Warm up

Compute the following limits.

1. $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x^{2}}$
3. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x-1}{5 x^{2}-7}$
4. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+2 x-1}{5 x-7}$
5. $\lim _{x \rightarrow 0} \frac{x}{x+1}$

More on limits, indeterminate forms, and L'Hospital's rule

Consider the function

$$
F(x)=\frac{\ln (x)}{x-1} .
$$

As $x \rightarrow 1$, both the numerator and the denominator approach 0 . Both approach somewhat slowly, but does one go faster than the other? Or does it approach some interesting ratio? Similar question for $x \rightarrow \infty$, where both the numerator and denominator approach ∞.

Indeterminate forms are ratios where the numerator and the denominator each either approach 0 , or each approach $\pm \infty$.
So far, we've been able to calculate limits with indeterminate forms through algebraic tricks or substitution, or recognizing limits as derivatives.

Past examples of solving indeterminate forms

1. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+x}{5 x^{2}-1}\left(\frac{x^{-2}}{x^{-2}}\right)=\lim _{x \rightarrow \infty} \frac{3+x^{-1}}{5-x^{-2}}=\frac{3}{5}$
2. $\lim _{x \rightarrow-\infty} \frac{3 e^{2 x}+e^{x}}{5 e^{2 x}-e^{x}}\left(\frac{e^{-x}}{e^{-x}}\right)=\lim _{x \rightarrow \infty} \frac{3 e^{x}+1}{5 e^{x}-1}=\frac{0+1}{0-1}=-1$
3. $\lim _{x \rightarrow \pi} \frac{e^{\sin (x)}-1}{x-\pi}$

Recall, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
Note, $\left.e^{\sin (x)}\right|_{x=\pi}=e^{\sin (\pi)}=e^{0}=1$.
So

$$
\lim _{x \rightarrow \pi} \frac{e^{\sin (x)}-1}{x-\pi}=\left.\frac{d}{d x} e^{\sin (x)}\right|_{x=\pi}=\left.\cos (x) e^{\sin (x)}\right|_{x=\pi}=(-1) e^{0}=-1
$$

So similarly, since $\ln (1)=0$,

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}=\left.\frac{d}{d x} \ln (x)\right|_{x=1}=\left.\frac{1}{x}\right|_{x=1}=1 .
$$

L'Hospital's rule

L'Hospital's rule relates the limit of the ratio of two functions to the limit of the ratio of their derivatives.
Consider differentiable functions $f(x)$ and $g(x)$ such that

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x),
$$

and $g^{\prime}(x) \neq 0$ for x close to but not equal to a. Then

$$
\begin{gathered}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{f(x)}{x-a}, \text { and } \\
g^{\prime}(a)=\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=\lim _{x \rightarrow a} \frac{g(x)}{x-a} .
\end{gathered}
$$

(If f or g are not defined at a, we can still work around this...)
So

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}=\lim _{x \rightarrow a} \frac{f(x)(x-a)}{(x-a) g(x)}=\lim _{x \rightarrow a} \frac{f(x)}{g(x)} .
$$

L'Hospital's rule

Theorem

Suppose f and g are differentiable functions and $g^{\prime}(x) \neq 0$ for x close to but not equal to a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=0=\lim _{x \rightarrow a} g(x) \quad \text { or } \quad \lim _{x \rightarrow a} f(x)= \pm \infty=\lim _{x \rightarrow a} g(x) .
$$

Then if the limit of $f^{\prime}(x) / g^{\prime}(x)$ as $x \rightarrow a$ exists (or is $\pm \infty$), we have

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

The same holds for $x \rightarrow \pm \infty$ and one-sided limits $x \rightarrow a^{ \pm}$.
Example. Let's recheck $\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}$.
$\ln (x)$ and $x-1$ differentiable? $\checkmark \quad g^{\prime}(x)=1 \neq 0 \checkmark$, $\ln (x) \rightarrow 0$ and $x-1 \rightarrow 0$ as $x \rightarrow 1 \checkmark$

$$
\lim _{x \rightarrow 1} \frac{\ln (x)}{x-1}=\lim _{x \rightarrow 1} \frac{1 / x}{1}=1 \checkmark
$$

