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More on limits, indeterminate forms, and L'Hospital’s rule

Consider the function

As z — 1, both the numerator and the denominator approach 0.
Both approach somewhat slowly, but does one go faster than the
other? Or does it approach some interesting ratio? Similar
question for  — 00, where both the numerator and denominator
approach oo.

Indeterminate forms are ratios where the numerator and the
denominator each either approach 0, or each approach +oc.

So far, we've been able to calculate limits with indeterminate forms
through algebraic tricks or substitution, or recognizing limits as
derivatives.
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L'Hospital's rule

L'Hospital’s rule relates the limit of the ratio of two functions to
the limit of the ratio of their derivatives.
Consider differentiable functions f(z) and g(x) such that

lim f(z) =0 = lim g(z),
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and ¢'(z) # 0 for z close to but not equal to a.
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L'Hospital’s rule relates the limit of the ratio of two functions to
the limit of the ratio of their derivatives.
Consider differentiable functions f(z) and g(x) such that
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L'Hospital’s rule relates the limit of the ratio of two functions to
the limit of the ratio of their derivatives.
Consider differentiable functions f(z) and g(x) such that
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L'Hospital's rule

Theorem

Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a

Then if the limit of f'(x)/g'(x) as x — a exists (or is £00), we

have
lim f(2) = lim J'(z)

a—a g(z) 2a g'(z)

The same holds for © — +o0o and one-sided limits © — a*.



L'Hospital's rule

Theorem

Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a

Then if the limit of f'(x)/g'(x) as x — a exists (or is £00), we

have
lim m = lim (=)

a—a g(z) 2a g'(z)

The same holds for © — +o0o and one-sided limits © — a*.

In(z)

r—1"

Example. Let's recheck lim, .1




L'Hospital's rule

Theorem
Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a

Then if the limit of f'(x)/g'(x) as x — a exists (or is £00), we

have
lim f(2) = lim J'(z)

a—a g(z) 2a g'(z)

The same holds for © — +o0o and one-sided limits © — a*.

Example. Let's recheck lim,_,1 1;1&:01)_

In(z) and « — 1 differentiable? v/




L'Hospital's rule

Theorem
Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a

Then if the limit of f'(x)/g'(x) as x — a exists (or is £00), we

have
lim f(2) = lim J'(z)

a—a g(z) 2a g'(z)

The same holds for © — +o0o and one-sided limits © — a*.

Example. Let's recheck lim,_,1 1;1&:01)_

In(z) and x — 1 differentiable? v ¢'(z) =1#0 v/,




L'Hospital's rule

Theorem
Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a

Then if the limit of f'(x)/g'(x) as x — a exists (or is £00), we

have
lim f(2) = lim J'(z)

a—a g(z) 2a g'(z)

The same holds for © — +o0o and one-sided limits © — a*.

Example. Let's recheck lim,_,1 1;1&:01)_

In(z) and x — 1 differentiable? v ¢'(z) =1#0 v/,
In(z) >0andz—1—0asz— 1V




L'Hospital's rule

Theorem
Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a

Then if the limit of f'(x)/g'(x) as x — a exists (or is £00), we

have
lim f(2) = lim J'(z)

a—a g(z) 2a g'(z)

The same holds for © — +o0o and one-sided limits © — a*.

Example. Let's recheck lim,_,1 1;1&:01)_

In(z) and x — 1 differentiable? v ¢'(z) =1#0 v/,
In(z) >0andz—1—0asz— 1V

lim In(x)

z—=1lxr—1




L'Hospital's rule

Theorem
Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a

Then if the limit of f'(x)/g'(x) as x — a exists (or is £00), we

have
lim f(2) = lim J'(z)

a—a g(z) 2a g'(z)

The same holds for © — +o0o and one-sided limits © — a*.

Example. Let's recheck lim,_,1 1;1&:01)_

In(z) and x — 1 differentiable? v ¢'(z) =1#0 v/,
In(z) >0andz—1—0asz— 1V

1 1
lim n(z) = lim ﬁ
z—=1lx —1 z—1 1




L'Hospital's rule

Theorem
Suppose f and g are differentiable functions and ¢'(x) # 0 for x
close to but not equal to a. Suppose that

lim f(z) =0=limg(z) or lim f(z)=+oco = lim g(x).

