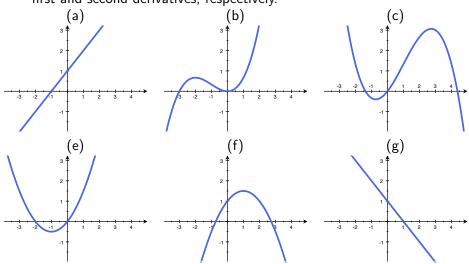
Curve Sketching

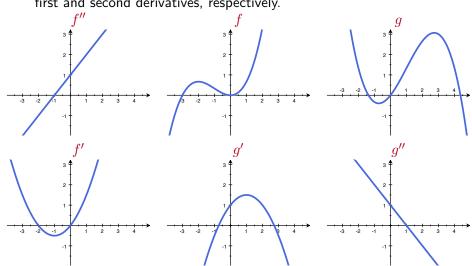
Warm up

Below are pictured six functions: f, f', f'', g, g', and g''. Pick out the two functions that could be f and g, and match them to their first and second derivatives, respectively.



Warm up

Below are pictured six functions: f, f', f'', g, g', and g''. Pick out the two functions that could be f and g, and match them to their first and second derivatives, respectively.

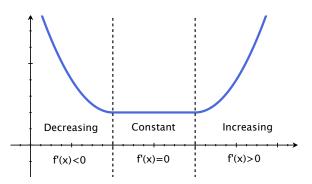


Review: Increasing/Decreasing

Suppose that f is continuous on $\left[a,b\right]$ and differentiable on the open interval $\left(a,b\right)$. Then

$$\text{If } f'(x) \text{ is } \left\{ \begin{array}{l} \text{positive} \\ \text{negative} \\ \text{zero} \end{array} \right\} \text{ for every } x \text{ in } (a,b) \text{ then } f \text{ is } \left\{ \begin{array}{l} \text{increasing} \\ \text{decreasing} \\ \text{constant} \end{array} \right\} \text{ on } [a,b].$$

What it looks like:



Review: Extreme values

If f is continuous on a closed interval [a,b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

Review: Extreme values

If f is continuous on a closed interval [a,b], then there is a point in the interval where f is largest (maximized) and a point where f is smallest (minimized).

The maxima or minima will happen either

- 1. at an endpoint, or
- 2. at a **critical point**, a point c where f'(c) = 0 or f'(c) is undefined.

Vocab: If f'(c) is undefined, c is also called a **singular point**.

- 1. Calculate f'(x).
- 2. Find where f'(x) is 0 or undefined on [a,b] (critical/singular points).
- 3. Evaluate f(x) at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

- 1. Calculate f'(x).
- 2. Find where f'(x) is 0 or undefined on [a,b] (critical/singular points).
- 3. Evaluate f(x) at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x) = x^3 - 3x$. What are the min/max values on the interval [0,2].

- 1. Calculate f'(x).
- 2. Find where f'(x) is 0 or undefined on [a,b] (critical/singular points).
- 3. Evaluate f(x) at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x) = x^3 - 3x$. What are the min/max values on the interval [0,2].

$$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

- 1. Calculate f'(x).
- 2. Find where f'(x) is 0 or undefined on [a,b] (critical/singular points).
- 3. Evaluate f(x) at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x) = x^3 - 3x$. What are the min/max values on the interval [0,2].

$$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

So f'(x) = 0 if x = -1 or 1.

- 1. Calculate f'(x).
- 2. Find where f'(x) is 0 or undefined on [a,b] (critical/singular points).
- 3. Evaluate f(x) at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x) = x^3 - 3x$. What are the min/max values on the interval [0,2].

$$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

So f'(x) = 0 if x = -1 or $\boxed{1}$.

- 1. Calculate f'(x).
- 2. Find where f'(x) is 0 or undefined on [a,b] (critical/singular points).
- 3. Evaluate f(x) at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x) = x^3 - 3x$. What are the min/max values on the interval [0,2].

$$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

So f'(x) = 0 if x = -1 or $\boxed{1}$.