L'Hospital's rule: if f and g are differentiable, $g^{\prime}(x) \neq 0$ near a (but $g^{\prime}(a)=0$ is ok), and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \text { or } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)= \pm \infty
$$

then

$$
\lim _{x \rightarrow a} f(x) / g(x)=\lim _{x \rightarrow a} f^{\prime}(x) / g^{\prime}(x)
$$

Same goes for one-sided limits and $x \rightarrow \pm \infty$.
You try: For each of the following, verify that you can use
L'Hospital's rule to calculate the limit, and then do so.
(1) $\lim _{x \rightarrow \pi} \frac{e^{\sin (x)}-1}{x-\pi}$
(2) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x}$
(3) $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}$

Each of the following has some reason why you can't use L'Hospital's rule. For each, what is the reason?
(1) $\lim _{x \rightarrow 0} \frac{x}{|x|}$
(2) $\lim _{x \rightarrow 0^{+}} \frac{x}{\lfloor x\rfloor}$
(3) $\lim _{x \rightarrow \pi} \frac{\sin (x)}{1-\cos (x)}$
(Recall, $\lfloor x\rfloor$ is the floor function, and gives back the biggest integer less than or equal to x, i.e. $\lfloor 2.1\rfloor=2,\lfloor-2.1\rfloor=-3$, $\lfloor 1\rfloor=1$, etc..)

exponentials \gg powers \gg logarithms

Question: How does e^{x} grow versus x^{a} ?

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x} \xlongequal{\text { L'H }} \lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\infty \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}} \xlongequal{\text { L'H }^{\prime}} \lim _{x \rightarrow \infty} \frac{e^{x}}{2 x} \xlongequal{\text { L'H }} \lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}} \xlongequal{\text { L'H }} \lim _{x \rightarrow \infty} \frac{e^{x}}{3 x^{2}} \xlongequal{\text { L'H }^{\prime}} \lim _{x \rightarrow \infty} \frac{e^{x}}{6 x} \xlongequal{\text { L'H }^{\prime} \mathrm{H}} \lim _{x \rightarrow \infty} \frac{e^{x}}{6}=\infty \\
& \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3 / 2}} \xlongequal{\text { L'H }} \lim _{x \rightarrow \infty} \frac{e^{x}}{\frac{3}{2} x^{1 / 2}} \xlongequal{\text { L'H }} \lim _{x \rightarrow \infty} \frac{2}{3} \frac{e^{x}}{\frac{1}{2} x^{-1 / 2}}=\lim _{x \rightarrow \infty} \frac{4}{3} e^{x} x^{1 / 2}=\infty
\end{aligned}
$$

For any a, there is some n for which $\frac{d^{n}}{d x^{n}} x^{a}$ is some constant times x^{a-n} such that $a-n \leq 0$. So

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{a}}=\infty \quad \text { for all } a!
$$

You try: For what a does $x^{a} / \ln (x)$ approach ∞ as $x \rightarrow \infty$?

Other indeterminate forms

Our first two indeterminate forms were
(1) $f / g \quad$ if $\quad f, g \rightarrow \pm \infty \quad$ and
(2) f / g if $f, g \rightarrow 0$
(called type ∞ / ∞ and type $0 / 0$). They're indeterminate since any number of things can happen. For example, as $x \rightarrow 0^{+}$,

$$
\frac{e^{x}-1}{x} \rightarrow 1 \quad \frac{e^{x}-1}{x^{2}} \rightarrow \infty \quad \frac{e^{x}-1}{\sqrt{x}} \rightarrow 0
$$

To this list, we add

$$
\text { (3) } f g \text { if } f \rightarrow 0 \text { and } g \rightarrow \pm \infty
$$

Notice, if $g(x) \rightarrow 0^{ \pm}$, then $1 / g(x) \rightarrow \pm \infty$.
Example: Compute $\lim _{x \rightarrow 0^{+}} x \ln (x)$. We rewrite this as

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1}} \xlongequal{\mathrm{~L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=-\lim _{x \rightarrow 0^{+}} x=0 .
$$

Other indeterminate forms

(4) $f-g \quad$ if $\quad f, g \rightarrow \infty$ (called type $\infty-\infty$)

For example, as $x \rightarrow \infty$,

(5) f^{g} if $f, g \rightarrow 0$ (called type 0^{0})

