
Warm up

Compute the following limits.

1. lim
x→0

sin(2x)

x

2. lim
x→0

cos(x)− 1

x2

3. lim
x→∞

3x2 + 2x− 1

5x2 − 7

4. lim
x→∞

3x2 + 2x− 1

5x− 7

5. lim
x→0

x

x+ 1



More on limits, indeterminate forms, and L’Hospital’s rule

Consider the function

F (x) =
ln(x)

x− 1
.

As x→ 1, both the numerator and the denominator approach 0.
Both approach somewhat slowly, but does one go faster than the
other? Or does it approach some interesting ratio? Similar
question for x→∞, where both the numerator and denominator
approach ∞.

Indeterminate forms are ratios where the numerator and the
denominator each either approach 0, or each approach ±∞.
So far, we’ve been able to calculate limits with indeterminate forms
through algebraic tricks or substitution, or recognizing limits as
derivatives.
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Past examples of solving indeterminate forms

1. lim
x→∞

3x2 + x

5x2 − 1

(
x−2

x−2

)
= lim

x→∞

3 + x−1

5− x−2
=

3

5

2. lim
x→−∞

3e2x + ex

5e2x − ex

(
e−x

e−x

)
= lim

x→∞

3ex + 1

5ex − 1
=

0 + 1

0− 1
= −1

3. lim
x→π

esin(x) − 1

x− π
Recall, f ′(a) = lim

x→a

f(x)− f(a)
x− a

.

Note, esin(x)
∣∣∣
x=π

= esin(π) = e0 = 1.

So

lim
x→π

esin(x) − 1

x− π
=

d

dx
esin(x)

∣∣∣
x=π

= cos(x)esin(x)
∣∣∣
x=π

= (−1)e0 = −1.

So similarly, since ln(1) = 0,

lim
x→1

ln(x)

x− 1
=

d

dx
ln(x)

∣∣∣
x=1

=
1

x

∣∣∣
x=1

= 1.

But what about

lim
x→∞

ln(x)

x− 1
??
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L’Hospital’s rule

L’Hospital’s rule relates the limit of the ratio of two functions to
the limit of the ratio of their derivatives.
Consider differentiable functions f(x) and g(x) such that

lim
x→a

f(x) = 0 = lim
x→a

g(x),

and g′(x) 6= 0 for x close to but not equal to a.

Then

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
x→a

f(x)

x− a
, and

g′(a) = lim
x→a

g(x)− g(a)
x− a

= lim
x→a

g(x)

x− a
.

(If f or g are not defined at a, we can still work around this. . . )

So

lim
x→a

f ′(x)

g′(x)
=
f ′(a)

g′(a)
= lim

x→a

f(x)(x− a)
(x− a)g(x)

= lim
x→a

f(x)

g(x)
.
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L’Hospital’s rule

Theorem
Suppose f and g are differentiable functions and g′(x) 6= 0 for x
close to but not equal to a. Suppose that

lim
x→a

f(x) = 0 = lim
x→a

g(x) or lim
x→a

f(x) = ±∞ = lim
x→a

g(x).

Then if the limit of f ′(x)/g′(x) as x→ a exists (or is ±∞), we
have

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

The same holds for x→ ±∞ and one-sided limits x→ a±.

Example. Let’s recheck limx→1
ln(x)
x−1 .

ln(x) and x− 1 differentiable? X g′(x) = 1 6= 0 X,
ln(x)→ 0 and x− 1→ 0 as x→ 1 X

lim
x→1

ln(x)

x− 1
= lim

x→1

1/x

1
= 1X
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L’Hospital’s rule: if f and g are differentiable, g′(x) 6= 0 near a (but g′(a) = 0 is ok),
and

lim
x→a

f(x) = lim
x→a

g(x) = 0 or lim
x→a

f(x) = lim
x→a

g(x) = ±∞,

then

lim
x→a

f(x)/g(x) = lim
x→a

f ′(x)/g′(x).

Same goes for one-sided limits and x→ ±∞.

You try: For each of the following, verify that you can use
L’Hospital’s rule to calculate the limit, and then do so.

(1) lim
x→π

esin(x) − 1

x− π
(2) lim

x→∞

ex

x
(3) lim

x→∞

ln(x)

x

Each of the following has some reason why you can’t use
L’Hospital’s rule. For each, what is the reason?