\boldsymbol{x}	f(x)	
1	-2	critical points
0	0	end points
2	2	

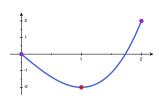
- 1. Calculate f'(x).
- 2. Find where f'(x) is 0 or undefined on [a,b] (critical/singular points).
- 3. Evaluate f(x) at the critical and singular points, and at endpoints. The largest (reps. smallest) value among these is the maximum (reps. minimum).

Example: Let $f(x) = x^3 - 3x$. What are the min/max values on the interval [0,2].

$$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$$

So f'(x) = 0 if x = -1 or $\boxed{1}$.

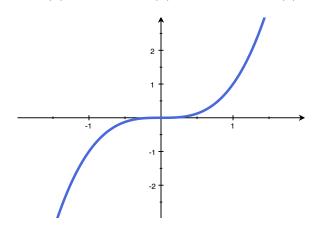
x	f(x)	
1	-2	critical points
0	0	end points
2	2	



Finding **local** min/max on **any** intervals

Warning: Not all critical points are local minima or maxima:

Example: If $f(x) = x^3$, then $f'(x) = 3x^2$, and so f'(0) = 0:



Finding local extrema: The First Derivative Test

Suppose

```
f is continuous on (a,b), c is in (a,b) and is a critical point of f(x), and f is differentiable on (a,b) (except possibly at x=c)
```

Then the value f(c) can be classified as follows:

1. If f'(x) changes from **positive** \rightarrow **negative** at x=c, then f(c) is a **local maximum**.

2. If f'(x) changes from **negative** \rightarrow **positive** at x = c, then f(c) is a **local minimum**.

3. If f'(x) doesn't change sign, then it's neither a min or a max.

Find the local extrema of $f(x)=3x^4+4x^3-x^2-2x$ over the whole real line.

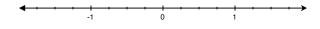
Find the local extrema of $f(x)=3x^4+4x^3-x^2-2x$ over the whole real line.

Find the local extrema of $f(x) = 3x^4 + 4x^3 - x^2 - 2x$ over the whole real line.

$$f'(x) = 12x^3 + 12x^2 - 2x - 2 = 12(x+1)(x-1/\sqrt{6})(x+1/\sqrt{6})$$

Find the local extrema of $f(x) = 3x^4 + 4x^3 - x^2 - 2x$ over the whole real line.

$$f'(x) = 12x^3 + 12x^2 - 2x - 2 = 12(x+1)(x-1/\sqrt{6})(x+1/\sqrt{6})$$

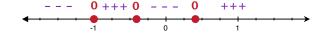


Find the local extrema of $f(x) = 3x^4 + 4x^3 - x^2 - 2x$ over the whole real line.

$$f'(x) = 12x^3 + 12x^2 - 2x - 2 = 12(x+1)(x-1/\sqrt{6})(x+1/\sqrt{6})$$

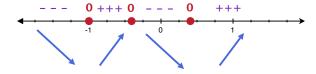
Find the local extrema of $f(x)=3x^4+4x^3-x^2-2x$ over the whole real line.

$$f'(x) = 12x^3 + 12x^2 - 2x - 2 = 12(x+1)(x-1/\sqrt{6})(x+1/\sqrt{6})$$



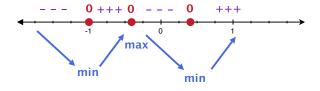
Find the local extrema of $f(x) = 3x^4 + 4x^3 - x^2 - 2x$ over the whole real line.

$$f'(x) = 12x^3 + 12x^2 - 2x - 2 = 12(x+1)(x-1/\sqrt{6})(x+1/\sqrt{6})$$



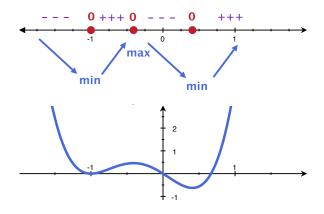
Find the local extrema of $f(x)=3x^4+4x^3-x^2-2x$ over the whole real line.

$$f'(x) = 12x^3 + 12x^2 - 2x - 2 = 12(x+1)(x-1/\sqrt{6})(x+1/\sqrt{6})$$



Find the local extrema of $f(x)=3x^4+4x^3-x^2-2x$ over the whole real line.