T—ra T—ra T—ra Tr—a
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have
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L'Hospital’s rule: if f and g are differentiable, g’(z) # 0 near a (but ¢’(a) = 0 is ok),
and

lim f(z) = lim g(x) =0 or lim f(z) = lim g(z) = Foo,
then

lim f(z)/g(z) = lim f'(z)/g'(z).

Same goes for one-sided limits and z — Fo0.

You try: For each of the following, verify that you can use
L'Hospital's rule to calculate the limit, and then do so.

sin(z) __ x
Wm0 m & (3) tim 2®)

=T X — T r—00 I r—o00 I

Each of the following has some reason why you can't use
L'Hospital's rule. For each, what is the reason?
(1) 1 x 2) 1 x (3) 1 sin(x)
im — im — im
a0 || a—0+ |z z—m 1 — cos(z)
(Recall, |x] is the floor function, and gives back the biggest
integer less than or equal to z, i.e. [2.1] =2, |-2.1] = =3,
|1] =1, etc..)
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Our first two indeterminate forms were

(1) f/g if f,g—+oco and (2) f/g if f,g—0

(called type oco/oco and type 0/0). They're indeterminate since any
number of things can happen.
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(called type oco/oco and type 0/0). They're indeterminate since any
number of things can happen. For example, as z — 07,

T _1 T _1 T_1
= =1 g =00 eﬁ —0
— —— JL

To this list, we add

(3) fgif f—0and g —» +0
Notice, if g(z) — 0F, then 1/g(z) — Fo0.
Example: Compute lim,_,o+ xIn(z). We rewrite this as

In(x)

lim zln(z) = lim
xz—07F z—0t T™



Other indeterminate forms
Our first two indeterminate forms were

(1) f/g if f,g—+oco and (2) f/g if f,g—0

(called type oco/oco and type 0/0). They're indeterminate since any
number of things can happen. For example, as z — 07,

T _1 T _1 T_1
= =1 g =00 eﬁ —0
— —— JL

To this list, we add
(3) fgif f—0and g —» +0

Notice, if g(z) — 0F, then 1/g(z) — Fo0.
Example: Compute lim,_,o+ xIn(z). We rewrite this as
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xz—07F z—0t T™



Other indeterminate forms
Our first two indeterminate forms were

(1) f/g if f,g—+oco and (2) f/g if f,g—0

(called type oco/oco and type 0/0). They're indeterminate since any
number of things can happen. For example, as z — 07,

T _1 T _1 T_1
= =1 g =00 eﬁ —0
— —— JL

To this list, we add
(3) fgif f—0and g —» +0

Notice, if g(z) — 0F, then 1/g(z) — Fo0.
Example: Compute lim,_,o+ xIn(z). We rewrite this as

In(z) LH lim xt
1 z—0t —T

= — lim z=0.

lim zln(z) = lim
z—0t

z—0+ z—0t T —2



Other indeterminate forms

(4) f—g if f,g— oo (called type oo — o0)
For example, as x — oo,

—Vi2—-1-0 z—Va?l—-2z—1/2 z—

[ S




Other indeterminate forms

(4) f—g if f,g— oo (called type oo — o0)
For example, as x — oo,

—Vi2—-1-0 z—Va?l—-2z—1/2 z—

g j—,
(5) f9 if f,g— 0 (called type 0°)
1/:1: e 51 (1/em)/ i@ — 0 (1/e1‘)1/x —e

For example, as © — oo,

—_—




Other indeterminate forms

(6) f9 if f—ocandg— 0 (called type o)
For example, as x — oo,

(@) =1 (e 500 (em)TVVE 0



Other indeterminate forms

(6) f9 if f—ocandg— 0 (called type o)
For example, as x — oo,

(x)e" =1 (eP)V/n@) 5 00 (e)~UVE 50

(7) f9 if f—1and g— oo (called type 1°°)
For example, as z — oo,

(z+1)/2)@ 51 (z+1)/2)" =e ((z+1)/2) —

— = J

—_— —_— —



You try:

To summarize, we have 7 indeterminate form types:

0
@, — 0-00, oco—o0, oo, 0° and 1%.
00 0
For each of the following limits, decide if the limit is an
indeterminate form. If so, identify which indeterminate form it is. |

[y

lim x — In(x)
T—00
2. lim z —In(z)
z—0t
3. lim *
T—00
4. lim
z—0t
: T
5. mh_}nolo(l/x)
6. lim (1 + sin(z))°t®
z—0t
7. i —t
m_>l7rII/12+ sec(x) — tan(z)



You try:

To summarize, we have 7 indeterminate form types:

00 0
—, =, 0-00, 00— 00,
00 0

>’ 0% and 1°.

