You try:

To summarize, we have 7 indeterminate form types:

$$
\frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 0 \cdot \infty, \quad \infty-\infty, \quad \infty^{0}, \quad 0^{0}, \quad \text { and } \quad 1^{\infty} .
$$

For each of the following limits, decide if the limit is an indeterminate form. If so, identify which indeterminate form it is.

1. $\lim _{x \rightarrow \infty} x-\ln (x)$
2. $\lim _{x \rightarrow 0^{+}} x-\ln (x)$
3. $\lim _{x \rightarrow \infty} x^{x}$
4. $\lim _{x \rightarrow 0^{+}} x^{x}$
5. $\lim _{x \rightarrow \infty}(1 / x)^{x}$
6. $\lim _{x \rightarrow 0^{+}}(1+\sin (x))^{\cot (x)}$
7. $\lim _{x \rightarrow \pi / 2^{+}} \sec (x)-\tan (x)$

You try:

To summarize, we have 7 indeterminate form types:

$$
\frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 0 \cdot \infty, \quad \infty-\infty, \quad \infty^{0}, \quad 0^{0}, \quad \text { and } \quad 1^{\infty} .
$$

For each of the following limits, decide if the limit is an indeterminate form. If so, identify which indeterminate form it is.

1. $\lim _{x \rightarrow \infty} x-\ln (x)$
2. $\lim _{x \rightarrow 0^{+}} x-\ln (x)=0-(-\infty)=\infty$
3. $\lim _{x \rightarrow \infty} x^{x}=\infty$
4. $\lim _{x \rightarrow 0^{+}} x^{x}$
5. $\lim _{x \rightarrow \infty}(1 / x)^{x}=0$
6. $\lim _{x \rightarrow 0^{+}}(1+\sin (x))^{\cot (x)}$
7. $\lim _{x \rightarrow \pi / 2^{+}} \sec (x)-\tan (x)$

Ans: type $\infty-\infty$
Ans: not indet
Ans: not indet
Ans: type 0^{0}
Ans: not indet!
Ans: type 1^{∞}
Ans: type $\infty-\infty$

Solving exponential indeterminate forms

Recall the property of limits, that if $F(x)$ is continuous at L and $\lim _{x \rightarrow a} G(x)=L$, then

$$
\lim _{x \rightarrow a} F(G(x))=F\left(\lim _{x \rightarrow a} G(x)\right)=F(L) .
$$

Solving exponential indeterminate forms

Recall the property of limits, that if $F(x)$ is continuous at L and $\lim _{x \rightarrow a} G(x)=L$, then

$$
\lim _{x \rightarrow a} F(G(x))=F\left(\lim _{x \rightarrow a} G(x)\right)=F(L)
$$

In particular, since $F(x)=\ln (x)$ is continuous,

$$
\ln \left(\lim _{x \rightarrow a} G(x)\right)=\lim _{x \rightarrow a} \ln (G(x))
$$

Solving exponential indeterminate forms

Recall the property of limits, that if $F(x)$ is continuous at L and $\lim _{x \rightarrow a} G(x)=L$, then

$$
\lim _{x \rightarrow a} F(G(x))=F\left(\lim _{x \rightarrow a} G(x)\right)=F(L) .
$$

In particular, since $F(x)=\ln (x)$ is continuous,

$$
\ln \left(\lim _{x \rightarrow a} G(x)\right)=\lim _{x \rightarrow a} \ln (G(x))
$$

Since $\ln (x)$ is invertible over the positive real line, if I can compute the limit of $\ln (G(x))$, then I can solve for the limit of $G(x)$.

Solving exponential indeterminate forms

Recall the property of limits, that if $F(x)$ is continuous at L and $\lim _{x \rightarrow a} G(x)=L$, then

$$
\lim _{x \rightarrow a} F(G(x))=F\left(\lim _{x \rightarrow a} G(x)\right)=F(L)
$$

In particular, since $F(x)=\ln (x)$ is continuous,

$$
\ln \left(\lim _{x \rightarrow a} G(x)\right)=\lim _{x \rightarrow a} \ln (G(x))
$$

Since $\ln (x)$ is invertible over the positive real line, if I can compute the limit of $\ln (G(x))$, then I can solve for the limit of $G(x)$.
Why do I like this? Logarithms turn exponentials into products!

$$
\ln \left(f(x)^{g(x)}\right)=g(x) \ln (f(x))
$$

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$.

