You try:

To summarize, we have 7 indeterminate form types:

$$\frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 0 \cdot \infty, \quad \infty - \infty, \quad \infty^0, \quad 0^0, \quad \text{and} \quad 1^{\infty}.$$

For each of the following limits, decide if the limit is an indeterminate form. If so, identify which indeterminate form it is.

1.
$$\lim_{x \to \infty} x - \ln(x)$$

2.
$$\lim_{x \to 0^+} x - \ln(x)$$

3.
$$\lim_{x \to \infty} x^x$$

4.
$$\lim_{x \to 0^+} x^x$$

5.
$$\lim_{x \to \infty} (1/x)^x$$

6.
$$\lim_{x \to 0^+} (1 + \sin(x))^{\cot(x)}$$

7.
$$\lim_{x \to \pi/2^+} \sec(x) - \tan(x)$$

Solving exponential indeterminate forms

Recall the property of limits, that if F(x) is continuous at L and $\lim_{x\to a} G(x) = L$, then

$$\lim_{x \to a} F(G(x)) = F\left(\lim_{x \to a} G(x)\right) = F(L).$$

In particular, since $F(x) = \ln(x)$ is continuous,

$$\ln\left(\lim_{x \to a} G(x)\right) = \lim_{x \to a} \ln(G(x)).$$

Since $\ln(x)$ is invertible over the positive real line, if I can compute the limit of $\ln(G(x))$, then I can solve for the limit of G(x).

Why do I like this? Logarithms turn exponentials into products!

$$\ln(f(x)^{g(x)}) = g(x)\ln(f(x))$$

Solving exponential indeterminate forms

Example: Compute $\lim_{x\to 0^+} x^x$. This has indeterminate form 0^0 . Let $L = \lim_{x\to 0^+} x^x$. Then

$$\ln(L) = \ln\left(\lim_{x \to 0^+} x^x\right) = \lim_{x \to 0^+} \ln(x^x) = \lim_{x \to 0^+} x \ln(x).$$

Now we've changed this into the indeterminate form $0 \cdot \infty$, which we know how to solve! We saw before that

$$\lim_{x \to 0^+} x \ln(x) = \lim_{x \to 0^+} \frac{\ln(x)}{x^{-1}} \stackrel{\text{L'H}}{=} \lim_{x \to 0^+} \frac{x^{-1}}{-x^{-2}} = \lim_{x \to 0^+} -x = 0.$$

So

$$\ln(L)=0, \quad \text{implying } L=e^0=1.$$
 So $\fbox{\lim_{x\to 0^+} x^x=1}.$

Solving exponential indeterminate forms

Say you want to compute $\lim_{x\to a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms (0^0 , ∞^0 , or 1^∞). Step 1: Let $L = \lim_{x\to a} f(x)^{g(x)}$. Then

$$\ln(L) = \lim_{x \to a} \ln(f(x)^{g(x)}) = \lim_{x \to a} g(x) \ln(f(x)).$$

Step 2: Simplify, and if necessary, use L'Hospital's rule to calculate $\lim_{x\to a} g(x) \ln(f(x)) = M$.

Step 3: Finally, $\ln(L) = M$ implies $L = e^M$ solves for L.

You try: Calculate the following limits.

(1)
$$\lim_{x \to \infty} x^{e^{-x}}$$
, (2) $\lim_{x \to \infty} (e^x)^{1/\ln(x)}$

(3)
$$\lim_{x \to 0^+} (1 + \sin(x))^{\cot(x)}$$
 (4) $\lim_{x \to 0^+} (1 + \sin(3x))^{\cot(x)}$
(recall, $\cos(0) = 1$, $\sin(0) = 0$)

Alternate solution for $\lim_{x\to\infty} (e^x)^{1/\ln(x)}$

I could have started by simplifying: $(e^a)^b = e^{ab}$, so that

$$\lim_{x \to \infty} (e^x)^{1/\ln(x)} = \lim_{x \to \infty} e^{x/\ln(x)}$$

Then, since e^x is continuous, we have (using notation $\exp(x) = e^x$)

$$\lim_{x \to \infty} e^{x/\ln(x)} = \exp\left(\lim_{x \to \infty} x/\ln(x)\right)$$
$$\stackrel{\text{L'H}}{=} \exp\left(\lim_{x \to \infty} 1/(1/x)\right) = \exp\left(\lim_{x \to \infty} x\right) = \infty.$$

Moral: There are no exact rules for how to do these problems. There are just lots of strategies. Get lots of practice!

Solving indeterminate forms of type $\infty - \infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $L = \lim_{x \to 0^+} \csc(x) - \cot(x)$. Note $1 = \cos(x) - \cos(x)$

$$\csc(x) - \cot(x) = \frac{1}{\sin(x)} - \frac{\cos(x)}{\sin(x)} = \frac{1 - \cos(x)}{\sin(x)}$$

So by L'Hospital,

$$L = \lim_{x \to 0^+} \frac{1 - \cos(x)}{\sin(x)} \stackrel{\text{L'H}}{=} \lim_{x \to 0^+} \frac{\sin(x)}{\cos(x)} = 0.$$

Solving indeterminate forms of type $\infty - \infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

- 1. Find a common denominator. Example: $\lim_{x\to 0^+} \csc(x) - \cot(x) = \lim_{x\to 0^+} \frac{1-\cos(x)}{\sin(x)} = 0.$
- 2. Use identities like $(a b)(a + b) = a^2 b^2$ to get rid of square roots.