For each of the following limits, decide if the limit is an
indeterminate form. If so, identify which indeterminate form it is. |

[y

lim x — In(x)

Ans: type oo — 00

T—00
lim z —In(z) =0 — (—o00) = 0 Ans: not indet
z—0t
lim 2% = oo Ans: not indet
T—00
lim z* Ans: type 0°
z—0t
lim (1/x)* =0 Ans: not indet! (see 5.8#52)
T—00
lim (1 + sin(z))*4®) Ans: type 1°°
z—07+

li —t
m_>l7rII/12+ sec(x) — tan(z)

Ans: type co — 00



Solving exponential indeterminate forms

Recall the property of limits, that if F'(x) is continuous at L and
lim,_,, G(x) = L, then

lim F(G(z)) = f (hm G(x)) = F(L).

T—a T—a



Solving exponential indeterminate forms

Recall the property of limits, that if F'(x) is continuous at L and
lim,_,, G(x) = L, then

lim F(G(z)) = f (hm G(x)) = F(L).

T—a T—a

In particular, since F(x) = In(z) is continuous,

In (lim G(az)) = lim In(G(z)).

Tr—ra r—a



Solving exponential indeterminate forms

Recall the property of limits, that if F'(x) is continuous at L and
lim,_,, G(x) = L, then

lim F(G(z)) = f (hm G(x)) = F(L).

T—a T—a

In particular, since F(x) = In(z) is continuous,

In (lim G(az)) = lim In(G(z)).

Tr—ra r—a

Since In(x) is invertible over the positive real line, if | can compute
the limit of In(G(z)), then | can solve for the limit of G(z).



Solving exponential indeterminate forms

Recall the property of limits, that if F'(x) is continuous at L and
lim,_,, G(x) = L, then

lim F(G(z)) = f (hm G(x)) = F(L).

T—a T—a

In particular, since F(x) = In(z) is continuous,

In (lim G(az)) = lim In(G(z)).

Tr—ra r—a

Since In(x) is invertible over the positive real line, if | can compute
the limit of In(G(z)), then | can solve for the limit of G(z).

Why do | like this? Logarithms turn exponentials into products!

In(f(2)?®)) = g(z) In(f(2))



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
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This has indeterminate form 0°.



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) = 1n< lim mw> = lim In(z%)

z—0t z—0+t



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) = ln< lim 1‘“’) = lim In(z*) = lim zln(z).

z—0+ z—0t z—0+



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) =1In ( lim 1‘“;) = lim In(z*) = lim zln(z).

z—0+ z—0t z—0+

Now we've changed this into the indeterminate form 0 - oo, which
we know how to solve!



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

z—0+ z—0t z—0+

In(L) =1In ( lim ZL‘$> = lim In(z*) = lim zln(z).

Now we've changed this into the indeterminate form 0 - oo, which
we know how to solve! We saw before that

In(z) v . z 1
1

lim zln(z) = lim
z—0t z—0+t T



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) =1In ( lim ZL‘$> = lim In(z*) = lim zln(z).

z—0+ z—0t z—0+

Now we've changed this into the indeterminate form 0 - oo, which
we know how to solve! We saw before that

1 ' -1
lim zln(z) = lim n(ai) LY fim
z—0t z—0+t T z—0+t —I

So
In(L) =0



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) =1In ( lim ZL‘$> = lim In(z*) = lim zln(z).

z—0+ z—0t z—0+

Now we've changed this into the indeterminate form 0 - oo, which
we know how to solve! We saw before that

1 ' -1
lim zln(z) = lim n(ai) LY fim
z—0t z—0+t T z—0+t —I

So
In(L) =0, implying L =¢°=1.



Solving exponential indeterminate forms

Example: Compute lim,_,o+ x*.
This has indeterminate form 0V.
Let L =lim,_,o+ 2. Then

In(L) =1In ( lim ZL‘$> = lim In(z*) = lim zln(z).

z—0+ z—0t z—0+

Now we've changed this into the indeterminate form 0 - oo, which
we know how to solve! We saw before that

. . ' . €T .
lim zln(z) = lim - = lim = lim —z =0.
z—0t z—0+t T -

So

So [lim,_,g+ 2% =1 ‘




Solving exponential indeterminate forms

Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).



Solving exponential indeterminate forms

Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).

Step 1: Let L = lim,_,, f(x)g(x).