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$. This has indeterminate form 0^{0}.

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$. This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)
$$

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$. This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x)
$$

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$. This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x)
$$

Now we've changed this into the indeterminate form $0 \cdot \infty$, which we know how to solve!

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$.
This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x)
$$

Now we've changed this into the indeterminate form $0 \cdot \infty$, which we know how to solve! We saw before that

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1}} \xlongequal{\underline{\mathrm{~L}^{\prime} \mathrm{H}}} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0
$$

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$.
This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x)
$$

Now we've changed this into the indeterminate form $0 \cdot \infty$, which we know how to solve! We saw before that

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1}} \xlongequal{\underline{\mathrm{~L}^{\prime} \mathrm{H}}} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0
$$

So

$$
\ln (L)=0
$$

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$.
This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x)
$$

Now we've changed this into the indeterminate form $0 \cdot \infty$, which we know how to solve! We saw before that

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1}} \xlongequal{\mathrm{~L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0 .
$$

So

$$
\ln (L)=0, \quad \text { implying } L=e^{0}=1
$$

Solving exponential indeterminate forms

Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$.
This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x)
$$

Now we've changed this into the indeterminate form $0 \cdot \infty$, which we know how to solve! We saw before that

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1}} \xlongequal{\mathrm{~L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0 .
$$

So

$$
\ln (L)=0, \quad \text { implying } L=e^{0}=1
$$

So $\lim _{x \rightarrow 0^{+}} x^{x}=1$.

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.
Step 1: Let $L=\lim _{x \rightarrow a} f(x)^{g(x)}$.

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.
Step 1: Let $L=\lim _{x \rightarrow a} f(x)^{g(x)}$. Then

$$
\ln (L)=\lim _{x \rightarrow a} \ln \left(f(x)^{g(x)}\right)=\lim _{x \rightarrow a} g(x) \ln (f(x))
$$

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.
Step 1: Let $L=\lim _{x \rightarrow a} f(x)^{g(x)}$. Then

$$
\ln (L)=\lim _{x \rightarrow a} \ln \left(f(x)^{g(x)}\right)=\lim _{x \rightarrow a} g(x) \ln (f(x)) .
$$

Step 2: Simplify, and if necessary, use L'Hospital's rule to calculate $\lim _{x \rightarrow a} g(x) \ln (f(x))=M$.

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.
Step 1: Let $L=\lim _{x \rightarrow a} f(x)^{g(x)}$. Then

$$
\ln (L)=\lim _{x \rightarrow a} \ln \left(f(x)^{g(x)}\right)=\lim _{x \rightarrow a} g(x) \ln (f(x)) .
$$

Step 2: Simplify, and if necessary, use L'Hospital's rule to calculate $\lim _{x \rightarrow a} g(x) \ln (f(x))=M$.
Step 3: Finally, $\ln (L)=M$ implies $L=e^{M}$ solves for L.

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.
Step 1: Let $L=\lim _{x \rightarrow a} f(x)^{g(x)}$. Then

$$
\ln (L)=\lim _{x \rightarrow a} \ln \left(f(x)^{g(x)}\right)=\lim _{x \rightarrow a} g(x) \ln (f(x)) .
$$

Step 2: Simplify, and if necessary, use L'Hospital's rule to calculate

$$
\lim _{x \rightarrow a} g(x) \ln (f(x))=M
$$

Step 3: Finally, $\ln (L)=M$ implies $L=e^{M}$ solves for L.
You try: Calculate the following limits.