Example: $L = \lim_{x \to \infty} x - \sqrt{x^2 - x}$. Note

$$x - \sqrt{x^2 - x} = (x - \sqrt{x^2 - x}) \left(\frac{x + \sqrt{x^2 - x}}{x + \sqrt{x^2 - x}}\right)$$
$$= \frac{(x)^2 - (\sqrt{x^2 - x})^2}{x + \sqrt{x^2 - x}} = \frac{x^2 - x^2 + x}{x + \sqrt{x^2 - x}} = \frac{x}{x + \sqrt{x^2 - x}}.$$

$$L = \lim_{x \to \infty} \frac{x}{x + \sqrt{x^2 - x}} \left(\frac{1/x}{1/x}\right) = \lim_{x \to \infty} \frac{1}{1 + \sqrt{1 - 1/x}} = 1/2$$

Solving indeterminate forms of type $\infty - \infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

- 1. Find a common denominator. Example: $\lim_{x\to 0^+} \csc(x) - \cot(x) = \lim_{x\to 0^+} \frac{1-\cos(x)}{\sin(x)} = 0.$
- 2. Use identities like $(a b)(a + b) = a^2 b^2$ to get rid of square roots.

Example:
$$\lim_{x \to \infty} x - \sqrt{x^2 - x} = \lim_{x \to \infty} \frac{x}{x + \sqrt{x^2 - x}} = 1/2$$

3. Take $\exp(L)$ and use $e^{a-b} = e^a/e^b$. Example: $L = \lim_{x\to\infty} \ln(x) - x^2$. Start with

$$e^{L} = \exp\left(\lim_{x \to \infty} \ln(x) - x^{2}\right) = \lim_{x \to \infty} e^{\ln(x) - x^{2}}$$

Then since $e^{\ln(x)-x^2} = e^{\ln(x)}/e^{x^2} = x/e^{x^2}$, we have

$$e^L = \lim_{x \to \infty} x/e^{x^2} = 0,$$
 so $L = -\infty.$

You try:

For each, find the limit. Use l'Hospital's rule where appropriate. If there is a more elementary method, consider using it.

1.
$$\lim_{x \to 0^+} \sin^{-1}(x)/x$$

2. $\lim_{x \to 1} \frac{x}{x-1} - \frac{1}{\ln(x)}$
3. $\lim_{x \to \infty} x \sin(\pi/x)$
4. $\lim_{x \to 0} \frac{\sqrt{1+2x} - \sqrt{1-4x}}{x}$
5. $\lim_{x \to \infty} x^{\ln(2)/(1+\ln(x))}$
6. $\lim_{x \to 0} \frac{\tan(x)}{\tanh(x)}$

Note: For extra practice, go back and prove the claims on the slides with the graphical examples.

Switching gears: Optimization Warm up

Sketch the graph of

$$f(x) = (x-3)(x-2)(x-1) = x^3 - 6x^2 + 11x - 6$$

over the interval [1,4]. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval? [useful value: $\sqrt{3}/3 \approx .6$]

Switching gears: Optimization Warm up

Sketch the graph of

$$f(x) = (x-3)(x-2)(x-1) = x^3 - 6x^2 + 11x - 6$$

over the interval [1, 4]. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval?

[useful value: $\sqrt{3}/3 \approx .6$]

Suppose you want to fence off a garden, and you have 100m of fence. What is the largest area that you can fence off?

Get it into math:

```
Know: 2x + 2y = 100 Want: Maximize A = xy
```

Problem: The area, xy, is a function of two variables!! **Strategy:** Use the first equation to get xy into one variable: Solve 2x + 2y = 100 (the "constraint") and plug into xy (the function you want to optimize).

$$2x + 2y = 100 \implies y = 50 - x$$

so $xy = x(50 - x) = 50x - x^2$.
Domain: $0 \le x \le 50$

New problem: Maximize $A(x) = 50x - x^2$ over the interval 0 < x < 50.

Solution: A'(x) = 50 - 2xSo the only critical point is when 50 - 2x = 0, so x = 25. **Three strategies** for finding the maximum: (1) First derivative test:

(2) Pretend we're on a closed interval, then throw out the endpoints:

x	A(x)	
25	625	max!
0	0	min
50	0	min

Since the maximum is not at one of the points I have to throw out, it must me a maximum on the open interval (there is no absolute minimum over the open interval (0, 50)).

(3) Second derivative test: A''(x) = -2 < 0 so A(25) = 625 must be a maximum. Now suppose, instead, you want to divide your plot up into three equal parts:

If you still only have 100 m of fence, what is the largest area that you can fence off?

Suppose you want to make a can which holds about 16 ounces (28.875 in³). If the material for the top and bottom of the can costs 4 φ/in^2 and the material for the sides of the can costs 3 φ/in^2 . What is the minimum cost for the can?

Get into one variable: Use the constraint!

$$\pi r^{2}h = 28.875 \implies h = \frac{28.875}{\pi}r^{-2} \implies C(r) = 8\pi r^{2} + 6\pi r \left(\frac{28.875}{\pi}r^{-2}\right)$$

So
$$\boxed{C(r) = 8\pi r^{2} + 6 * 28.875r^{-1}}$$

(Domain: $r > 0$)

New problem: Minimize $C(r) = 8\pi r^2 + 6 * 28.875r^{-1}$ for r > 0.

[hint: If you don't have a calculator, use the second derivative test!]

You try

1. An open-top box is to be made by cutting small congruent squares from the corners of a $12'' \times 12''$ sheet of cardboard and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible?

2. A rectangle is to be inscribed in a semicircle of radius 2. What is the largest area the rectangle can have, and what are its dimensions?