(1) lim
x→0

x

|x|
(2) lim

x→0+

x

bxc
(3) lim

x→π

sin(x)

1− cos(x)

(Recall, bxc is the floor function, and gives back the biggest
integer less than or equal to x, i.e. b2.1c = 2, b−2.1c = −3,
b1c = 1, etc..)



exponentials >> powers >> logarithms
Question: How does ex grow versus xa?

lim
x→∞

ex

x

L’H
== lim

x→∞

ex

1
=∞

lim
x→∞

ex

x2

L’H
== lim

x→∞

ex

2x

L’H
== lim

x→∞

ex

2
=∞

lim
x→∞

ex

x3

L’H
== lim

x→∞

ex

3x2
L’H
== lim

x→∞

ex

6x

L’H
== lim

x→∞

ex

6
=∞

lim
x→∞

ex

x3/2

L’H
== lim

x→∞

ex

3
2x

1/2

L’H
== lim

x→∞

2

3

ex

1
2x
−1/2 = lim

x→∞

4

3
exx1/2 =∞

For any a, there is some n for which dn

dxnx
a is some constant times

xa−n such that a− n ≤ 0. So

lim
x→∞

ex

xa
=∞ for all a!

You try: For what a does xa/ ln(x) approach ∞ as x→∞?
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Other indeterminate forms
Our first two indeterminate forms were

(1) f/g if f, g → ±∞ and (2) f/g if f, g → 0

(called type ∞/∞ and type 0/0). They’re indeterminate since any
number of things can happen.

For example, as x→ 0+,

ex−1
x → 1 ex−1

x2
→∞ ex−1√

x
→ 0

To this list, we add

(3) fg if f → 0 and g → ±∞
Notice, if g(x)→ 0±, then 1/g(x)→ ±∞.
Example: Compute limx→0+ x ln(x). We rewrite this as

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

x−1
L’H
== lim

x→0+

x−1

−x−2
= − lim

x→0+
x = 0.
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Other indeterminate forms

(4) f − g if f, g →∞ (called type ∞−∞)
For example, as x→∞,

x−
√
x2 − 1→ 0 x−

√
x2 − x→ 1/2 x−

√
x− 1→∞

(5) fg if f, g → 0 (called type 00)
For example, as x→∞,

(1/x)1/x → 1 (1/ex)1/ ln(x) → 0 (1/ex)1/x → e
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Other indeterminate forms

(6) fg if f →∞ and g → 0 (called type ∞0)
For example, as x→∞,
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x →∞



Other indeterminate forms
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You try:
To summarize, we have 7 indeterminate form types:

∞
∞
,

0

0
, 0 · ∞, ∞−∞, ∞0, 00, and 1∞.

For each of the following limits, decide if the limit is an
indeterminate form. If so, identify which indeterminate form it is. I

1. lim
x→∞

x− ln(x)

Ans: type ∞−∞

2. lim
x→0+

x− ln(x)

= 0− (−∞) =∞ Ans: not indet

3. lim
x→∞

xx

=∞ Ans: not indet

4. lim
x→0+

xx

Ans: type 00

5. lim
x→∞

(1/x)x

= 0 Ans: not indet! (see 5.8#52)

6. lim
x→0+

(1 + sin(x))cot(x)

Ans: type 1∞

7. lim
x→π/2+

sec(x)− tan(x)

Ans: type ∞−∞
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Solving exponential indeterminate forms

Recall the property of limits, that if F (x) is continuous at L and
limx→aG(x) = L, then

lim
x→a

F (G(x)) = f
(
lim
x→a

G(x)
)
= F (L).

In particular, since F (x) = ln(x) is continuous,

ln
(
lim
x→a

G(x)
)
= lim

x→a
ln(G(x)).

Since ln(x) is invertible over the positive real line, if I can compute
the limit of ln(G(x)), then I can solve for the limit of G(x).

Why do I like this? Logarithms turn exponentials into products!

ln(f(x)g(x)) = g(x) ln(f(x))
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Solving exponential indeterminate forms

Example: Compute limx→0+ x
x.