$$
\begin{gathered}
\text { (1) } \lim _{x \rightarrow \infty} x^{e^{-x}}, \quad \text { (2) } \lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)} \\
\text { (3) } \lim _{x \rightarrow 0^{+}}(1+\sin (x))^{\cot (x)} \quad \text { (4) } \lim _{x \rightarrow 0^{+}}(1+\sin (3 x))^{\cot (x)} \\
\text { (recall, } \cos (0)=1, \sin (0)=0)
\end{gathered}
$$

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.
Step 1: Let $L=\lim _{x \rightarrow a} f(x)^{g(x)}$. Then

$$
\ln (L)=\lim _{x \rightarrow a} \ln \left(f(x)^{g(x)}\right)=\lim _{x \rightarrow a} g(x) \ln (f(x)) .
$$

Step 2: Simplify, and if necessary, use L'Hospital's rule to calculate $\lim _{x \rightarrow a} g(x) \ln (f(x))=M$.
Step 3: Finally, $\ln (L)=M$ implies $L=e^{M}$ solves for L.
You try: Calculate the following limits.

$$
\text { (1) } \lim _{x \rightarrow \infty} x^{e^{-x}}, \quad \text { (2) } \lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}
$$

(3) $\lim _{x \rightarrow 0^{+}}(1+\sin (x))^{\cot (x)}$
(4) $\lim _{x \rightarrow 0^{+}}(1+\sin (3 x))^{\cot (x)}$

$$
\text { (recall, } \cos (0)=1, \sin (0)=0 \text {) }
$$

Answers: $1, \infty, e, e^{3}$.

Alternate solution for $\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}$

I could have started by simplifying: $\left(e^{a}\right)^{b}=e^{a b}$, so that

$$
\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}=\lim _{x \rightarrow \infty} e^{x / \ln (x)}
$$

Alternate solution for $\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}$

I could have started by simplifying: $\left(e^{a}\right)^{b}=e^{a b}$, so that

$$
\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}=\lim _{x \rightarrow \infty} e^{x / \ln (x)}
$$

Then, since e^{x} is continuous, we have (using notation $\exp (x)=e^{x}$)

$$
\lim _{x \rightarrow \infty} e^{x / \ln (x)}=\exp \left(\lim _{x \rightarrow \infty} x / \ln (x)\right)
$$

Alternate solution for $\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}$

I could have started by simplifying: $\left(e^{a}\right)^{b}=e^{a b}$, so that

$$
\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}=\lim _{x \rightarrow \infty} e^{x / \ln (x)}
$$

Then, since e^{x} is continuous, we have (using notation $\exp (x)=e^{x}$)

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} e^{x / \ln (x)}=\exp \left(\lim _{x \rightarrow \infty} x / \ln (x)\right) \\
\stackrel{\underline{\mathrm{L}^{\prime} \mathrm{H}}}{\underline{e}} \exp \left(\lim _{x \rightarrow \infty} 1 /(1 / x)\right)
\end{array}
$$

Alternate solution for $\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}$

I could have started by simplifying: $\left(e^{a}\right)^{b}=e^{a b}$, so that

$$
\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}=\lim _{x \rightarrow \infty} e^{x / \ln (x)}
$$

Then, since e^{x} is continuous, we have (using notation $\exp (x)=e^{x}$)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} e^{x / \ln (x)} & =\exp \left(\lim _{x \rightarrow \infty} x / \ln (x)\right) \\
& \stackrel{\text { L'H }}{=} \exp \left(\lim _{x \rightarrow \infty} 1 /(1 / x)\right)=\exp \left(\lim _{x \rightarrow \infty} x\right)
\end{aligned}
$$

Alternate solution for $\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}$

I could have started by simplifying: $\left(e^{a}\right)^{b}=e^{a b}$, so that

$$
\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}=\lim _{x \rightarrow \infty} e^{x / \ln (x)}
$$

Then, since e^{x} is continuous, we have (using notation $\exp (x)=e^{x}$)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} e^{x / \ln (x)} & =\exp \left(\lim _{x \rightarrow \infty} x / \ln (x)\right) \\
& \stackrel{\text { L'H }}{=} \exp \left(\lim _{x \rightarrow \infty} 1 /(1 / x)\right)=\exp \left(\lim _{x \rightarrow \infty} x\right)=\infty .
\end{aligned}
$$

