x) dx

and ∫
f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx

Example: Since
∫
2x dx = x2 +A and

∫
cos(x) dx = sin(x) +B,

we have ∫
2x+ 3 cos(x) dx =

∫
2x dx+

∫
3 cos(x) dx

=

∫
2x dx+ 3

∫
cos(x) dx = x2 + 3 sin(x) + C.

To come later: “Opposite of chain rule” is called u-substitution, and

“opposite of product rule” is called integration by parts. For now: most

derivative rules make a mess; antiderivatives have to clean up that mess,

which is not always possible using elementary functions!
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Differential equations

A differential equation is an equation involving derivatives.

The goal is usually to solve for y.
Just like you could use algebra to solve

y2 + x2 = 1

for y, you can use calculus (and algebra) to solve things like

dy

dx
− 5y = 0 for y.

A solution to a differential equation is a function you can plug in
that satisfies the equation.
For example, y = e5x is a solution to the differential equation
above since

d

dx
e5x = 5e5x,

so
dy

dx
− 5y = (5e5x)− 5(e5x) = 0. X
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Simplest differential equations: antiderivatives

Finding an antiderivative can also be thought of as solving a
differential equation:

“Solve the differential equation d
dxy = x2.”

Answer: y =

∫
x2dx =

1

3
x3 + C.

Check:
d

dx

1

3
x3 + C. =

1

3
∗ 3 ∗ x2 + 0 = x2 X



Examples

(1) Solve the differential equation y′ = 2x+ sin(x).

y = x2 − cos(x) + C

(2) Check that cos(x) + sin(x) is a solution to
d2y

dx2
+ y = 0.

d

dx
y =

d

dx
(cos(x) + sin(x)) = − sin(x) + cos(x), so

d2

dx2
y = − cos(x)− sin(x) = −(cos(x) + sin(x)).

Therefore,
d2y

dx2
+y = −(cos(x)+sin(x))+(cos(x)+sin(x)) = 0 X
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Initial value problems

Find a solution to the differential equation d
dxy = x2 + 1 which

also satisfies y(2) = 8/3.

general solution: y = 1
3x

3 + x+ C

particular solution: y = 1
3x

3 + x− 2

Each color corresponds to a choice of C.

Red cuve is the particular solution.
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Definition

An initial-value problem is a differential equation together with
enough additional conditions to specify the constants of
integration that appear in the general solution.

The particular solution of the problem is then a function that
satisfies both the differential equation and also the additional
conditions.



Solve the initial value problem

dy

dx
= 2x+ sin(x)

subject to y(0) = 0.

general solution: y = x2 − cos(x) + C

Algebraically: get a particular solution by solving

0 = y(0) = (0)2 − cos(0) + C = −1 + C (for C)

C = 1, so y = x2 − cos(x) + 1.
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Solve the initial-value problem y′′ = cosx, y′(π2 ) = 2, y(π2 ) = 3π.

Step 1: Calculate the antiderivative of cos(x) to find the general

solution for y′.

Ans: y′ = sin(x) + C

Step 2: Plug in the values y′(π2 ) = 2 to calculate C.

Ans: 2 = sin(π/2) + C = 1 + C, so C = 1

Step 3: Write down the particular solution for y′.

Ans: y′ = sin(x) + 1

Step 4: Calculate the antiderivative of your particular solution in Step
3 to find the general solution for y.

Ans: y = − cos(x) + x+D

Step 5: Plug in the values y(π2 ) = 3π to solve for the new constant.

Ans: 3π = − cos(π/2) + π/2 +D = π/2 +D so D = 5π/2

Step 6: Write down the particular solution for y.

Ans: y = − cos(x) + x+ 5π/2
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Word problem:
An object dropped from a cliff has acceleration a = −9.8 m/sec2
under the influence of gravity. What is the function s(t) that
models its height at time t?

Initial value problem:
Solve

d2s

dt2
= −9.8, s(0) = s0, s

′(0) = 0.
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Word problem:
Suppose that a baseball is thrown upward from the roof of a 100
meter high building. It hits the street below eight seconds later.
What was the initial velocity of the baseball, and how high did it
rise above the street before beginning its descent?

Initial value problem:
Solve

d2s

dt2
= −9.8, s(0) = 100, s(8) = 0.

Use your solution to
(1) calculate s′(0), and
(2) solve s′(t1) = 0 for t1 and calculate s(t1).
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And now for something completely different. . .
(Help with reading sections 5.1 and 5.2.)

1 + 2 =

3 = 2
2 · (2 + 1)

1 + 2 + 3 =

6 = 3
2 · (3 + 1)

1 + 2 + 3 + 4 =

10 = 4
2 · (4 + 1)

1 + 2 + 3 + 4 + 5 =

15 = 5
2 · (5 + 1)

1 + 2 + · · ·+ 99 + 100 = (1 + 100) + (2 + 99) + (3 + 98)

+ · · ·+ (50 + 51)

= 101 + 101 + 101 + · · ·+ 101

= 50 · 101 =
100

2
· (100 + 1)

1 + 2 + · · ·+ 100 + 101 = (1 + 101) + (2 + 100) + (3 + 99)

+ · · ·+ (50 + 52) + 51

= 102 + 102 + 102 + · · ·+ 102 + 51

= 50 · 102 + 51 = (50.5) · 102 =
101

2
· (101 + 1)
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Thing 1: In general, for n ≥ 0 an integer,

1 + 2 + · · ·+ n =
n

2
(n+ 1).

Thing 2: We have a notation for writing long sums compactly,
called sigma notation.
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Sigma notation

Let f(x) be a function of integers, and let a ≤ b be integers. Then
b∑
i=a

f(i) = f(a) + f(a+ 1) + f(a+ 2) + · · ·+ f(b).

Namely, ∑
means add up (sum)

i = means i is your variable (index)

i = a means start plugging in at a

b∑
means stop plugging in at b

f(i) means plug i into f(x)
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Sigma notation: some identities

We’ve seen
n∑
i=1

i =
n

2
(n+ 1)

b∑
i=a

f(i) + g(i) =

b∑
i=a

f(i) +

b∑
i=a

g(i).

Distributive law:
b∑
i=a

cf(i) = c
b∑
i=a

f(i).

More identities in Section 5.2.

Why??? It turns out that antiderivatives are related to area trapped
between curves. We’ll both see why this is true, and learn how to
estimate antiderivatives when computing them exactly is impossible.
(Think: derivative rules are great, but sometimes you just need limits.)
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