$$f'(x) = 12x^3 + 12x^2 - 2x - 2 = 12(x+1)(x-1/\sqrt{6})(x+1/\sqrt{6})$$

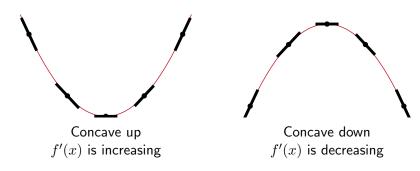


Find the local extrema of $f(x) = \frac{x^4 + 1}{x^2}$ over the whole real line.

[Hint: Make sure to write the derivative like $f'(x)=\frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials.]

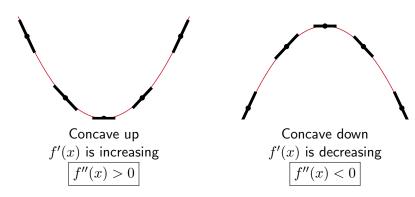
Concavity

Q. How can we measure when a function is concave up or down?



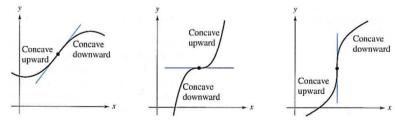
Concavity

Q. How can we measure when a function is concave up or down?



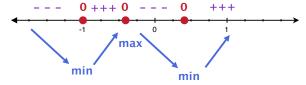
Concavity and Inflection Points

Definition: The function f has an **inflection point** at the point x=c if f(c) exists and the concavity changes at x=c from up to down or vice versa.



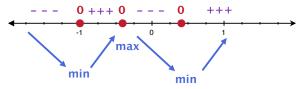
Find the inflection points of f(x), and where f(x) is concave up or down.

We calculated $f'(x) = 12x^3 + 12x^2 - 2x - 2$.



Find the inflection points of f(x), and where f(x) is concave up or down.

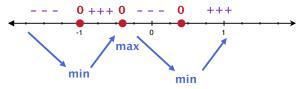
We calculated $f'(x) = 12x^3 + 12x^2 - 2x - 2$.



$$f''(x) = 36x^2 + 24x - 2 = (6x - (\sqrt{6} + 2))(6x + \sqrt{6} + 2)$$

Find the inflection points of f(x), and where f(x) is concave up or down.

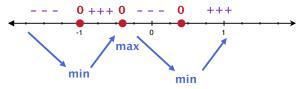
We calculated $f'(x) = 12x^3 + 12x^2 - 2x - 2$.



$$f''(x) = 36x^{2} + 24x - 2 = (6x - (\sqrt{6} + 2))(6x + \sqrt{6} + 2)$$

Find the inflection points of f(x), and where f(x) is concave up or down.

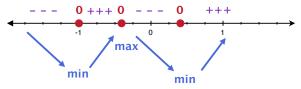
We calculated $f'(x) = 12x^3 + 12x^2 - 2x - 2$.



$$f''(x) = 36x^2 + 24x - 2 = (6x - (\sqrt{6} + 2))(6x + \sqrt{6} + 2)$$

Find the inflection points of f(x), and where f(x) is concave up or down.

We calculated $f'(x) = 12x^3 + 12x^2 - 2x - 2$.

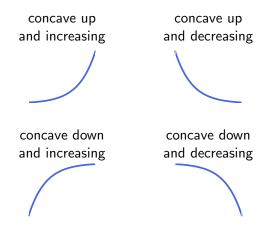


$$f''(x) = 36x^{2} + 24x - 2 = (6x - (\sqrt{6} + 2))(6x + \sqrt{6} + 2)$$
+++
0 --- 0 +++
C.C. up