For example, as $x \rightarrow \infty$,

Other indeterminate forms

(6) $f^{g} \quad$ if $\quad f \rightarrow \infty$ and $g \rightarrow 0$ (called type ∞^{0})

For example, as $x \rightarrow \infty$,

(7) $f^{g} \quad$ if $\quad f \rightarrow 1$ and $g \rightarrow \infty$ (called type 1^{∞})

For example, as $x \rightarrow \infty$,

You try:

To summarize, we have 7 indeterminate form types:

$$
\frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 0 \cdot \infty, \quad \infty-\infty, \quad \infty^{0}, \quad 0^{0}, \quad \text { and } \quad 1^{\infty} .
$$

For each of the following limits, decide if the limit is an indeterminate form. If so, identify which indeterminate form it is. I

1. $\lim _{x \rightarrow \infty} x-\ln (x)$
2. $\lim _{x \rightarrow 0^{+}} x-\ln (x)$
3. $\lim _{x \rightarrow \infty} x^{x}$
4. $\lim _{x \rightarrow 0^{+}} x^{x}$
5. $\lim _{x \rightarrow \infty}(1 / x)^{x}$
6. $\lim _{x \rightarrow 0^{+}}(1+\sin (x))^{\cot (x)}$
7. $\lim _{x \rightarrow \pi / 2^{+}} \sec (x)-\tan (x)$

Solving exponential indeterminate forms

Recall the property of limits, that if $F(x)$ is continuous at L and $\lim _{x \rightarrow a} G(x)=L$, then

$$
\lim _{x \rightarrow a} F(G(x))=f\left(\lim _{x \rightarrow a} G(x)\right)=F(L) .
$$

In particular, since $F(x)=\ln (x)$ is continuous,

$$
\ln \left(\lim _{x \rightarrow a} G(x)\right)=\lim _{x \rightarrow a} \ln (G(x))
$$

Since $\ln (x)$ is invertible over the positive real line, if I can compute the limit of $\ln (G(x))$, then I can solve for the limit of $G(x)$.

Why do I like this? Logarithms turn exponentials into products!

$$
\ln \left(f(x)^{g(x)}\right)=g(x) \ln (f(x))
$$

Solving exponential indeterminate forms
Example: Compute $\lim _{x \rightarrow 0^{+}} x^{x}$.
This has indeterminate form 0^{0}.
Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. Then

$$
\ln (L)=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right)=\lim _{x \rightarrow 0^{+}} x \ln (x) .
$$

Now we've changed this into the indeterminate form $0 \cdot \infty$, which we know how to solve! We saw before that

$$
\lim _{x \rightarrow 0^{+}} x \ln (x)=\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{x^{-1}} \xlongequal{\text { L'H }^{\prime}} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0^{+}}-x=0 .
$$

So

$$
\ln (L)=0, \quad \text { implying } L=e^{0}=1 .
$$

So

$$
\lim _{x \rightarrow 0^{+}} x^{x}=1 \text {. }
$$

Solving exponential indeterminate forms

Say you want to compute $\lim _{x \rightarrow a} f(x)^{g(x)}$, where $f(x)^{g(x)}$ approaches one of the three indeterminate forms $\left(0^{0}, \infty^{0}\right.$, or $\left.1^{\infty}\right)$.
Step 1: Let $L=\lim _{x \rightarrow a} f(x)^{g(x)}$. Then

$$
\ln (L)=\lim _{x \rightarrow a} \ln \left(f(x)^{g(x)}\right)=\lim _{x \rightarrow a} g(x) \ln (f(x)) .
$$

Step 2: Simplify, and if necessary, use L'Hospital's rule to calculate $\lim _{x \rightarrow a} g(x) \ln (f(x))=M$.
Step 3: Finally, $\ln (L)=M$ implies $L=e^{M}$ solves for L.
You try: Calculate the following limits.

$$
\text { (1) } \lim _{x \rightarrow \infty} x^{e^{-x}}, \quad \text { (2) } \lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}
$$

$$
\begin{gathered}
\text { (3) } \lim _{x \rightarrow 0^{+}}(1+\sin (x))^{\cot (x)} \quad \text { (4) } \lim _{x \rightarrow 0^{+}}(1+\sin (3 x))^{\cot (x)} \\
\text { (recall, } \cos (0)=1, \sin (0)=0)
\end{gathered}
$$