Solving exponential indeterminate forms
Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).
Step 1: Let L = limx%af(x)g(x). Then
In(L) = lim In(f(2)9®) = lim g(x) In(f(z)).

Tr—ra r—ra



Solving exponential indeterminate forms
Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).
Step 1: Let L = limx%af(x)g(z). Then
In(L) = lim In(f(2)9®) = lim g(x) In(f(z)).
Tr—a r—a

Step 2: Simplify, and if necessary, use L'Hospital’s rule to calculate
lim, o g(z) In(f(x)) = M.



Solving exponential indeterminate forms
Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).
Step 1: Let L = limx%af(x)g(z). Then
In(L) = lim In(f(x)"”) = lim g(a) In(f ().
Step 2: Simplify, and if necessary, use L'Hospital’s rule to calculate
lim, o g(z) In(f(x)) = M.
Step 3: Finally, In(L) = M implies L = M solves for L.



Solving exponential indeterminate forms
Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).
Step 1: Let L = limx%af(x)g(z). Then
In(L) = lim In(f(x)"”) = lim g(a) In(f ().
Step 2: Simplify, and if necessary, use L'Hospital’s rule to calculate
lim, o g(z) In(f(x)) = M.
Step 3: Finally, In(L) = M implies L = M solves for L.
You try: Calculate the following limits.

(1) lim ¢ °, (2) lim (*)Y/ @

T—00 T—00

(3) lim (1 —i—sin(x))wt(a?) (4) lim (1+ Sin(Sx))COt(I)

z—0t z—0t

(recall, cos(0) =1, sin(0) = 0)



Solving exponential indeterminate forms
Say you want to compute lim,_,, f(x)9®), where f(z)9(*)
approaches one of the three indeterminate forms (0%, co?, or 1%°).
Step 1: Let L = limx%af(x)g(z). Then
In(L) = lim In(f(x)"”) = lim g(a) In(f ().
Step 2: Simplify, and if necessary, use L'Hospital’s rule to calculate
lim, o g(z) In(f(x)) = M.
Step 3: Finally, In(L) = M implies L = M solves for L.
You try: Calculate the following limits.

(1) lim ¢ °, (2) lim (*)Y/ @

T—00 T—00

(3) lim (1 —i—sin(x))wt(ﬂ”) (4) lim (1+ Sin(Sx))COt(I)

z—0t z—0t
(recall, cos(0) =1, sin(0) = 0)
Answers: 1, oo, e, €3,



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (&) @) = Jim ®/ (@),
r—00 T—00



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp < li_)m x/ ln(:v))

T—00



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp < li_)m x/ ln(:v))

T—00

LA oxp (xlingo 1/(1/:6))



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp < li_)m x/ ln(:v))

T—00

LB exp (xlingo 1/(1/:6)) = exp (xlgngo 1:)



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp < li_)m x/ ln(:v))

T—00

LB exp (xlingo 1/(1/:6)) = exp (xlingox) = o0.



Alternate solution for lim,_,.(e*)"/ ™)

| could have started by simplifying: (e%)? = ¢, so that

lim (ex)l/ln(x) = lim %/ @),
Tr—00 T—r00

Then, since e* is continuous, we have (using notation exp(x) = e®)

lim e/ ™®) = exp ( li_)m x/ ln(x))

T—00

LB exp (xlingo 1/(1/:v)> = exp (xlglgox) = o0.

Moral: There are no exact rules for how to do these problems.
There are just lots of strategies. Get lots of practice!



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
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happens one of the following ways:

1. Find a common denominator.



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: L = lim, o+ csc(z) — cot(x).



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: L =lim, g+ csc(z) — cot(x). Note
1 cos(z)

csc(x) — cot(x) = sin(z)  sin(x)




Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: L =lim, g+ csc(z) — cot(x). Note

csc(x) — cot(x) = 1 cos(z) 1-—cos(z)

sin(z) sin(z)  sin(z)



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: L =lim, g+ csc(z) — cot(x). Note

. 1 cos(z) 1—cos(z)
csce(x) t(z) = sin(z) sin(z)  sin(z)
So by L'Hospital,
L= tim 100 Ly, ST

z—0+  sin(x) a—0+ cos(x)



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.

2. Use identities like (a — b)(a +b) = a® — b? to get rid of square
roots.




Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_ oo x — V22 — .