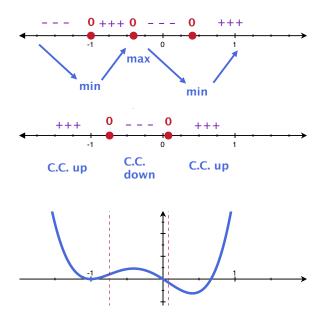
C.C. down

C.C. up

What the pieces look like



Putting it together



Last elements of graphing

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

$$f''(x) =$$

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

$$f''(x) =$$

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

$$f''(x) = 2\frac{(4x^3)(x^3) - (x^4 - 1)(3x^2)}{x^6}$$

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

$$f''(x) = 2\frac{(4x^3)(x^3) - (x^4 - 1)(3x^2)}{x^6} = 2\frac{4x^6 - 3x^6 + 3x^2}{x^6}$$

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

$$f''(x) = 2\frac{(4x^3)(x^3) - (x^4 - 1)(3x^2)}{x^6} = 2\frac{4x^6 - 3x^6 + 3x^2}{x^6} = 2\frac{x^4 + 3}{x^4}$$

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

Step 2: Concavity.

$$f''(x) = 2\frac{(4x^3)(x^3) - (x^4 - 1)(3x^2)}{x^6} = 2\frac{4x^6 - 3x^6 + 3x^2}{x^6} = 2\frac{x^4 + 3}{x^4}$$

Therefore f''(x) is always positive, but is undef. at 0.

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

Step 2: Concavity.

$$f''(x) = 2\frac{(4x^3)(x^3) - (x^4 - 1)(3x^2)}{x^6} = 2\frac{4x^6 - 3x^6 + 3x^2}{x^6} = 2\frac{x^4 + 3}{x^4}$$

Therefore f''(x) is always positive, but is undef. at 0. So f(x) is always **concave up**

Back to the example where $f(x) = \frac{x^4+1}{x^2}$:

Step 0: Domain. f(x) is defined everywhere except x=0

Step 1: Increasing/decreasing.

We found
$$f'(x) = \frac{2(x^4-1)}{x^3} = 2\frac{(x^2+1)(x+1)(x-1)}{x^3}$$

Step 2: Concavity.

$$f''(x) = 2\frac{(4x^3)(x^3) - (x^4 - 1)(3x^2)}{x^6} = 2\frac{4x^6 - 3x^6 + 3x^2}{x^6} = 2\frac{x^4 + 3}{x^4}$$

Therefore f''(x) is always positive, but is undef. at 0. So f(x) is always **concave up**

$$f(x) = \frac{x^4+1}{x^2}$$
 continued...

Step 4: Extreme behavior.

(a) What is $\lim_{x\to-\infty} f(x)$? What is $\lim_{x\to\infty} f(x)$? Are there any *horizontal* asymptotes?

(b) For any hole in the domain x=a, what is $\lim_{x\to a^-} f(x)$? $\lim_{x\to a^+} f(x)$? Are there any *vertical* asymptotes?

$$f(x) = \frac{x^4+1}{x^2}$$
 continued...

Step 4: Extreme behavior.

(a) What is $\lim_{x\to-\infty} f(x)$? What is $\lim_{x\to\infty} f(x)$? Are there any *horizontal* asymptotes?

For example,
$$\lim_{x\to -\infty} \frac{x^4+1}{x^2} = \infty$$
 $\lim_{x\to \infty} \frac{x^4+1}{x^2} = \infty$, so there are no horizontal asymptotes.

(b) For any hole in the domain x=a, what is $\lim_{x\to a^-} f(x)$? $\lim_{x\to a^+} f(x)$? Are there any *vertical* asymptotes?

$$f(x) = \frac{x^4+1}{x^2}$$
 continued...

Step 4: Extreme behavior.

(a) What is $\lim_{x\to-\infty} f(x)$? What is $\lim_{x\to\infty} f(x)$? Are there any *horizontal* asymptotes?

For example,
$$\lim_{x\to -\infty}\frac{x^4+1}{x^2}=\infty \qquad \lim_{x\to \infty}\frac{x^4+1}{x^2}=\infty,$$
 so there are no horizontal asymptotes.

(b) For any hole in the domain x=a, what is $\lim_{x\to a^-} f(x)$? $\lim_{x\to a^+} f(x)$? Are there any *vertical* asymptotes?