Alternate solution for $\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}$

I could have started by simplifying: $\left(e^{a}\right)^{b}=e^{a b}$, so that

$$
\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}=\lim _{x \rightarrow \infty} e^{x / \ln (x)}
$$

Then, since e^{x} is continuous, we have (using notation $\exp (x)=e^{x}$)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} e^{x / \ln (x)} & =\exp \left(\lim _{x \rightarrow \infty} x / \ln (x)\right) \\
& \stackrel{\text { L'H }}{=} \exp \left(\lim _{x \rightarrow \infty} 1 /(1 / x)\right)=\exp \left(\lim _{x \rightarrow \infty} x\right)=\infty .
\end{aligned}
$$

Moral: There are no exact rules for how to do these problems. There are just lots of strategies. Get lots of practice!

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $L=\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)$.

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $L=\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)$. Note

$$
\csc (x)-\cot (x)=\frac{1}{\sin (x)}-\frac{\cos (x)}{\sin (x)}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $L=\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)$. Note

$$
\csc (x)-\cot (x)=\frac{1}{\sin (x)}-\frac{\cos (x)}{\sin (x)}=\frac{1-\cos (x)}{\sin (x)}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $L=\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)$. Note

$$
\csc (x)-\cot (x)=\frac{1}{\sin (x)}-\frac{\cos (x)}{\sin (x)}=\frac{1-\cos (x)}{\sin (x)}
$$

So by L'Hospital,

$$
L=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)} \xlongequal{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{\cos (x)}=0
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$.

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right)
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{aligned}
& x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
= & \frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}
\end{aligned}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{aligned}
& x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
= & \frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}=\frac{x^{2}-x^{2}+x}{x+\sqrt{x^{2}-x}}
\end{aligned}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{gathered}
x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
=\frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}=\frac{x^{2}-x^{2}+x}{x+\sqrt{x^{2}-x}}=\frac{x}{x+\sqrt{x^{2}-x}} .
\end{gathered}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{aligned}
& x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
= & \frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}=\frac{x^{2}-x^{2}+x}{x+\sqrt{x^{2}-x}}=\frac{x}{x+\sqrt{x^{2}-x}} .
\end{aligned}
$$

So

$$
L=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{gathered}
x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
=\frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}=\frac{x^{2}-x^{2}+x}{x+\sqrt{x^{2}-x}}=\frac{x}{x+\sqrt{x^{2}-x}} .
\end{gathered}
$$

So

$$
L=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}\left(\frac{1 / x}{1 / x}\right)
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{gathered}
x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
=\frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}=\frac{x^{2}-x^{2}+x}{x+\sqrt{x^{2}-x}}=\frac{x}{x+\sqrt{x^{2}-x}} .
\end{gathered}
$$

So

$$
L=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}\left(\frac{1 / x}{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{1}{1+\sqrt{1-1 / x}}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{gathered}
x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
=\frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}=\frac{x^{2}-x^{2}+x}{x+\sqrt{x^{2}-x}}=\frac{x}{x+\sqrt{x^{2}-x}} .
\end{gathered}
$$

So

$$
L=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}\left(\frac{1 / x}{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{1}{1+\sqrt{1-1 / x}}=1 / 2
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Example: $L=\lim _{x \rightarrow \infty} \ln (x)-x^{2}$.

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Example: $L=\lim _{x \rightarrow \infty} \ln (x)-x^{2}$. Start with

$$
e^{L}=\exp \left(\lim _{x \rightarrow \infty} \ln (x)-x^{2}\right)=\lim _{x \rightarrow \infty} e^{\ln (x)-x^{2}}
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Example: $L=\lim _{x \rightarrow \infty} \ln (x)-x^{2}$. Start with

$$
e^{L}=\exp \left(\lim _{x \rightarrow \infty} \ln (x)-x^{2}\right)=\lim _{x \rightarrow \infty} e^{\ln (x)-x^{2}}
$$