Alternate solution for $\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}$

I could have started by simplifying: $\left(e^{a}\right)^{b}=e^{a b}$, so that

$$
\lim _{x \rightarrow \infty}\left(e^{x}\right)^{1 / \ln (x)}=\lim _{x \rightarrow \infty} e^{x / \ln (x)} .
$$

Then, since e^{x} is continuous, we have (using notation $\exp (x)=e^{x}$)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} e^{x / \ln (x)} & =\exp \left(\lim _{x \rightarrow \infty} x / \ln (x)\right) \\
& \stackrel{\text { L'H }}{=} \exp \left(\lim _{x \rightarrow \infty} 1 /(1 / x)\right)=\exp \left(\lim _{x \rightarrow \infty} x\right)=\infty .
\end{aligned}
$$

Moral: There are no exact rules for how to do these problems.
There are just lots of strategies. Get lots of practice!

Solving indeterminate forms of type $\infty-\infty$
This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $L=\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)$. Note

$$
\csc (x)-\cot (x)=\frac{1}{\sin (x)}-\frac{\cos (x)}{\sin (x)}=\frac{1-\cos (x)}{\sin (x)}
$$

So by L'Hospital,

$$
L=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)} \xlongequal{\mathrm{L}^{\prime} \mathrm{H}} \lim _{x \rightarrow 0^{+}} \frac{\sin (x)}{\cos (x)}=0 .
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $L=\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}$. Note

$$
\begin{aligned}
& x-\sqrt{x^{2}-x}=\left(x-\sqrt{x^{2}-x}\right)\left(\frac{x+\sqrt{x^{2}-x}}{x+\sqrt{x^{2}-x}}\right) \\
= & \frac{(x)^{2}-\left(\sqrt{x^{2}-x}\right)^{2}}{x+\sqrt{x^{2}-x}}=\frac{x^{2}-x^{2}+x}{x+\sqrt{x^{2}-x}}=\frac{x}{x+\sqrt{x^{2}-x}} .
\end{aligned}
$$

So

$$
L=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}\left(\frac{1 / x}{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{1}{1+\sqrt{1-1 / x}}=1 / 2
$$

Solving indeterminate forms of type $\infty-\infty$

This is even less straightforward than exponential forms. Typically, the game is to turn the difference into a fraction. This usually happens one of the following ways:

1. Find a common denominator.

Example: $\lim _{x \rightarrow 0^{+}} \csc (x)-\cot (x)=\lim _{x \rightarrow 0^{+}} \frac{1-\cos (x)}{\sin (x)}=0$.
2. Use identities like $(a-b)(a+b)=a^{2}-b^{2}$ to get rid of square roots.
Example: $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}-x}=\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}-x}}=1 / 2$
3. Take $\exp (L)$ and use $e^{a-b}=e^{a} / e^{b}$.

Example: $L=\lim _{x \rightarrow \infty} \ln (x)-x^{2}$. Start with

$$
e^{L}=\exp \left(\lim _{x \rightarrow \infty} \ln (x)-x^{2}\right)=\lim _{x \rightarrow \infty} e^{\ln (x)-x^{2}}
$$

Then since $e^{\ln (x)-x^{2}}=e^{\ln (x)} / e^{x^{2}}=x / e^{x^{2}}$, we have

$$
e^{L}=\lim _{x \rightarrow \infty} x / e^{x^{2}}=0, \quad \text { so } L=-\infty
$$

You try:

For each, find the limit. Use l'Hospital's rule where appropriate. If there is a more elementary method, consider using it.

1. $\lim _{x \rightarrow 0^{+}} \sin ^{-1}(x) / x$
2. $\lim _{x \rightarrow 1} \frac{x}{x-1}-\frac{1}{\ln (x)}$
3. $\lim _{x \rightarrow \infty} x \sin (\pi / x)$
4. $\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-4 x}}{x}$
5. $\lim _{x \rightarrow \infty} x^{\ln (2) /(1+\ln (x))}$
6. $\lim _{x \rightarrow 0} \frac{\tan (x)}{\tanh (x)}$

Note: For extra practice, go back and prove the claims on the slides with the graphical examples.