This has indeterminate form 00.
Let L = limx→0+ x

x. Then

ln(L) = ln

(
lim
x→0+

xx
)

= lim
x→0+

ln(xx) = lim
x→0+

x ln(x).

Now we’ve changed this into the indeterminate form 0 · ∞, which
we know how to solve! We saw before that

lim
x→0+

x ln(x) = lim
x→0+

ln(x)

x−1
L’H
== lim

x→0+

x−1

−x−2
= lim

x→0+
−x = 0.

So
ln(L) = 0, implying L = e0 = 1.

So limx→0+ x
x = 1 .
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Solving exponential indeterminate forms
Say you want to compute limx→a f(x)

g(x), where f(x)g(x)

approaches one of the three indeterminate forms (00, ∞0, or 1∞).

Step 1: Let L = limx→a f(x)
g(x). Then

ln(L) = lim
x→a

ln(f(x)g(x)) = lim
x→a

g(x) ln(f(x)).

Step 2: Simplify, and if necessary, use L’Hospital’s rule to calculate
limx→a g(x) ln(f(x)) =M .

Step 3: Finally, ln(L) =M implies L = eM solves for L.

You try: Calculate the following limits.

(1) lim
x→∞

xe
−x
, (2) lim

x→∞
(ex)1/ ln(x)

(3) lim
x→0+

(1 + sin(x))cot(x) (4) lim
x→0+

(1 + sin(3x))cot(x)

(recall, cos(0) = 1, sin(0) = 0)

Answers: 1, ∞, e, e3.
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Alternate solution for limx→∞(e
x)1/ ln(x)

I could have started by simplifying: (ea)b = eab, so that

lim
x→∞

(ex)1/ ln(x) = lim
x→∞

ex/ ln(x).

Then, since ex is continuous, we have (using notation exp(x) = ex)

lim
x→∞

ex/ ln(x) = exp
(
lim
x→∞

x/ ln(x)
)

L’H
== exp

(
lim
x→∞

1/(1/x)
)

= exp
(
lim
x→∞

x
)

=∞.

Moral: There are no exact rules for how to do these problems.
There are just lots of strategies. Get lots of practice!
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Solving indeterminate forms of type ∞−∞
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.
Example: L = limx→0+ csc(x)− cot(x).

Note

csc(x)− cot(x) =
1

sin(x)
− cos(x)

sin(x)

=
1− cos(x)

sin(x)
.

So by L’Hospital,

L = lim
x→0+

1− cos(x)

sin(x)

L’H
== lim

x→0+

sin(x)

cos(x)
= 0.

2. Use identities like (a− b)(a+ b) = a2 − b2 to get rid of square
roots.

Example: L = limx→∞ x−
√
x2 − x.

Note

x−
√
x2 − x = (x−

√
x2 − x)

(
x+
√
x2 − x

x+
√
x2 − x

)

=
(x)2 − (

√
x2 − x)2

x+
√
x2 − x

=
x2 − x2 + x

x+
√
x2 − x

=
x

x+
√
x2 − x

.

So

L = lim
x→∞

x

x+
√
x2 − x

(
1/x

1/x

)
= lim

x→∞

1

1 +
√

1− 1/x
= 1/2

3. Take exp(L) and use ea−b = ea/eb.

Example: L = limx→∞ ln(x)− x2. Start with

eL = exp
(
lim
x→∞

ln(x)− x2
)
= lim

x→∞
eln(x)−x

2
.

Then since eln(x)−x
2
= eln(x)/ex

2

= x/ex
2
,

we have

eL = lim
x→∞

x/ex
2
= 0,

so L = −∞.
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You try:

For each, find the limit. Use l’Hospital’s rule where appropriate. If
there is a more elementary method, consider using it.

1. lim
x→0+

sin−1(x)/x

Ans: 1

2. lim
x→1

x

x− 1
− 1

ln(x)

Ans: 1/2

3. lim
x→∞

x sin(π/x)

Ans: π

4. lim
x→0

√
1 + 2x−

√
1− 4x

x

Ans: 3

5. lim
x→∞

xln(2)/(1+ln(x))

Ans: 2

6. lim
x→0

tan(x)

tanh(x)

Ans: 1

Note: For extra practice, go back and prove the claims on the slides with the

graphical examples.
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