Then since $e^{\ln (x)-x^{2}}=e^{\ln (x)} / e^{x^{2}}$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Example: $L=\lim _{x \rightarrow \infty} \ln (x)-x^{2}$. Start with

$$
e^{L}=\exp \left(\lim _{x \rightarrow \infty} \ln (x)-x^{2}\right)=\lim _{x \rightarrow \infty} e^{\ln (x)-x^{2}}
$$

Then since $e^{\ln (x)-x^{2}}=e^{\ln (x)} / e^{x^{2}}=x / e^{x^{2}}$,

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Example: $L=\lim _{x \rightarrow \infty} \ln (x)-x^{2}$. Start with

$$
e^{L}=\exp \left(\lim _{x \rightarrow \infty} \ln (x)-x^{2}\right)=\lim _{x \rightarrow \infty} e^{\ln (x)-x^{2}}
$$

Then since $e^{\ln (x)-x^{2}}=e^{\ln (x)} / e^{x^{2}}=x / e^{x^{2}}$, we have

$$
e^{L}=\lim _{x \rightarrow \infty} x / e^{x^{2}}=0
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Example: $L=\lim _{x \rightarrow \infty} \ln (x)-x^{2}$. Start with

$$
e^{L}=\exp \left(\lim _{x \rightarrow \infty} \ln (x)-x^{2}\right)=\lim _{x \rightarrow \infty} e^{\ln (x)-x^{2}}
$$

Then since $e^{\ln (x)-x^{2}}=e^{\ln (x)} / e^{x^{2}}=x / e^{x^{2}}$, we have

$$
e^{L}=\lim _{x \rightarrow \infty} x / e^{x^{2}}=0, \quad \text { so } L=-\infty
$$

You try:

For each, find the limit. Use l'Hospital's rule where appropriate. If there is a more elementary method, consider using it.

1. $\lim _{x \rightarrow 0^{+}} \sin ^{-1}(x) / x$
2. $\lim _{x \rightarrow 1} \frac{x}{x-1}-\frac{1}{\ln (x)}$
3. $\lim _{x \rightarrow \infty} x \sin (\pi / x)$
4. $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-4 x}}{x}$
5. $\lim _{x \rightarrow \infty} x^{\ln (2) /(1+\ln (x))}$
6. $\lim _{x \rightarrow 0} \frac{\tan (x)}{\tanh (x)}$

Note: For extra practice, go back and prove the claims on the slides with the graphical examples.

You try:

For each, find the limit. Use l'Hospital's rule where appropriate. If there is a more elementary method, consider using it.

```
1. \(\lim _{x \rightarrow 0^{+}} \sin ^{-1}(x) / x\)
2. \(\lim _{x \rightarrow 1} \frac{x}{x-1}-\frac{1}{\ln (x)}\)
3. \(\lim _{x \rightarrow \infty} x \sin (\pi / x)\)
4. \(\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-4 x}}{x}\)
5. \(\lim _{x \rightarrow \infty} x^{\ln (2) /(1+\ln (x))}\)
6. \(\lim _{x \rightarrow 0} \frac{\tan (x)}{\tanh (x)}\)
2. \(\lim _{x \rightarrow 1} \frac{x}{x-1}-\frac{1}{\ln (x)}\)
3. \(\lim _{x \rightarrow \infty} x \sin (\pi / x)\)
4. \(\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-4 x}}{x}\)
5. \(\lim _{x \rightarrow \infty} x^{\ln (2) /(1+\ln (x))}\)
```

Ans: $1 / 2$
Ans: π
Ans: 3
Ans: 2

Ans: 1

Ans: $1 / 2$
Ans: π

Ans: 3
Ans: 2

Ans: 1

Note: For extra practice, go back and prove the claims on the slides with the graphical examples.