For example,
$$\lim_{x\to 0^-}\frac{x^4+1}{x^2}=\infty$$
 $\lim_{x\to 0^+}\frac{x^4+1}{x^2}=\infty,$ so there is a two-sided vertical asymptote.

```
f(x) = \frac{x^4+1}{x^2} continued...
```

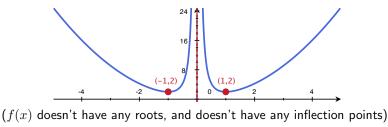
Step 5: Plot salient points.

- (a) Find any roots of f(x). (x-intercepts)
- (b) Calculate f(x) at x=0 (y-intercept), critical points, and inflection points.

$$f(x) = \frac{x^4+1}{x^2}$$
 continued...

Step 5: Plot salient points.

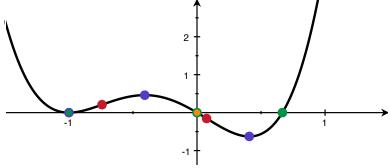
- (a) Find any roots of f(x). (x-intercepts)
- (b) Calculate f(x) at x=0 (y-intercept), critical points, and inflection points.



Back to $3x^4 + 4x^3 - x^2 - 2x$

There are no vertical or horizontal asymptotes, and there are no points missing from the domain.

Points to mark:



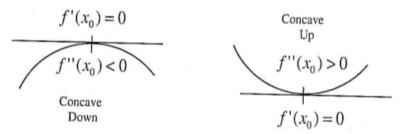
orange = y-intercept green = roots purple = critical points red = inflection points.

The second derivative test

Theorem

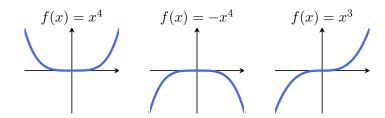
Let f be a function whose second derivative exists on an interval I containing x_0 .

- 1. If $f'(x_0) = 0$ and $f''(x_0) > 0$, then $f(x_0)$ is a local minimum.
- 2. If $f'(x_0) = 0$ and $f''(x_0) < 0$, then $f(x_0)$ is a local maximum.

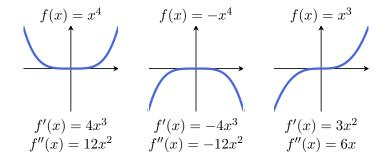


Warning: If $f'(x_0) = 0$ and $f''(x_0) = 0$, then the test **fails!** Use the first derivative test to decide instead.

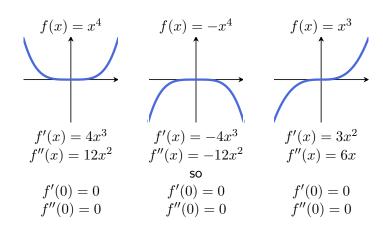
If $f'(x_0) = 0$ and $f''(x_0) = 0$, anything can happen!



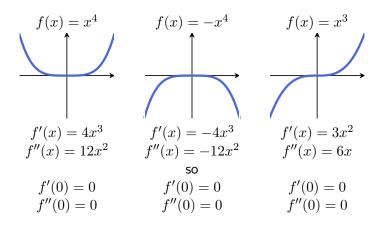
If $f'(x_0) = 0$ and $f''(x_0) = 0$, anything can happen!



If $f'(x_0) = 0$ and $f''(x_0) = 0$, anything can happen!



If $f'(x_0) = 0$ and $f''(x_0) = 0$, anything can happen!



(The second derivative being zero just means the function is almost flat.)

Sketch graphs of the following functions:

- 1. $f(x) = -3x^5 + 5x^3$.
- $2. \ f(x) = \frac{x^2 1}{x^2 + 1}$

Instructions:

- * Find any places where f(x) is 0 or undefined.
- * Calculate f'(x) and find critical/singular points.
- * Classify where f'(x) is positive/negative, and therefore where f(x) is increasing/decreasing.
- * Calculate f''(x), and find where it's 0 or undefined.
- * Classify where f''(x) is positive/negative, and therefore where f(x) is concave up/down.
- * Calculate $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ for anything where f(a) is undefined.
- * Calculate $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ to see what the tails are doing.

Hint for 2: Always simplify as a fraction of polynomials after taking a derivative.