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note
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Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note

(S [T Ve e
e o (52

(@) = (Va? =)’
Vg




Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

c+Vi2—z  z+Va?—=x




Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z




Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z

So

L= lm ———
l“—>°°m+\/x2 -z



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z

So

-1 x 1/
= 1l1m
x—)oo$+,/x2_x 1/$



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z

So
L=1lm ——F——

T (1/3:) , 1
= 11m ——
z—=00 x4+ /a2 — x 1/$ x—>001+\/1*1/l‘



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a — b)(a +b) = a® — b? to get rid of square

roots.
Example: L = lim,_,oo * — V22 — 2. Note

(S [T Ve e
e o (52

()2 — (Vo2 — )2 2?2 —2?+x

x
r+vV2—x  r4+vVii—-z z+Vii-z

So
L=1lm ——F——

T 1/;1: . 1
= lim —————==1/2
z—=00 x4+ /a2 — x 1/$ x—>001+\/1*1/l‘



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.
Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square
roots.
Example: lim, oo  — V22 — 2 = limy W% =1/2
3. Take exp(L) and use e*~? = ¢?/eb.

1—cos(z) __
sin(x) =0.



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0.
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square

roots.
Example: lim, oo  — V22 — 2 = limy o0 Py el 1/2
3. Take exp(L) and use e*~? = ¢?/eb.

Example: L = lim, ;o In(z) — 22.



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square

roots.

Example: limg oo 2 — V22 — 2 = limy_00 Hﬁ =1/2

3. Take exp(L) and use e*~? = ¢?/eb.
Example: L = lim, .o In(z) — 22. Start with
2

el = exp ( lim In(z) — :zQ) = lim e@)—z7
T—00 T—00



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:

1. Find a common denominator.

Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+ 1;10&()90) =0
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square

roots.

Example: limg oo 2 — V22 — 2 = limy_00 Hﬁ =1/2

3. Take exp(L) and use e*~? = ¢?/eb.
Example: L = lim, .o In(z) — 22. Start with

el = exp ( lim In(z) — :zQ) — lim e@—2*
T—00 T—00

Then since en(®—7* = eln(u’v)/ex2



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
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roots.
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Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square
roots.
Example: lim, oo  — V22 — 2 = limy
3. Take exp(L) and use e*~? = ¢?/eb.
Example: L = lim, .o In(z) — 22. Start with

1—cos(z) __
sin(x) =0.

T —
pry eV

el = exp ( lim In(z) — :zQ) — lim e@—2*
T—00 T—00
2

. 2 2
Then since e(®)=2" = In(@) /7" — 1 /e*" we have

. 2
el = lim z/e® =0,
T—r00



Solving indeterminate forms of type co — 0o
This is even less straightforward than exponential forms. Typically,
the game is to turn the difference into a fraction. This usually
happens one of the following ways:
1. Find a common denominator.
Example: lim,_,g+ csc(x) — cot(z) = lim,_,o+
2. Use identities like (a —b)(a +b) = a® — b? to get rid of square
roots.
Example: lim, oo  — V22 — 2 = limy
3. Take exp(L) and use e*~? = ¢?/eb.
Example: L = lim, .o In(z) — 22. Start with

1—cos(z) __
sin(x) =0.

T —
pry eV

el = exp ( lim In(z) — :zQ) — lim e@—2*
T—00 T—00
2

. 2 2
Then since e(®)=2" = In(@) /7" — 1 /e*" we have

. 2
el = lim z/e® =0, so L = —o0.
T—r00



You try:

For each, find the limit. Use I'Hospital's rule where appropriate. If
there is a more elementary method, consider using it.

1. lim sin™!
Jlim, sin (z)/z

r b
e In(x)
3. li_}rn xsin(mw/x)

o V1422 -1 -4z
4. lim

z—0 T
5 lim xln(2)/(1+ln(:c))

T—$00

tan(x)
im ———~
2—0 tanh(x)

Note: For extra practice, go back and prove the claims on the slides with the

graphical examples.



You try:

For each, find the limit. Use I'Hospital's rule where appropriate. If
there is a more elementary method, consider using it.

1. lim sin~!(z)/z Ans: 1

z—07t
1

2 lim —— — Ans: 1/2
a—lz—1  In(x)

3. lim zsin(7w/x) Ans: w
T—00

4. lim VIt - vi-do Ans: 3
z—0 x

5. lim gM®)/(+n@) Ans: 2
T—00

6. tan(z) Ans: 1

Py tanh(x)

Note: For extra practice, go back and prove the claims on the slides with the

graphical examples.