Switching gears: Optimization Warm up

Sketch the graph of

$$
f(x)=(x-3)(x-2)(x-1)=x^{3}-6 x^{2}+11 x-6
$$

over the interval $[1,4]$. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval?
[useful value: $\sqrt{3} / 3 \approx .6$]

Switching gears: Optimization Warm up

Sketch the graph of

$$
f(x)=(x-3)(x-2)(x-1)=x^{3}-6 x^{2}+11 x-6
$$

over the interval $[1,4]$. Mark any critical points and inflection points. What is the absolute maximum over this interval? What is the absolute minimum over this interval?
[useful value: $\sqrt{3} / 3 \approx .6$]

$$
f^{\prime}(x)=3 x^{2}-12 x+11=3(x-(2-\sqrt{3} / 3))(x-(2+\sqrt{3} / 3))
$$

$$
f^{\prime \prime}(x)=6 x-12=6(x-2)
$$

$$
\begin{aligned}
& f(2-\sqrt{3} / 3) \approx 0.385 \\
& f(2+\sqrt{3} / 3) \approx-0.385
\end{aligned}
$$

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:
Know: $\quad 2 x+2 y=100 \quad$ Want: Maximize $A=x y$

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:
Know: $\quad 2 x+2 y=100 \quad$ Want: \quad Maximize $A=x y$
Problem: The area, $x y$, is a function of two variables!!

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: } \quad \text { Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!!
Strategy: Use the first equation to get $x y$ into one variable: Solve $2 x+2 y=100$ (the "constraint") and plug into $x y$ (the function you want to optimize).

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: } \quad \text { Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!!
Strategy: Use the first equation to get $x y$ into one variable: Solve $2 x+2 y=100$ (the "constraint") and plug into $x y$ (the function you want to optimize).

$$
2 x+2 y=100 \quad \Longrightarrow \quad y=50-x
$$

$$
\text { so } x y=x(50-x)=50 x-x^{2}
$$

Suppose you want to fence off a garden, and you have 100 m of fence. What is the largest area that you can fence off?

Get it into math:

$$
\text { Know: } \quad 2 x+2 y=100 \quad \text { Want: } \quad \text { Maximize } A=x y
$$

Problem: The area, $x y$, is a function of two variables!!
Strategy: Use the first equation to get $x y$ into one variable: Solve $2 x+2 y=100$ (the "constraint") and plug into $x y$ (the function you want to optimize).

$$
2 x+2 y=100 \quad \Longrightarrow \quad y=50-x
$$

$$
\text { so } x y=x(50-x)=50 x-x^{2}
$$

Domain: $0 \leq x \leq 50$

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.
Solution: $A^{\prime}(x)=50-2 x$
So the only critical point is when $50-2 x=0$, so $x=25$.

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

Solution: $A^{\prime}(x)=50-2 x$
So the only critical point is when $50-2 x=0$, so $x=25$.
Three strategies for finding the maximum:
(1) First derivative test:
(2) Pretend we're on a closed interval, then throw out the endpoints:
(3) Second derivative test:

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

Solution: $A^{\prime}(x)=50-2 x$
So the only critical point is when $50-2 x=0$, so $x=25$.
Three strategies for finding the maximum:
(1) First derivative test:

(2) Pretend we're on a closed interval, then throw out the endpoints:
(3) Second derivative test:

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

Solution: $A^{\prime}(x)=50-2 x$
So the only critical point is when $50-2 x=0$, so $x=25$.
Three strategies for finding the maximum:
(1) First derivative test:

(2) Pretend we're on a closed interval, then throw out the endpoints:

x	$A(x)$	
25	625	$\max !$
0	0	min
50	0	\min

Since the maximum is not at one of the points I have to throw out, it must me a maximum on the open interval (there is no absolute minimum over the open interval $(0,50)$).
(3) Second derivative test:

New problem: Maximize $A(x)=50 x-x^{2}$ over the interval $0<x<50$.

Solution: $A^{\prime}(x)=50-2 x$
So the only critical point is when $50-2 x=0$, so $x=25$.
Three strategies for finding the maximum:
(1) First derivative test:

$$
\text { So } A(25)=625 \text { is maximal. }
$$

(2) Pretend we're on a closed interval, then throw out the endpoints:

x	$A(x)$	
25	625	$\max !$
0	0	min
50	0	\min

Since the maximum is not at one of the points I have to throw out, it must me a maximum on the open interval (there is no absolute minimum over the open interval $(0,50)$).
(3) Second derivative test:

$$
A^{\prime \prime}(x)=-2<0 \text { so } A(25)=625 \text { must be a maximum. }
$$

Now suppose, instead, you want to divide your plot up into three equal parts:

If you still only have 100 m of fence, what is the largest area that you can fence off?

Now suppose, instead, you want to divide your plot up into three equal parts:

If you still only have 100 m of fence, what is the largest area that you can fence off?
Solution:
Constraint: $2 x+4 y=100$, so $y=25-\frac{1}{2} x$.
Maximize: $A=x y$ over $0<x<50$.
Plug in constraint: $A(x)=x(25-x / 2)=25 x-x^{2} / 2$
Find critical points: $0=A^{\prime}(x)=25-x$, so $x=25$.
Second derivative test: $A^{\prime \prime}(x)=-1<0$ so $A(25)=25 * 12.5$ is a maximum.

Suppose you want to make a can which holds about 16 ounces (28.875 $\left.\mathrm{in}^{3}\right)$. If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Put into math:

Constraint: $V=\pi r^{2} h=28.875$.
Cost: $4 *$ (SA of top + bottom) $+3 *$ (SA of side)

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \% / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \% / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Get into one variable: Use the constraint!

$$
\pi r^{2} h=28.875 \Longrightarrow h=\frac{28.875}{\pi} r^{-2}
$$

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 \oint / \mathrm{in}^{2}$. What is the minimum cost for the can?

Get into one variable: Use the constraint!
$\pi r^{2} h=28.875 \Longrightarrow h=\frac{28.875}{\pi} r^{-2} \Longrightarrow C(r)=8 \pi r^{2}+6 \pi r\left(\frac{28.875}{\pi} r^{-2}\right)$
So

$$
C(r)=8 \pi r^{2}+6 * 28.875 r^{-1}
$$

Suppose you want to make a can which holds about 16 ounces (28.875 in^{3}). If the material for the top and bottom of the can costs $4 \mathrm{c} / \mathrm{in}^{2}$ and the material for the sides of the can costs $3 ¢ / \mathrm{in}^{2}$. What is the minimum cost for the can?

Get into one variable: Use the constraint!
$\pi r^{2} h=28.875 \Longrightarrow h=\frac{28.875}{\pi} r^{-2} \Longrightarrow C(r)=8 \pi r^{2}+6 \pi r\left(\frac{28.875}{\pi} r^{-2}\right)$
So

$$
C(r)=8 \pi r^{2}+6 * 28.875 r^{-1}
$$

(Domain: $r>0$)

$$
\text { New problem: Minimize } C(r)=8 \pi r^{2}+6 * 28.875 r^{-1} \text { for } r>0
$$

[hint: If you don't have a calculator, use the second derivative test!]

New problem: Minimize $C(r)=8 \pi r^{2}+6 * 28.875 r^{-1}$ for $r>0$.
[hint: If you don't have a calculator, use the second derivative test!] Solution: $(6 * 28.875=173.25)$

$$
C^{\prime}(r)=16 \pi r-173.25 r^{-2}=\frac{1}{r^{2}}\left(16 \pi r^{3}-173.25\right)
$$

Critical point: $C^{\prime}(r)=\sqrt[3]{\frac{173.25}{16 \pi}} \approx 1.031$
Second derivative test: $C^{\prime \prime}(r)=16 \pi+173.25 r^{-3}>0$ when $r>0$,
so $C(r)$ is concave up, and so $C\left(\sqrt[3]{\frac{173.25}{16 \pi}}\right)$ is a minimum.
Minimal value: $C\left(\sqrt[3]{\frac{173.25}{16 \pi}}\right) \approx 80.2041$ ¢

You try

1. An open-top box is to be made by cutting small congruent squares from the corners of a 12 " $\times 12^{\prime \prime}$ sheet of cardboard and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible?

2. A rectangle is to be inscribed in a semicircle of radius 2 . What is the largest area the rectangle can have, and what are its dimensions?

Hint:

